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ON BIMODULE MATRIX PROBLEBS AND ARTINIAN
BIPARTITE PIECEWISE PEAK PI-RINGS OF FINITE
PRINJECTIVE MODULE TYPE*

DanNIEL SIMSON

0. Introduction.  Our main aim of this paper is to give a character-
ization of a class of Drozd’s bipartite bimodule matrix problems Mat(gNg)
of finite representation type, where Mat(gNp) is a category of matrices
defined as follows (see [6] or [22, Section 17.9]). Let K and L be additive
categories having the finite unique decomposition property. Suppose that
kN is an K-L-bimodule, that is,

N: KPxL— Ab

is an additive functor, where Ab is the category of abelian groups. The
objects of Mat(gNy) are triples (z,y,m), where z € ObK, y € ObLL and
m € N(z,y). A morphism from (z,y,m) to (2',y',m’) in Mat(xNp) is a
pair (¢,%), where ¢ € K(z,2'), v € L(y,y’) are such that N(z,¢¥)m =
N(p, y")m’.

It is easy to check that Mat(gNp ) is an additive category with the finite
unique decomposition property. The direct sum of two objects (z,y,m)
and (z',y’,m’) of Mat(gNy) is the object (2 ® 2’,y ® ¥, m & m'), where

(7 0)e (MEN M) o yey
mEBm—(O m’)e(f\‘i(:z’,y) N(.’E',y,) —N(.’L‘ij’y@y).

under the obvious identifications. By a bipartite bimodule matrix
problem we shall mean the classification of indecomposable objects in
the category Mat(xNy, ). The problem is of finite representation type if
the set of isomorphism classes of the indecomposable objects in Mat(gNy)
is finite. In this case the sets ind(K) and ind(L) of representatives of the
isomorphism classes of indecomposable objects in K and L are finite.

In the paper a class of bipartite matrix problems of finite representa-
tion type is characterized diagrammatically and the indecomposable ob-
jects are completely determined (see Remark 5.9). We mainly develop the
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case when K and L are not semisimple. We recall that if L or K is the cate-
gory mod(F") of all finite dimensional vector spaces over a field F' then the
category Mat(gNy) is equivalent or is dual to the subspace category U(K%)
of a vector space category K. In this case the theory is well developed
(see [9], [15], [22]).

Throughout we suppose that

1nd(]K) = {X],... ,Xn}, md(IL) = {Y]... -st}

and the following two conditions are satisfied:

(pl) The categories K, L are schurian PI-categories, that is, the en-
domorphism rings 4; = K(X;), F, = L(Y,) are division rings which are
finite dimensional over their centers for all ¢ and p. Moreover the following
numbers are finite

dij = dimK(Xj,Xi)Aj, dgp = dij(Xg,Yp)Ai if i,7<mn,j 76 1
dip = dimN(X;,Yp)a,, di, =dimp, N(X;,Y,) if p<m,i<n;
dpg = dimL(Yy, Y3 )F,,  dp, = dimp, L(Y,,Y,) if p.g<m,p#gq.

(p2) The bimodule gNy, is perfectly faithful, that is, N is non-zero
and the functors N(—,Y;), N(Xj, —) are faithful for all 7 and j.

We associate with gNp, a bipartite value scheme (Iy,d) consisting
of the set

Iyn=r'vurl’, I'={1,...,n}, I"={1,...,m}

of points connected by valued dashed arrows

dl?
i oy B e [di; #0 and di; #0].

The bipartition is defined by the sets I’ and I”. We write ¢ ——— j instead
of i—(——+j Following [9] we define a right weighted width of (Iy,d)
and a left weighted width of (Iy,d) by the formulas

rw(Iy,d) = Jpax, { Z dpd’,}

lw(Iy,d) = Jnax, { Z dipdip}
' p€eL
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where J C I’ and L C I” run through all subsets of mutually incomparable
elements with respect to the relation

i<j <<= d;; #0.

Our main results of the paper are the following two theorems.

Theorem A. If kNy is a bimodule and the conditions (pl), (p2)
are satisfied, then the category Mat(xNy) is of finite representation type
if and only if the value scheme (Iy,d) is a bipartite valued partially or-
dered set (abbreviated: poset) with respect to the relation <, lw(Iy,d) < 3,
rw(In,d) < 3 and (Iy, d, <) does not contain full bipartite valued subposets
being bipartite isomorphic to one of the forms shown in Table 1 or to their
opposite forms. If this is the case then

(a) The category Mat(xNy) has Auslander-Reiten sequences and has a
preprojective component which coincides with Mat(gNy).

(b) If (z,y,m) is an indecomposable object of Mat(gNy) then the en-
domorphism ring of (z,y,m) is isomorphic to one of the division rings
Ay, ... Ap, Fi,...,Fy,. Moreover, if x = X' ® - @® X" and y =
YO @ - @Yim thens; <6 andt; <6 for alli€ I' and j € I".

Theorem B. If the category Mat(gNy) is of finite representa-
tion type and the conditions (pl), (p2) are satisfied, then the category
Mat(xNy) has a sincere object if and only if either |Ix| = 1 or the bipartite
valued poset (Iy,d, <) of the bimodule gNy, is bipartite isomorphic to one
of the forms shown in Table 2 or to one of their dual forms.

We recall that an object (z,y,m) of the category Mat(xNy) is said to
be sincere if it is non-zero indecomposable, all indecomposable objects of
K are summands of z and all indecomposable objects of 1. are summands
of y.

Table 1. Critical bipartite valued posets for piecewise
artinian PI-rings of finite adjusted module type

(d.d") (d.d’) °

. o—oe . o—'e—e N A

A?: >< , dd',ee’ < 2; CD: /‘ ,dd' =2 D2: o—te—e;
o——e o}

(e.e') )
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0—0 o—>o\‘ 0—0—0
I~E(15: o—ro—>e; ]Eg: o —e—e; IE%, o—=>e;
0—o0 0—0 0—0—0

0—0—0 0—+0—0
]E%: >o—>o; ]E‘T' e——o—0—>e;
00— 0—0 o
0—0—0—0
0—=0—=0—0—0—0—0
(]\',4)*: 0—20 o N5: /I /‘ H
/ 0X—o
o‘f—o
0—0—0—0—0 0—0—0—0—0
ml. . ™2. .
FEg: o—s0—=e; i /‘o—u,
o 0o—s0
. O—30—0—30—30
]E3. .
8* ;
o—Fe—e—e
g 00
ESZ \‘ N
o—3e—e—e—e—0—¢
(d.d) (d.d)
.. 0—s0—0—3e ., O—0—'e
]F};Z / . dd' = 2; ]F?l: / N dd' = 2;
) 0—0
~ d,d’ ~ d.d’
IE‘?; o——»o(—)o—n—n , dd' = 2; IFf‘1 o—»o———»o('—)o——n , dd' = 2;
N (1.1 ° ANEN!
F5: -(d.d')l \\:) , dd' = 2; F$: (d',d)I \(\ ) , dd = 2;
0——0— & —e o— 6—e
(@ .d) (d.a)
~ e’ ~ ee’
Gi: o~—>o(—)}o , ee/ = 3; G2: o(—>)o—>o , ee/ = 3.

Here we draw only a generating set of valued arrows. The remaining values
should be computed according to the rules (rg) — (r2) and (rf)) — (r3) in
Lemma 3.7. The bipartition is defined by the black and white points.

Table 2. Sincere bipartite valued posets of piecewise peak
artinian PI-rings of finite adjusted module type.

Part A. Sincere one-peak forms.
(o}

F(1)*:0—e; F(1,1)*: >0:

o]
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0 0—0
F(2):0—e; F(2,2)*: o>.
° )
0—0 0—0
H’(B)‘:o—»o\_\'-,o; ]F(gﬁg)*:o_‘o\é,.
/ v
° o0—0
i i
F(4)™: o_}°>{°§ F(4,4)":0—o0—>0—;e
° o
0—>0—0 0—0—0
]F(5)*: o—zo0—>e; ]1‘.‘(5’5)*:0__.,0_}0_,.
e 4.
0—30—+0—0 60— 0—t0——0
F(6)": o—»o%-; F(5,6)*: OZ+O—>0
o A
F(6,5)": o_,o_\_,.;
Lo
BIZ:O(I_IJ.; Bg:o_’o(—z—"l)'§ 0(1—220 C4: 0—>o(1—220
BY: : B): : Cy: (54 :
3 o/ ' 4 o—»o/‘ ' 3% 4 o——:»o/‘ '
o 0(1’2) 22) 0(1-—2>)o o 0(2'1)0 ) (2'2l> 0(2—>'1)o
S BN e S BN
Ju3) (31)
(13) a.(2.2) BRES
Ghio— e '2 /‘/(1 3) Gyio—e; (22/' )

Part B. Sincere non-one-p

eak forms.

oO—0—>0 0O—O0——=0—>

0—3>0—20e—0¢

(1,1)<12:0/‘ @® ; (1,2)<2: 0/‘ @ °. (2,2)42:0_»0/‘ ®

o—=0—0—0@ 0O—3 00— — e —@

o—
(1,2)<3: 0/‘ @ ; N<13:0£O/‘

@
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0O— 00— 00— —9 00— 0—30—=0—>0—>0

(2,3)<2: . o/‘@ ; (1,3)<13:

0—0—30—20— 0 O—0—20— 00— 00— ¢

Na22 _— /@ ; (1,2)<4: o/ ® ;

0=—0—0

O—30—=0—0—>0—0 ~ 0T 0—=0—=>0— 0 —> 00—
Na4: /S ;. Na4: \Z'/' D ;
0—0 Oo—0
00— 0—0—0——e¢—¢ 00— 0—0—0—D 00— —¢
(2,4)<2: @ (L4)«as: e @ ;
o0—0 (o}
1,2 O—30—20—80—0—— 06— 0
]F4.;o——+o(—>)o—>o©; (1,2)«5: /‘ @
(o]

(22)  (L2) (22)  (21)
O ———> 0—0—0 —_——— 00—

Pt N © BN, ©

*o—>0

Fa: (1,2)1\‘”) ; Ty (2,1)1\\“’”
‘ 0——».——\>‘o@ ! o—n—\>‘o
(2.1) (1,2)

In Part B the encircled numbers mean the numbers of indecomposable
sincere adjusted modules. They can be determined according to a recipe
given in Proposition 5.8. There is precisely 81 sincere adjusted modules
over the rings of Part A and they are presented in [9, Appendix] and in
[22].

Theorems A and B are proved in Section 1 by reducing the problem
via the functors (see (2.8))
(0.1) Mat(gNy) 2 prin(R)4 2% adj(Ry)

defined in [13], [19] and [22, Section 17.9] to a corresponding problem for
the category adj(Rpy) of adjusted modules (defined in Section 1) over the
bipartite artinian PI-ring

(0.2) Ry = (61 ‘4?‘3)

associated to glNy, as follows. We set 4 = K(X, X) and F' = L(Y,Y'), where
X=X1¢---¢X,and Y =Y B --&Y,,. It follows from our assuthion
(see [15], [19]) that there is a Morita duality D:mod(#°P) — mod(F)°P,
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where F is an artinian PI-ring. We take for B the ring F and for 4Np the
image of the left F-module N(X,Y) under the duality D.

If L = mod(F) is the category of all finite dimensional vector spaces
over a field F' then the category Mat(xNp) is equivalent to the subspace
category U(KF) of a vector space category Kr and our Theorems A and
B follow from the main results in [9]. The case when L = mod(F) and F
is a product of division rings is studied in [12] and [16]. A general case is
discussed in [13] and [19].

In Section 2 notation, terminology and a Morita duality type results for
adjusted modules are presented (see Proposition 2.3 and (2.18)). Moreover,
given two idempotents e € A and € B we define a full and faithful
embedding (2.17)

(0.3) 5 adj (ege %3) — adj(R)B

induced by the idempotent induction functor (2.12). The functors Z; allow
us to reconstruct all indecomposable modules in adj(R)f; from the 327
sincere forms in Theorem 1.11 below in a way presented in Remark 5.9,
where R is a bipartite piecewise peak artinian PI-ring of finite adjusted
module type, that is, the category adj(R)g is of finite representation type.

In Section 3 we give a combinatorial characterization of bipartite val-
ued posets (Ir,d) of piecewise peak artinian PI-rings R satisfying the
following conditions:

(i) disdiy <3 foralli €Iy ands€lp,

(ii) (Ir,d) does not contain as a full bipartite valued subposet the
critical forms A?, G} and G2 in Table 1 (see Theorem 3.10).

This result essentially depends on Lemma 3.7 and Proposition 3.9, and
plays an important role in the proof of the crucial implication (b) = (a)
of Theorem 1.6.

Throughout this paper pr(R) and inj(R) denote full subcategories of
mod(R) consisting of projective and injective modules, respectively. The
full subcategories of mod(R) consisting of modules having a projective
socle and an injective top are denoted by mod,,(R) and mody;(R), respec-
tively. If R is schurian of the form (1.3) below we view any R-module X
as a system

X = (X1, oy Xngm: i3 )i<jeln
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where X; = Xe; and jp;: X;®e; Re; — X is the e; Rej-linear map induced
by the multiplication. The vector

dim(X) = (Z1,.. 03Ty Taglye ey Tugm) € 2T

with z; = dim(X;)e;Re; is called the dimension vector of X. We say that
adj(R)% is of tame representation type (resp. of wide representation type)
if R is a finite dimensional algebra over an algebraically closed field and
adj(R)’f; is of tame representation type (resp. wild representation type)
(see [5] and [22, Section 14.4]).

Given a family C of modules in mod(R) we denote by [C] the ideal in
mod(R) consisting of all homomorphisms having a factorization through
a direct sum of modules in C (see [15], [22]).

A preliminary version of this paper is presented in the preprint [23].

1. Piecewise peak PI-rings of finite prinjective module type.
Throughout this paper R denotes a basic artinian PI-ring which is bipar-
tite, that is, R has the form

(A aMp
(1.1) R_(O B)

where A, B are rings and 4 Mp is an A-B-bimodule. We denote by J(R)
the Jacobson radical of R. We say that R is a Pl-ring if R satisfies a
polynomial identity. It is well known that a basic artinian ring R is a
Pl-ring if R/J(R) is a product of division rings each of which is finite
dimensional over its center.

A right module X in mod(R) will be identified with the system

X = (X3 Xpo: X' ®aMp — X%)

where X/, is in mod(4), X is in mod(B) and ¢ is a B-homomorphism.
Note that ¢ is uniquely determined by the B-homomorphism

@: ‘X,Izl — HomB(AJWB,Xg)

adjoint to ¢ and defined by formula F(z)(m) = ¢(z @ m).

Following [13] we call a module X in mod(R) prinjective if X, is
A-projective and X% is B-injective. We denote by prin(R)g the full sub-
category of the category mod(R) consisting of all prinjective modules. The
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bipartite ring R is said to be of finite prinjective module type if the
category prin(R)g is of finite representation tvpe, that is, it has finitely
many isoclasses of indecomposable modules.

We denote by adj(R)4 the full subcategory of the category mod(R)
of finitely generated right R-modules consisting of adjusted modules,
that is, R-modules X such that soc(X) is a B-module and top(X) is an
A-module via the natural ring surjections A «— R «— B. This means that
the module X = (X, X%.¢) in mod(R) is adjusted if and only if the
B-homomorphism ¢ is surjective and the A-homomorphism & is injective.
The ring R is said to be of finite adjusted module type if the category
adj(R) is of finite representation type. It follows from [13] and [19] that
R is of finite prinjective module type if and only if R is of finite adjusted
module type (see also the diagram (2.8) below). The category of adjusted
modules was introduced in [18] and [19] as a module theoretic form of
bimodule matrix problems (see also [13] and [24]).

A ring R will be called a piecewise peak ring if R is bipartite of
the form (1.1), for any primitive idempotents e € A, € B the rings
eAe, nBn are division rings, 4 Mn is A-faithful and eMp is B-faithful, or
equivalently, if (“3’3‘3 Eg’) is a left peak ring and (‘8 ’:"g:) is a right peak
ring. In particular R is schurian in the sense that eRe is a division ring
for any primitive idempotent e of R.

We recall from [15] that an artinian ring 7" is a right (resp. left) peak
ring if soc(RR) (resp. soc(grR)) is a projective R-module and is isomorphic
to a direct sum of copies of a simple R-module P. called a peak module
of R. It is clear that right peak rings are piecewise peak. Another class of
examples of piecewise peak rings is provided by the paths algebras

KI M )

(1.2) K(I4J)= ( o Ky

where K is a field, I and J are finite posets, I < J is the disjoint union
of posets I and J with additional relations : < j for all i € I and j € J,
and M = @, D es K(7,7) is considered as an K[-KJ-bimodule in a
natural way. It follows from [17, Lemma B.7.16] and [19, Example 5.17]
that the study of adj(K (I <4 J))) is equivalent to the study of matrix
representations of the pair of posets I, J in the sense of Kleiner [7] and (8]
(see Chapter 16 of [22]).

Throughout this paper we fix a complete set of primitive orthogonal
idempotents €1,...,€n, €n414-..,€nym 0f R and suppose that e;,...,e, €
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A, eny1,-.-s6n4m € B. It will be shown in Section 2 that if R is a
piecewise artinian PI-ring of finite adjusted module type, then R has the
upper triangular matrix form

(Al iM; My .. 1]‘/1,,1}
0 A My ... M,
(1.3) R =
B, »Bq
0
\ 0 Bn /

where A; = e;Ae;, 1 < i < n, By = enypBenyy, 1 < p < m, are division
rings, ;Mp = e;Menyp # 0 and ;A; = e;Aej, By = epypBenyq for 4,7 =
1,...,n, p,qg = 1,...,m. The multiplication is given by bilinear maps
Cijktid; ® AR — Ak, cijptid; @ My — My, cipgtiMp ® By — M,
CpgripBq ® ¢ By — »B; induced by the multiplication in R.

Following [15] we associate with R the bipartite valued poset
(Ir,d), where

(1.4) Ir=14Ulg
={l,...,n,n+1,...;n4+m}, i< j < e;Re; #0,

I,={l,...;n}, Ig ={n+1,...,n + m}, and given i < j we define two
values

(1.5)  di; = dim(e;Re;)e;Re;»  di; = dime;pe,(eiRej) for i # j

We set di; = d; = 1 and d;; = d}; = 0 if i, j are incomparable in (Ig, X).
Valued arrows are defined as in the Introduction. The bipartition of Iy is
defined by the subset I4 and /g. We shall write i < 7 if i < j and @ # j.

It is easy to see that if xNy, is an K-L-bimodule then Ry is a bipartite
piecewise peak artinian Pl-ring if and only if the conditions (pl) and
(p2) are satisfied. It follows from [15, Proposition 2.5] that the bipartite
value scheme (Iy,d) of xNy, is bipartite isomorphic with the bipartite value
poset (1.4) of the ring R = Ry. Moreover, it follows from [13] and [19]
that there exist full dense additive functors shown in (0.1) preserving the
indecomposability and finite representation type. Therefore the category
Mat(xNy) is of finite representation type if and only if the ring Ry is of
finite adjusted module type.
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It follows that Theorems A and B are an immediate consequence of the

following two theorems and the properties of the functor ad established in
[13] and [19].

Theorem 1.6. Let R be a basic artinian piecewise peak Pl-ring of
the form (1.1) and let and let (Ir,d) be the bipartite value scheme of R.
Then the following conditions are equivalent:

(a) The category prin(R)g is of finite representation type.

(') The category adj(R)‘g is of finite representation type.

(b)) The ring R is schurian of the triangular form (1.3), lw(Ig,d) < 3,
rw(Ig,d) < 3, (Ir,d) is symmetrizable (i.e. d;; f; = fidfij for some natural
numbers f;), (Igr,d) is a bipartite valued poset with respect to relation
i < j&i=jord; # 0, and does not contain a full valued bipartite
subposets being bipartite isomorphic to one of the forms of Table 1 or to
their dual forms.

(c) There are positive integers fy,..., fnym such that d;; f; = f,-d;-j for
all i, j € Ir and the rational quadratic form qr:Q™*™ — Q

n+m
(1 7 Z f1l' + Z fldl_]mtm]
1<i<3<n
+ Z foldpgzpq — ZZ fatp@intpTiTnip
n+1<p<g<nt+m i=1p=1

is weakly positive, i.e. gr(z) > 0 if the vector z = (21,...,Tntm) € N*t™
is not zero.

(d) If X is an indecomposable module in adj(R)g, then the multiplicity
of any simple module occurring in (top X) @ (soc X) is smaller than or
equal to 6.

(e) If Xj A Xyg— o — Xy BB Xy — -+ is a sequence of
monomorphisms between indecomposable modules in adj(R)g, then there
is an integer h such that @; is an isomorphism for all j > h.

If, in addition, R is a finite dimensional algebra over a commutative
infinite field K, then each of the conditions (a)-(e) is equivalent to the
following one

(f) For any vector s = ($1,....8n+m) € N**™ the irreducible algebraic
K -variety X(s) = Hompg(P(s), Q(s)), with

P(s)=(aaR) & @ (enR)™,
Q(s) = E(n+ 1" @ --- @ E(n + m)*n+m
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has finitely many orbits with respect to the natural algebraic group action
(1.8) *: G(s) X X(s) — X(s)
where G(s) = Aut(Q(s)) x Aut(P(s)) and E(j) = E(top(e;R)).

Corollary 1.9.  If R is as above and one of the conditions (a) -
(f) of Theorem 1.6 is satisfied then (compare with [9, Proposition 6.2], [10]
and [20, 5.4])

(a) The categories adj(R)§ and prin(R)§ have Auslander-Reiten se-
quences.

(b) The Auslander-Reiten quivers T(adj(R)4) and T'(prin(R)3) of the
categories adj(R)§ and prin(R)4) have preprojective components.

(¢) For every indecomposable module X of adj(R)ﬁ (resp. in
prin(R)4)) the ring End(X) is isomorphic to a division ring e;Re; for
some j, the group Ext}?(X,X) is zero and X is uniquely determined by its
composition factors as well as by the coordinate vector

(1.10) v = edn(X) € N*t™

where the coordinates v(1),...,v(n + m) of v are defined in such a way
that the projective cover P(X) of X and the injective envelope E(X) of X
have the forms

P(X) — (elR)v(l) H---B (enR)v[n)’
E(X) = E(n + l)v(n+l) G---P E(n + m)v(n+m).

The structure of rings characterized in Theorem 1.6 is described in
Corollary 5.5.

The module X in adj(R)f is defined to be sincere if X is indecom-
posable and edn(X)(j) # 0 for all j = 1,....,n+ m. The bipartite ring R
is called adj-sincere if R has a sincere adjusted module.

Theorem 1.11. Let R = (g }’3’) be a basic artinian piecewise
peak PI-ring of finite prinjective module type and let and let (Ig,d) be the
bipartite value poset of R. Then R has a sincere adjusted module if and
only if (Ip,d) is bipartite isomorphic or anti-isomorphic with one of the
49 bipartite valued posets of Table 2.

If X is an indecomposable sincere module in adj(R)g then
(ednX)(j) <6 forj=1,...,n+m.
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The total number of non-isomorphic bipartite valued posets of rings
described in Theorem 1.11 is equal 93. The total number of sincere ad-
justed modules over such rings is equal to 327 (see Remark 5.9).

Proofs of Theorems 1.6 and 1.11 are presented in Section 5. They
essentially depend on the results in [9]. We reduce the main problems of
this paper to the right peak case (see Corollary 5.5) by the peak reduction
(Theorem 4.1) and the Arrow Waist Reduction (Theorem 4.12) introduced
in [20]. Corollary 1.9 is a consequence of Corollary 5.7 and the well-known
properties of preprojective components (see [22, Section 11.9], [24] and the
note added in proof).

2. Adjusted modules, bipartite valued posets and a duality.
Let us start with a useful characterization of artinian piecewise peak rings
which is a simple consequence of [15, Proposition 2.2].

Lemma 2.1. (a) An artinian ring R = (3 ‘BI) is a piecewise peak

ring if and only if (‘-’“e eM) is left peak ring and (0 an) is a right peak
ring for all primitive idempotents e € A and n € B.

(b) Let R be a basic artinian ring of the form (1.3) and suppose that
Ai,..., A, and By,..., B,, are local rings Then R is a piecewise peak ring
if and only if Ay, .. A and By,..., By, are division rings, the bimodules
iM; = e;Rents are non-zero and the bimodule maps

(2.2) €ijs ¢ iA; — Homp, (; Ms,; M),
. Cist ¢ s By — Homy,(: M, ; My)

adjoint to ¢;;5:;A; ® ;Ms — ;M and c;5: ;M @ sBy — ; My, respectively,
are injective for i,7 = 1,...,n and s,t = 1,...,m, where ;A; = A; and
<Bs = B;.

We shall frequently use the following Morita duality result.

Proposition 2.3.  Let R be a basic schurian artinian piecewtise peak
PI-ring of the form (1.3) and let

(2.4) R =End(Q) = (g g)

where @ = E(1)&---@ E(n+m), E(j) = E(tope;R) forj=1,....n+m,
A=End(E(1)®---® E(n)) and B = End(E(n + 1) & --- @ E(n + m)).
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Then

(a) The right R-module Q) is a finitely generated, R is a schurian ar-
tinian piecewise peak PI-ring of the form shown in [15, Proposition 2.5]
and the natural projections Q — E(j) define a complete set of primitive
idempotents e},... e, of the bipartite rz'ngf?.

(b) The valued bipartite poset (15,d) of R defined with respect to the
idempotents ey, ... €, . is equal to (Ir,d). The functor

(2.5) D = Homp(Q,—): mod(R) — (mod(R°P))°P
is a Morita duality such that if X = (X1,..., Xntm, i) s in mod(R)
then

(26) D(X)=(X],.... Xpymsj9]) and dimD(X) = dimX

where X7 = HomeJReJ.(Xj,ejReJ:); If, in addition, R is an artin algebra
then there is a ring isomorphism R = R and D is the standard duality.

Proof.  The statement (a) and the first part of (b) are an immedi-
ate consequence of [15, Proposition 2.5] and its proof. In order to prove
the second part of (b) we recall from [15, p.539] that E(j) = Lj(e;jRe;),
where L; = Homg,p,,(Re;,—): mod(e; Re;) — mod(R) is fully faithful
functor which is right adjoint to the restriction functor res;:mod(R) —
mod(ejRe;) (see [22, Theorem 17.46]). Hence we get

¢ D(X) = Homg(Re};, D(X)) = Homyz(DE(j), D(X))
=~ Homp(X, E(5)) 2 Hompg(X, L;(e;Re;))
= Hom,,ge, (res;(X), e; Re;) = Xj.

Since R is a PI-ring then by [4, Proposition 1.2] dim,;ge; X3
dim(Xj)e, re, and the proof is complete.

Corollary 2.7.  The duality (2.5) induces a duality
D: adj(R) — (adj(RP)40)°P.

Let us recall from [13] and [18] that there is a commutative diagram
A

prin(R)4 e mod;.(R)B
(2:8) loa ¢ |es
mod”¥(R)* —  adj(R)j

e
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where ad = @go®4, and prin(R)g, mod;.(R)p. modP8(R)4 are full sub-
categories of mod(R) consisting of prinjective, injectively B-cogenerated,
projectively A-generated modules, respectively. The module

2.9 X = X',X",(,O: X'® aMg — X5
A B B

in mod(R) is in prin(R)# (resp. in modP&(R)#) if X', € pr(A) and X4 €
inj(B) (resp. X/, € pr(A) and ¢ is surjective). Further, X is in mod;.(R)p
if X% € inj(B) and the map

(2.10) [ XQ—>HOIHB(A:\/IB,X§

adjoint to ¢ is injective. Note also that X is in adj(A)4 if ¢ is surjective
and @ is injective. The functors ©4 @pg, ad are full dense and Ker®4 =
[pr(A)], Ker®p = [inj(B)], Kerad = [pr(A),inj(B)]. In particular all
categories in the diagram (2.8) are of the same representation type. We
recall from [18] that @p(X) = (X/4,Im ¢, @) and @4(X) = (Imp, X", §),
where @ and 7(,5 are maps induced by ¢ in a natural way.

If J C Igr weset e(J) = 3¢ €;. Given idempotentse € Aand n€ B
we set

e (eAe eMn
(2.11) R: _( ; nTn)

If R is of the form (1.3) and e = e(J), n = e(L) for some J CI4, L Clp
then R; is obtained from (1.3) by omitting the 7" row and the 7! column
forall j € Ir—(JUL). Let us define an idempotent induction functor

(2.12) Z; : mod(R})— mod(R)

by the formula Z5(Y',Y",¥) = (Y’ ®,4, €A, Hom, p, (Bn,Y"),v'), where
Y (y®ea®m)(bn) = v(y®eambn)forally e Y',a € A,b€ B, m € M (see
[22, Theorem 17.46]). It is easy to see that I carries prinjective modules
to prinjective ones and there is a commutative diagram

Ie
prin(R:) — prin(R)5

lov_ |o*
(2.13) mod;e(RE)—modic( R)p~=mod?8(R¥)B 2+ (modic( R*) gop)
S
adj(Rz) —% adj(R)# adj(R¥)§ 2 (adj(R*)4.p)"
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where 7;(Z) = ©4T%(Z) for Z in modie(RS), T5(Z) = @pOATE(Z) for Z
in adj(R?),

_ (B Ds(M) . (FTe
RV_(O BA )’ R* = (RV)P

is the reflection form of R and the dual reflection form of R, respec-
tively, RV is defined by the formula in (2.4), Dg: mod(B) — mod(B°P) is
the Morita duality defined as in (2.5) and V_ is the reflection functor
defined in [19, Definition 2.13], which is an equivalence of categories (see
(13], [19]. [20)).

Proposition 2.14. Let R = (‘g NE{) be a basic piecewise peak ar-
tinian PI-ring of the form (1.3), let (Ir,d) be the bipartite valued poset
of R and let e = e(J) € A, n = e(L) € B be the idempotents associated to
some fized sets J C Iy, L C 1.

(a) The rings R;, R°P, RY and R* are piecewise peak PI-rings.

(b) The bipartite valued poset of R, is the full bipartite valued subposet
of (Ir,d) defined by J U L. If (1,d) is the bipartite valued poset of RV,
then

TZT'—UTA, (ig,g):(IB,d), (TA,d_)Z (IA,d)

and (Esiﬂ;z—) = (di,,d;is) for alli € I, s € Ig = Tg. The bipartite valued
poset of R® is dual to (I,d).

(¢) The diagram (2.13) is commutative and the functors I¢, I¢, i‘;
are fully faithful embeddings. If T is one of the functors I7, T;, Tf, and
res;:mod(R) — mod(R;) is the restriction functor defined by res;(X) =
(X'e, X/, ¢l), then res;T = id and

cdn (ZY)(?) = (ednY)(i) forie JUL
=0 forieIr\(JUL).

The category ImZ consists of all R-modules X such that (edn X)(i) = 0
Jorallie Ig\(JUL).

(d) If the category adj(R)4 is of finite representation type (resp. tame
representation type), then adj(R;;)‘;’fa‘i7 and adj(R’);—‘;:p are of finite repre-
sentalion type (resp. tame representation type).
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Proof.  (a) Since M., is A-faithful for any s € Ig and by Proposi-
tion 2.3 we have e, D(M) = (Me,)* then €, D(M) is obviously A-faithful.
Furthermore, since e; M is B-faithful for any i € I 4 then the left B-module
D(M)e; & D(E; M) is faithful because it follows from the Proposition 2.3
and [15, Proposition 2.3] that the functor D carries faithful modules to
the faithful ones. It follows that RV is a piecewise peak artinian PI-ring.
The remaining part of (a) is obvious.

The statement (b) easily follows from Proposition 2.3 (b).

(c) The commutativity of the left hand squares in (2.13) follows from
definitions of the functors 77, ffg and _I—f]. The right hand square is com-
mutative by definitions of D, @ and O gop- 1t is easy to conclude from
[22, Theorem 17.46] that 75 is fully faithful embedding with the prop-
erties required in (c). In order to prove (c) for the functor Z; we note
that ¢ is the functor Tx L defined in [19, 2.22] with K = J U L. Then
the required properties of T; follow from [19, Proposition 2.24] and from
the proof of [16, Proposition 1.13]. Since the diagram (2.13) is commuta-
tive, @,p, and @p are full functors and obviously resf)—ff} 2 id then Tg
is full and the properties of ff, proved above imply the properties of ff]
required in (c). Let us show for example that ff, is faithful. For, sup-
pose that f:Y — Z is a map in adj(R;) such that ff)(f) = 0. Then
there exists a map g:¥Y; — Z; in modic(R{) such that f = @,p,(g). It
follows that Z¢(g) € Ker®p = [inj(B)] and therefore 7g(g) has a fac-
torization fg(Yl)LQ—t—»f;(Zl) where @ = (0,Q%.0), and Q" is the
injective envelope of Z' in mod(B). It follows from the properties of I
that @ = Z7(0, E,0), where E is in inj(7nBn). Since Z; is full and faithful
then g has a factorization through (0, F,0) and therefore g € Ker®,p,,. It
follows that f = @,p,(g) = 0 and I¢ is faithful as we required.

Since (d) easily follows from (c) the proof is complete.

Given an indecomposable module X in adj(R)$ (resp. in prin(R)g,
mod;.(R)g, modP8(R)*) we define the coordinate support

(2.15) csup (X) = csup(X)4 Ucsup(X)p
of X, where

csup(X)a = {# € Is:edn(X)(¢) # 0},
csup (X)g = {s € Ip: edn(X)(s) # 0}.
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It follows that the module X is sincere if and only if csup (X) = Ig.
An important consequence of Proposition 2.14 is following

Corollary 2.16. Let R = ( M) be an artinian Pl-ring of the form
(1.3), where Ay,...,An, B1,..., By are local rings. Then
(a) If X is an indecomposable module in adj(R)§, e = e(csup (X)a) €
A, n=e(csup(X)g) € B and
I
(2.17) adJ(Re)f,‘é“,’, e:e adj(R)3
’7

is the pair of functors defined in (2.13), then the module Y = res;(X) in

the category adj(R°); 5 ‘3‘49 is indecomposable sincere and X = f;(Y)

(b) The ring R zs not adj-sincere if and only if every indecomposable
module X in adj(R)3 is of the form X = T;(Y), where Y is indecompos-
able in adj( R; ;’éﬁ, and e = e(J), n=e(L) for some J C 14, L CIp such
that JU L # Ip.

(c) There is a commutative diagram
mod;C(R)B—E—)—.» (modic(R;3 )gnp)

(2.18) l”@a B l@,;op
adj(R) = (adj(R®

op

3on) "

where D* = DV _, z;?lj(R)B is the factor category of adj(R)B modulo all
maps having a factorization through coproducts of E(n+1),...,E(n+m),
the functor Op is the composition of @p with the residue class functor
and D* is the equivalence induced by D°.

Proof.  The statements (a) and (b) follow from Proposition 2.14.
For the proof of (c) we note that @p(E(n +t)) = E(n +t) and

D*(0,Ep(n + 1)) = D(en+:RY) = Epe(n + 1),
D*(E(n+1t)) = D(e;,;B,0) = (O,Egop(n + 1))
fort = 1,...,m. It follows that D* induces a unique functor D*® such that

the diagram (2.18) is commutative and D* is an equivalence of categories,
because we know that @p is full dense and Ker @ = [inj(B)].

Following [10] and [21] we call the functors D* and D*® reflection
duality functors.
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3. Valued bipartite posets of piecewise peak rings. In the
proof of Theorem 1.6 we shall need the following observation.

Proposition 3.1. LetR = (3 g) be a basic piecewise peak artinian
PI-ring and let ey,...,e, € A, €ny1,....6n4m € B be complete sets of
primitive orthogonal idempotents. Then

(a) Ai = e;Re;i, Bs = esynResyn are division rings finitely generated
over their centers and ;Mg = e;Re,+s is non-zero for i = 1
1,...,m.

(b) If ;:M; is simple A;-B,-bimodule for all i and s, then R has an
upper triangular form (1.3) and (Igr,d) defined by (1.4) and (1.5) is a
bipartite valued poset with respect to the ordering i < j <> e;Re; # 0. The
bipartition of (Ir,d) is given by I = {1,...,n}, Ip={n+1,...,n+m}
and we have i < j for alli € 14, j € Ip.

(c) If the category adj(R)g is of finite representation type then

(3.2) 1 < (dimg,(;Ms))(dim(; M;)B.) <3

iM; is a simple bimodule for i = 1,...,n, s =1,...,m, and (b) applies.

Proof.  (a) follows from definitions and the injectivity of ¢;;, in (2.2).

(b) By applying [15, Propositions 2.2, 2.3] to the rings R;:ﬁ, RY we
easily conclude that

(i) ei Re; # 0 implies e; Re; = 0 for all ¢ # j,

(ii) e;Re; # 0 and e;Rex # 0 implies e; Rey # 0 for all 4, 7, k.
Hence (b) follows.

(c) Given i < n and s < m we consider the hereditary ring 5 = R} =
(‘?)" ‘g’;), where e = ¢; and 7 = €,45. Since adj(R)3 is of finite represen-
tation type then, by Proposition 2.14(d), adj(S) is of finite representation
type and therefore mod(S) is of finite representation type, because A; and

B; are division rings and adj(S) is cofinite in mod(S). Then (c) follows
from the main result in [4].

If R is a basic schurian piecewise peak artinian PJI-ring of the
form (1.3) and the condition (3.2) holds we associate with R the bipartite
valued poset (Ig,d) as in (1.4) and (1.5) satisfying the condition (b) in

Proposition 2.14. We shall view (Ig,d) as a set of points 1,...,n + m
connected by valued dashed arrows
(dij,d!)

(3.3) i -2
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if t < 7,7 # j, and d;j, di; are defined by (1.5). We shall write i ——— j if
dij = di; = 1. We shall write

. (dijudiy) .
]

if ¢ < 7 and there is no s # 4, j such that ¢ < s < j. The bipartition is
marked by writing the points n41,...,n+m in boldface, or by underlining
them. We call (I,d) homogeneous if d”du < 1 for all ¢,7 € Ig. In this
case we consider (I,d) as a usual poset.

The values d;;,d.. form the bipartite Cartan matrix

)1 iy
|
/[ 1 dig -+ dig ! ding1  ding2 ¢ dingm \
12 1 o dyp 1 dang1  dopg2 - dz ntm
|
| : : :
4 C _ dlln dfzn ot 1 : dn n+1 dn nt+2 dn n+m
(3) OB = | e T s PR
1n+1l Y2042 """ Unntl nt+ln42 ** *An+lnt+m
] t ’ | gt
dl n+2 d‘Z n+2 "7 dn n+‘2 | dn+1 n+2 1 v dn+2 n+m
I
. . ! . . . .
' 7 ! ' '
\dl n4+m d2 n+m * dn n+m |dn+1 n+m dn+2 n+m " 1 )

We call C(R) the bipartite value matrix of R (compare with [9], [11]
and [13]).
We recall from the introduction that the algebra R = K (7 < J) defined
by (1.2) is a homogeneous piecewise peak K-algebra with Ix = I < J,
I4=1,1p =J. Note that d;; = d;'j =1if¢=jand d;; :dﬁj =0if: £ 7.
A partial converse of the observation above is given by the following

Lemma 3.5.  Suppose that R is a basic schurian artinian piecewise
peak PI-ring of the form (1.3) such that d;sdiy; = 1 for all i € 14 and
s € IB If (I4,d) does not contain as a full bipartite subposet the poset

o

OZ then dijd;; <1 for alli,j € Ip, L = 14 and J = Ip are subposets

of Ip such that IR = L q J (see 1.2) and there are ring isomorphism
Fiz=Ay 2. 2A, 2B 2...2 B,

RgF(LqJ)g(FL M)

0 FJ

and an A-B-bimodule isomorphism M = @ @ F(i,7).
i€l seJ
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Proof. 1t follows from the assumption that L or J is linearly ordered.
Suppose that J is linearly ordered. Since R is piecewise peak then [9,
Lemma 2.13] yields A; & B, foralli € L, s € J, d,-jd:-j = 1 if and only
if ¢ < jin (I4,d), there are F-algebra isomorphisms A & FL, B~ FJ
and the lemma follows if m = 1. The desired result follows by a simple
induction on m like in the proof of [2, Proposition 3.2].

A typical non-homogeneous piecewise peak algebra is the following.

Example 3.6. Let R and C be the real and the complex number
field, respectively. By Lemma 2.1 the R-subalgebra

cccccecc
ORRCCC.

R = A M\ :]ROR(C
=\o B/~ . CCC
0" &rcC

0 ¢

of the matrix algebra Mg(C) is a piecewise peak algebra and (Ig,d) has

the form
(1)) 4 (11)

—_—

////(1,2) /‘.\(2.1) N

7 (21) (2.2) (1,2) \
10 —mm™ 0 ——— & ——— @0 6
\

[ ]
(21) 3 (1,2)

completed by three arrows 1 2, 5, 2 L2 6, 1-———6. Since

rw(Igp,d) = 4 then by Theorem 1.6 the category adj(R)g is of infinite
representation type.

A basic tool for the study of piecewise peak rings is the following.

Lemma 3.7. Let R be a schurian artinian piecewise peak PI-ring
of the form (1.3). Let L = {i,j,s}, J = {i,s,t}, 4,7 <n, s,t >n+1, and
let (L,d), (J,d) be full bipartite valued subposets of (Ir,d) defined by L
and J. Suppose that d;;d},, d;sd’;, dind}, < 3 and i < j, s < t. Then (L,d)
and (J,d) is of one of the forms presented in Figures 1 and 2, respectively.
In particular d,-jd;-]- <9, dud,, <9 and we have the following composition
rules:
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(ro) dij = disdj, if and only if d}; = dld;,

(rp) dst = ,tdm if and only if dst = ditd,s

(11) dij = di; iff di; < dipd}, < 3 and (dis, d.,) = (djs,djs).
(r)) dse =d, iff dsy < dndlt < 3 and (dzs,d = (dj,dl).
(r2) Ifdij # dl then (dmdi]) = (dis d_’n’ 18)

(r,2) Ifds‘t 75 dst then (dstadst) - ( zt’d )

Proof.  The lemma follows for (L, d) from [9, Lemma 3.3]. The proof
for (J.d) reduces by duality to that one for (L,d).

Figure 1.
(l,abV]\Sa,l) (abd, IV N] a) 1 <a< b <3.
it——— s+n {———s+n

(. b) (b.1)

(aay‘\glb) (aa/‘\gbl) 1<a<b<3.

t———%s+4n 1 ———s5+n
(1.5) (b, 1)

J — —
b " . a=2,b=3
( ,ZLE;ZL ® Z]Z‘_EHZ or a=3,b=2.
(1.6) (b,1)
Figure 2.
(b1
t——— t+n z———?t—}-n
(la]\\ﬂabl) {alxﬂlab) 1<a<b<3.
s+n s+n
._(b1) . (18)
t——— t+n t———i+n
BN, (ea) b\, aa) 1<a<b<3.
s+n s+n
. () " (1,b) i+
1= — n t———i+n :2,6:__3
(b'ak‘*_/(‘“'l) (. bNJr/EI @) gr a=3,b=2.

Corollary 3.8. If R is a schurian artinian piecewise peak PI-ring
of the form (1.3) and d;.d:; < 3 for alli € 14, s € Ig then (Ig,d) and
C(R) are symmetrizable, i.e. there are positive integers fi,..., foim such
that d;; f; = fid:-j foralli,j € Ig.

Proof.  Apply Lemma 3.7 and [9, Corollary 3.4].
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Another restriction for the coefficients of C(R) is given by the following
result.

Proposition 3.9. Let R = (’(} g) be a basic schurian artinian

piecewise peak PI-ring of the form (1.3) and let

I: (a,a')// ' // (e.c’)

(d.d")
be a full bipartite valued subposet of (Ir,d). If di;di; < 3 for all i € 14
and s € 1g, then the following condition is satisfied.

(rr) If 2 < bY < 3 then (a,d’) = (1,1) or (e,c') = (1,1).

Proof. Without loss of generality we can suppose that n = m = 2,
i=s=1,7=t=2,(Ig,d)=1" and

Ay 14211 My (M,
0 A2:2JW1 2A12

Let us consider the right R-module Y = e;J(R) = (1 42,1 M1,1M;) as a
right module over the left peak ring

A2 : 21’”1 21‘42

5= g BB
0 10 B
First we shall prove that

(1) If Y is indecomposable and either ¢ # ¢’ or ¢ = ¢/ = b, then

a=a =1.
For this purpose we recall from Proposition 2.3 that there is a duality
D : mody(S) — modsp(§°p),

S has the form
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and (d,J,d;J) (J,-j, caj), where Jij and J{-j are entries in C(§) Moreover,
the left S-module D(Y) has the form

143
p)=(.mr).
M

Since the bimodules | M, ; M, are simple, the maps 14; ® s M; — My,
1My ®1B; —» 1My, 1A ® 9M; — 1 M, are surjective and therefore Y is in
mod;(5). Now, if Y is indecomposable the module D(Y') is indecompos-
able and 1 M5 # 0. The valued poset of 5°P has the form

gL,

@ d)y: « c\ )

2 is a peak vertex and by our assumption (i &i) has one of the forms shown
in Figure 1. Hence if either ¢ # ¢/ or ¢ = ¢’ = bb’ then using the rules
(ro)—(r2) and (rg)—(ry) in Lemma 3.7 one can easily check that the sets
J = {4}, J" = {3}, J' = 0 define a splitting decomposition of (I,d) in
the sense of [9, Definition 4.5]. By [9, Lemma 4.6, Theorem 4.3] the left
module ( 3 ) = resj»(D(Y")) over the hereditary ring (“:]2 21‘;}{1) is injective
and therefore is a direct sum of dy2 = dimg,(1A43) copies of the injective
module (2;‘421.), where ; M} = Homy,(; My, A,) (see [15, Proposition 2.5)).
It follows from (2.6) that

d = d\3 = dimp, (( My) = dy2dimp, (M}) = dyzdy3 = ab

and similarly d’ = a’d’. Hence a = d’, because otherwise the rule (rz) in
Lemma 3.7 yields a = db’, a’ = d’'b and we get d = dbb’, or equivalently
bb' = 1; a contradiction. Furthermore, since a = @’ then (r1) yields b = d,
b' = d' and consequently we get @ = o’ = 1 as we required. Then (})
follows.

In order to finish the proof suppose to the contrary that aa’ # 1 # cc'.
Since djadiy < 3, in view of the duality D:adj(R) — (adj(fi"p))“f’ and
Proposition 2.3(b), we can consider only the case dj4 = 1. Since the module
(1A2,1M7) is socle projective over <A2 2”‘) The module D(;A3,1 M7) =

A.
(:7\72') (see (2.6)) is top injective, because the bimodule ; M7 is simple and
M |

the map ; By ® Mo — 1M is surjective. Since dy4 = 1 then (2.6) yields
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dimD(Y) = dimY = (a.d,1) and therefore D(Y) is indecomposable,
because it is top injective and has a simple top.

It follows that Y is indecomposable and since aa’ # 1 then according
to (1) we get ¢ = ¢/ < bb' < 3. The assumption ¢’ # 1 yields e = ¢’ = 2
and bb' = 3. Now applying (r;) and (ry) we get d = diqy = 1, d' = dj,,
e="b,¢ =b,a=">and a’ = bd’. This reduces the study to the following
cases:

1° (d,d') = (1,2), (b,%) = (1,3), (a.a') = (3,2).
2 (d,d") = (1,2), (b,) = (3,1), (a,a') = (1,6).
3 (d,d) = (1,3), (b,8') = (3,1), (a,@') = (1.9).

It follows that dimD(Y) = dimY = (3,1, 1) in case 1°, and it is equal
to (1,1,1) in cases 2° and 3°. Hence Y is indecomposable. It follows that
DY is indecomposable in modsp(§°p) and since §°P is sp-sincere of type
G, or G (see [9, Theorem B]) then the vector obtained from the dimDY
by inverting the order of coordinates is one of the vectors in [9, Appendix,
Table I11.8]. Now note that (1,1,3) does not appear in Table I1.8, whereas
(1,1,1) appears for the type @’2’ only. Since §°P is of type @g in the cases
2° and 3°, we get a contradiction and the proof is complete.

Now we are able to give a combinatorial characterization of bipartite
valued posets of artinian piecewise peak PI-rings.

Theorem 3.10.  Let (I,d) be a bipartite valued poset with the bi-
partition I' U I" such thati < s and 1 < d;,di; <3 foralli e I', s e I".
Suppose that d;; = d; = 1 for alli € I and (I,d) does not contain as a full
subposet one of the critical posets A2, G} and G2 in Table 1. Then (I,d) is
a valued bipartite poset of a piecewise artinian PI-ring if and only if (I,d)
is symmetrizable, the composition rules (ro)—(r2), (r)-(ry), (rr) hold for
(1,d), and (I,d) as well as (1,d)°P has the properties (r3)—(rs) listed in [9,
Theorem 3.5]. In this case there ezists a finite dimensional piecewise peak
algebra R over an infinite field K such that (I,d) = (Ig,d).

Proof. The “if” part follows from Lemma 3.7, Corollary 3.8 and
Proposition 3.9. The converse implication follows from the final statement
in the theorem, which can be proved by repeating the arguments in the
proof of [9, Theorem 3.8].
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Remark 3.11. It follows from Lemma 3.7 and [9, Theorem 3.8]
that the bipartite valued poset

(1,2) (2,1) (1,2)
00— 0 —=20—0—>

h XA
LY (@) !

is not of the form (Ig,d), where R is a piecewise peak artinian PI-ring.

Remark 3.12. [t follows from the results above that most of the
dashed valued arrows in (Ig,d) are uniquely determined by the continuous
ones according to the composition rules above. In this case we will mark
in the picture of the valued poset (Ig,d) of R only a minimal set of valued
arrows and we presume that the reader is able to reconstruct the remaining
ones according to the rules presented in this section.

4. A peak reduction and an arrow waist reflection functor.
The aim of this section is to prove Theorems 4.1 and 4.12 which reduce the
study of adj ({} “g) with arbitrary ring B to the case when B is a division
ring, under some assumption of the valued poset of the ring (‘3 "g). This
will play a key role in the proof of the main results of this paper.

We recall from Proposition 2.3 that if B is an artin algebra then we

have defined the Nakayama equivalence
N : pr(B)— inj(B)

by the formula 9g(—) = DHompg(—, B), where D:pr(B°) — inj(B) is
the duality induced by (2.5) with R and B°P interchanged.

Let us start with a peak reduction introduced in [20, Section 2].

Theorem 4.1. Let R = (’g “B’) be a basic artinian piecewise peak
P1I-ring of the form (1.3) such that the bimodules ;M are simple for i =
1,...,n, s = 1,...,m and suppose that the valued poset (Ig,d) of R has
the form

\('dl.d’l)
(I4.d) : n+l—n+2—..-—n+m

dndh)
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where dj = djny1, df = djpyy for j € 14 and dgyy = dyy = 1 for all
n+1<s<t<n+m. Then the following statements hold.

(4.2) Q(R) = (‘g ""7311;‘”))

is a schurian artinian right peak PI-ring and the functor
(4.3) N4 : modic(R)p — modg (A R))

defined by the formula M4(XYy, X%, ¢) = (X, M5 (X"),¢') is an equiva-
lence of categories, where ' is the map adjoint to the composed one

'\ = Homp(a Mg, X3) = Homg(Ng' (4 MB), N5 (XB)).

(b) The valued poset of Q(R) has the form

\(‘dl 1)
: n+m

7('4,, a |

n+l—n+2—---—n+m-1

" (1a,d)

The elements i € 14 and n+s are unrelated in (Iq(gr),d) fors=1,...,m—
1.

Proof. Note that e;Mp = (;My,...,iMm; Cintsntt) fori € Iy. We
know from Proposition 3.1 that ; M, is non-zero for s > 1. Since ;M; is a
simple and ;B; # 0 for s < ¢, it follows from Lemma 2.1 that the map ;5
in (2.2) is non-zero and therefore the map

Cintsntt - M ® th — M,

is surjective. Since dpysn4t = dpysnyy = 1 for s < ¢ then the bimodule
iM;® s By is simple and therefore ¢; 545 a4t is injective forall s <t < m. It
follows that e; Mp = (en+1B)dJ' and therefore it is projective-injective B-
module as we required. Then the definition of Q( R) makes sense. Since B
is a hereditary PI-ring of Dynkin type e — e — ... — ¢ — e then B is an
artin algebra, there exists the Nakayama equivalence Np: pr(B) — inj(B)
and it follows from [20, Corollary 2.11] that the isomorphism e;Mp =
(en_l_]B)di yields the isomorphism ei‘ng,l(MB) o (en+mB)d=' for any 7 € I 4.
Consequently, Q(R) is an artinian right peak PI-ring and (b) holds. Since
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by [20, Theorem 2.9] the functor (4.3) is an equivalence of categories the
theorem is proved.

Corollary 4.4.  In the notation and assumption of Theorem 4.1 the
following statements hold.

(a) If X = (X1:..., Xngm, i9j) is in mod;c(R)p, then Ny (X) =
(X{,z-cp;), where X; = Xj for j € 14, X],,, = Xny1 and (see (x) in
Theorem 4.1)

nts+1¥n+41

Xpts = Ker(Xng1 = Xng1 ® ng1Brgst Xotst1)-

(b) The R-module X in mod;.(R)p has (edn X)(j) # 0 for any j € Ip
if and only if the Q(R)-module M (X) is sp-sincere and X, 1 # X] ..

(¢) The category adj(R)f; is of finite representation type (resp. tame,
wild) if and only if modsp (U R)) is of finite representation type (resp. tame,
wild).

Proof.  (a) Since B is a hereditary Pl-ring of Dynkin type ¢ — ¢ —
++— e and X5 = (Xn41,..., Xngm.i9j) is an injective B-module then
X% is a direct sum of modules of the form Eg(j) = (F,...,F,0,...,0)
with j copies of the division ring F' = By4+1, where j = 1,...,m. Then (a)
follows from [20, Corollary 2.11]. The statement (b) is a consequence of
(a). The proof of (¢) is left as an exercise.

Following [20, Definition 4.2] we say that the ring R = (’g g) of the
form (1.3) has an arrow waist if R is schurian, (Ig,d) is a valued poset, n
is a unique maximal element in the poset (I4,d), n+1is a unique minimal
element in the poset (Ig,d) and duny1 = d;,,4; = 1. In this case (Ig,d)
has the form

\‘n n+1/‘_)
. I4.d o—=e 15.d) |.
(4.5) EA, )/. \(B. )

Lemma 4.6. IfR = (6‘ “B’) is a piecewise peak artinian PI-ring of
the form (1.3), the bimodules ;M are simple for i € I4, s =1,....,m and
R has an arrow waist, then

(a) A is a right peak ring with a peak e, A and 4 M is a top injective
A-module.
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(b) B is a left peak ring with a peak Be,y, and Mp is a top injective
B-module.

Proof. We know from [15, Proposition 2.2] that B is a left peak
ring if and only if for every b € By, b # 0, there is a € ; B, such that
Cnt1ntsntt(a ®b) # 0. Consider the commutative diagram

1@cn41,n4s,n+t

M1 ®1Bs ® s By M1 ® 1Bt
lcn,n+l.n+5®1 lcn,n+],rl+t
Cn,n4a,n+t
nA‘f[s ® th sﬂft

Since Rf’; is a left peak ring and the element & € B, is non-zero there is
m € M such that ¢, ngs.n4:(m®b) # 0. Since the bimodule , M, is simple
and dy py1 = dj, .11 = 1 then ¢, ny1nys is surjective and therefore m =
Cnn+tin+s(T ® a) for some z € ,M; and a € 1 B;. Then the commutativity
of the diagram yields ¢p41,ntsnt+:(a®0b) # 0 and therefore B is a left peak
ring.

Since e;Mp = (jMy,...,;Mm,Cintsntt), jMs # 0 and 1 Bs # 0 for
J€I14,s=1,...,m, then by Lemma 2.1 the map ¢; n41nts: ;M1 0185 —
;M is non-zero and therefore it is surjective, because ; M, is a simple
bimodule. It follows that top(e;Mp) = (en41B)% =+ and it is injective,
because Be,4 is left peak of B. Hence (b) follows. The statement (a)
follows from (b) in view of duality (2.5).

If the ring B in (1.3) is a left peak ring we define a reflection form
(4.7) B® = ( (1B — €nt1)B(1B —€nt1) (ent1B(1B — €n41)) )
0 Bn+1

of B (see [15, 2.6], [19, 2.13]), where (-)* = Homp,,,(—. Bny1), and a
reflection functor

(4.8) V4 : modg(B) — mods,(B2)
by the formula V(Y) = (Y',Y €41, h), where
Y’ = Ker (Yerny1 @ ent1B(lp —€ny1) — Y (1 — €ny1))

and 2:Y' @ (en41B(1B — €nq1))” — Yenyy is such that the map h adjoint
to h is the composed one

YI — Yen+1 @ 6n+]B(lB fnd 6n+1)

= Homp,,, ((ens1B(15 — €nt1))" Yens ).
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It follows form [15, Proposition 2.6] that V4 is an equivalence of cat-
egories such that if dimY = (yn41,..+,Yn4m) and dimV(Y) =
(y;z+1?" . ’y’:L+77l) then

(4.9) ?/:1+1 = !/n+1,.?/:1+s = —Ynts + Unt1nt1,n4s fors=2,....m.

IfR= (0 g) is a piecewise peak ring of the form (1.3) and R has
an arrow waist then by Lemma 3.6, B is a left peak ring and Mp is in
mod;(B). Then following [20, 4.5] we define an arrow waist reflection
form

(410) 6R= (

(1a —ex)A(14 —en) (14— en)V4(MpB)
0 BA

of R as well as an arrow waist reflection functor
(4.11) 6 : adj(R)A — mod.,(6R)

by the formula

6(‘X.lA’X1,§?‘P) (X (1A - en] V.|_(X ) 99)
where ¢ is the map adjoint to the composed monomorphism

X'(1a — €n) =, Homp(4MpB, X5)(1a — €n)
lv+(1A—en)
Hompga((14 — €,)V4(MB), VL(X™)).

Note that the valued poset (Isr,d) is obtained from (4.5) by removing the
vertex n and by “reflecting” the part (Ig —{n+ 1},d) at the vertex n + 1.
This is presented in the following Figure 3.

Figure 3.

\(dn 145 1)
(Tspod): | Tard) o~
6R o, Z—-/T_+1

\\\ (d1.4}) | (dn+t "+1’E:1+t,n+l)

| O n-H
7
[dr n+3: i n+3 I )

\ n+s
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where IfA = I4\{n}, I's = Ig\{n + 1}, dj = d;jnt+1 and d =d" Gl

Now we are able to prove our arrow waist reflection theorem.

Theorem 4.12. Let R = (4 M) be a basic piecewise peak artinian
PI-ring of the form (1.3) such that the bimodules ;Mg are simple for i =
1,....nand s = 1,...,m. If R has an arrow waist then

(a) The waist reflection form 6 R of R is a schurian artinian right peak
PI-ring, e,+16R is a peak of 6 R and the functor (4.11) is an equivalence
of categories.

(b) The valued poset (Isg,d) of R has the form shown in Figure 3, i.e.
n+ 1 is a unique marimal element in (Isr,d), Isp = {1,...,n — 1,n +

(1) E,-j :dij,c_i:-j =d§j if 1<i,j<n-1o0or n+2<i,j<n+m,
(1) (dint1,dipng1) = (ding1:dipyy) for i=1,...,n-1,
(l”) (a—t n+l,d;.n+l) = (d;l+l.t’dn+1't) fOI‘ t=n+ 2' -+ m,
(1V 1 n+s — —Qingds + di,n+ldn+l,n+s;

dings = —dipys + ding1dngings for i=1,...,n -1 and s =

(\,) There is a relation i < j in (Isgr,d) if and only if d;; # 0.
(c) If n > 2, the ring R is not adj-sincere.

Proof.  (a) By Lemma 4.6, B® is a right peak ring and e,4, B2 is
a peak of B®. Moreover, since 4 M is faithful then given ¢ < n — 1 the
socle of the right Ri’;-module e;R(1 — e,) is a B-module and therefore
e;(6R) = (e;R)(1 — ey,) is socle projective. It follows that 4R is schurian
artinian right peak PI-ring. Moreover, the Lemma 4.6 implies that R
has an arrow waist n — n + 1, and according to [20, Theorem 4.12] the
functor (4.11) is an equivalence of categories.

(b) The statement (i) follows because e;(§R)e; = e;Re; if ¢ and j
run as required in (i). For the statement (ii) we note that d; .41 =

dim(ei(OR)en)a, = dim(eiV - (M)ewin)s, = dm(Vs(eidensr ) @

dim(e;Ment1)B, = dins1 if i=1,...,n—1. The equality d; a1 = @ g
follows in a similar way.

(ill) If n + 2 S t S n+ m we have Et,n-l-l = dim(et(éR)en_l_l)B] =
dim(e;B%ent+1)B, + dim(en41Ber)p, ) dimp, (en41Be;) = dy ., and
similarly we show that E;,nﬂ = dpt1.¢- The equality (+) above follows
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from [4, Proposition 1.3], because the PI-property of R implies that B, is
finite dimensional over its center.

(iv) dints = dim(e;(6R)ents)B, = dim(e; V(M )ents)B,

) 4.9 .
= dnn(V+(e,-]l.I)en+s)Bs(:)—di,n+s +dins1dnt1nys for i=1,...,0 -1,
$ = 2,...,m. Since there is an exact sequence

0— V.,,(e,-ﬂl)en.,.s — EZ'A’IE,H_] ® en+1A’Ie'n+s —_— 61‘1\16”.}_3 —0

of A;-Bg-bimodules then the second equality in (iv) can be proved in a
similar way as the first one.

The remaining statements in (b) follow immediately from definitions.

(c) Suppose that X is an indecomposable module in adj(R)g and
X; = Xe; # 0forali=1,...,n—1. Since dnp41 = dj, .1 = 1,
then the multiplication map 4190 X ® nMpt1 — Xy41 is bijective and
therefore (topX)e, = 0, because ,41¢n: X5 ® n Mpp1 — Xpqq s surjective.
Hence e, R is not a summand of P(X) and therefore X is not sincere.
Consequently, the statement (c) follows and the proof is complete.

Example 4.13. Let G C F be commutative fields such that d =
dimg F' < 3. Then

FF\FF
R (1) |rarn
“\0 B 0 G F
0 F
is a piecewise peak G-algebra and
(Ird): 227
(1,1)

where (dy3,d{3) = (d.1) and (d24,d5,) = (1,d) (see Remark 3.12). The
arrow o — e is a waist of R and R has the form
FUV
éR=|0 F F*
00G

where F* = Homg(F,G), and (U,V) = V(F, F) is the reflection of the
right (g f;)-module with respect to the vertex 4 (see [3]). By the definition
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of V, we have V = F and U is the kernel of the multiplication map
F®qgF — F. Hence plip = FFI‘i"l. It follows that (Isg,d) has the form

1 (d,1) 3
s L

— &
(@-1.d-1\, 1)
4

Theorem 4.12 (a) yields adj(R)A = mods,(6R) and applying [9, Theo-
rem A} we conclude that adj(R)‘g is of finite representation type. Note
that the poset (Isg,d) can be easily described by applying Theorem 4.12
(b) without determining the algebra 6 R.

5. Main results. In the proof of Theorem 1.6 we shall need the
following result.

Lemma 5.1.  Suppose that R = (’3 ‘g) s a basic artinian piecewise
peak PI-ring of the form (1.3). Then adj(R)4 is of finite representation
type if the valued bipartite poset (Ir,d) of R is a full bipartite valued
subposet of one of the following forms:

(b.b") (b'.b

(i) O OO ——r @t s @ P @I @ — - — @ — @
ey (00 (o'b
(11) 0O— 3 0—30——0——30— 3+ — 30— —>0—0
ey (b)) )]
(iii) o=—0—0—=+++—0—0—0—0— .. .——e—s0—0
. (bb') (b',b)
(iv) 0o—0—0—++-—30—0—F0—0——0——e—e
(b.b') b.b)
(v) o—0—3:-:—=0—0——0—0—0—8——: .. ——0—8
1 2 n-3 n=2 n
00— 00—+ s+ —m30—30—0—— NGE
(vi) (6,67 6| >~

~
—_—
n-—1 Tl+1 (b'.b] TI.+2

O30 —=0—=¢+ ¢+ —m8 00— 0 ——> - (l 1)
(vii) wy)@yi TR
—— 00— 00— s —— o—ro(—bl—'b*r)o

where bb' = 2 and the remaining values are uniquely determined by the
composition rules in Lemma 3.7 (see Remark 3.12).

Proof.  Suppose that (Ig,d) has the form (vi) such that the chain
1 — 2 — .-+ — n—23 has at least one point. In view of Proposition 2.14 it is
sufficient to prove that adj( R*®) is of finite representation type, where R* is



122 D. SIMSON

the reflection dual form of R (see 2.13). It follows from Proposition 2.14(b)
that (Ire,d) has the form

n n—-2 n-3 2 1 n+42
00— 0 —0—>0 —3F0 — ¢+ ¢+ —0O0—>0—>
(b',0) l(bzb')
______________________ —
n—1 (1.1) n+1l

It follows that R® has an arrow waist 10— e n42 and according to Theorem
4.12 there is an equivalence of categories

6 : adj(R*) — mods,(6R").

Applying Theorem 4.12(b) we show that the bipartite valued poset (TR.,H)
of the right peak ring 6 R® has the form

n n—2 n-3 2 n42
00— Q0 ——30—30——0——+++—0—> @

Jerm Tew
(o] >0
n—1 (1.1) n+1

because we easily calculate that

ai,n+1 = —Ji,n+1 + ‘:ii,n+2gn+2,n+l
—b+16b =0, ifi=2,...,n-2,n,
=-14+b0=1, ifi=n—-1

and similarly ‘_i:',n+1 =1lifi=n-1,and 3:-,,”_1 =0ifi=2,...,n—-2,n.

It follows that the point n + 1 is incomparable with 2,...,n — 2,n,
whereas there is an arrow n—1 o0 — o n41 as indicated above. Since the
valued poset (Igs,d) does not contain as a full one peak valued subposet
any of the critical forms in [9, Theorem A] then mods,(6R*®) is of finite
representation type and adj(R)# is of finite representation type if (Ig,d)
has the form (vi).

Now suppose that (Igr,d) is a full bipartite valued poset of (vi). Sim-
ilarly as in [9, Theorem 3.8] one can easily construct a piecewise peak

artinian PJ-ring
A M
s=(% »)

such that (Is,d) has the form (vi) with nontrivial chain 1 - 2 — -+ —>
n — 3 and R is isomorphic to S¢ for some idempotents e € A’ and n € B’
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(see 2.11). It follows from the first part of the proof that adj(S')AB', is of finite
representation type and by Proposition 2.14(d), the category adj(R)3 is
of finite representation type. This proves the lemma in the case (vi).

Now suppose that (Ig,d) is one of the forms (i) - (v), (vii). It follows
that R has an arrow waist and Theorem 4.12 applies to R. Then similarly
as in the proof above we show that (Isg,d) has the form

(b'.b)l ““““ -
O0—20—> 00—+ ++—3 00— 00— 00—+ ¢+ +——0—>0—0
v (b.b')F
(b.b") z
Q—>0——90
AN 1(b,b')
0—30—3 00—+« +—30—30 —> 0—>
y(¥',b)
(b.b") T
0——=0——>30——30—-++—30—30——>@
\
(b,b")
0—30—3+0—++ +—30—30—>
(b)Y
(b".b)
0—30—30—¢+ +—30—0—30— ¢
\ 1(6,»;')
oO—
(b,b")
0—0—0——++ ¢+ —>0—>0—@
0—30—30—++ +—30—>0——0 o

(54") l(b,b') l(b,b')
—8—30—30—— 00—+ » s —>0—

in the cases (i) — (v) and (vii), respectively, where bb’ = 2 and ij = _ja: =1
for j < y. Then by [9, Theorem A], the ring R is sp-representation-finite
and in view of Theorem 4.12 the categories adj(R)f = mods,(6R) are of
finite representation type. This finishes the proof.

Lemma 5.2.  If (Ig,d) is of one of the forms F3, ]‘11‘2 presented in
Table 1 then the category adj(R)g is of infinite representation type.

Proof. Suppose that (Igr,d) is of type l?ﬁ. Then R has the form
R = (g F;YT) where F' is the division ring Fy, T is a piecewise peak ring,

(Ir,d) has the form



124 D. SIMSON

3
@a)| = N dd =2,
oO—
2 4 (dl d) 5
N7 is in mode,(T)p and edn(Nt) = (00 1) Consider the vector space
category

Hr = Homr(p N7, mods(T)B)

over F' and let S(Ef) be the full subcategory of the subspace category
U(HF) of EF consisting of objects without summand of the form (F,0,0).
It follows from [19, 4.18 and 4.20] that there is a full dense functor
®:mod,(R)p — S(Hf) which establishes a representation equivalence of
the S(HF) and a full subcategory of mods,(R)p. From Proposition 5.8(b)
and the results in [13, Section 3] we easily conclude that the Auslander-
Reiten quiver I'(mods,(7")g) of modsp(7")B is obtained from the quivers in
Figures 4 and 5 by deleting the final vertices « = 2 and » = 3. Then a sim-
ple analysis of the quivers in Figures 4 and 5 shows that if Y is an indecom-
posable in mod;.(T)p such that edn(Y) is uv?zy and u?v%z?y respectively
(for the convention see [22, 11.88]), then End(Y) & F and dim |Y|f = 2,
where Y = Homy(gN7,Y) is considered as an object in Hp. Moreover
the left dimension of the F-space |[Y|r over H(Y,Y) = End(Y ) = F is also
two. It follows that S(Hf) is of infinite representation type (see [9] and
therefore mod;.(R)p is of infinite representation type. Since the functor
@p in (2.8) preserves finite representation type the category adj(R)% is of
infinite representation type as we required.

Suppose that the poset (Ir,d) is of type ﬁg. It follows from Propo-
sition 2.14(b) that the bipartite valued poset of the reflection dual form
R® of R has the form FS and therefore adj(R®) is of infinite representa-
tion type. In view of the reflection duality (2.18), adj(R)% is of infinite
representation type and the lemma follows.

One can easily prove the following

Lemma 5.3. Let R = (’é g) be an artinian piecewise peak PI-
ring. Then rw(R) < 3 and lw(R) < 3 if and only if the bipartite valued
poset (Ir,d) of R does not contain as a full bipartite valued subposet one
of the following posets and of their duals:
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(a,0')

~ R «
. (d ) dd' > 4 BC : /(‘b,b'), aa." — bbl — 2,
[o]
[}
i bb’I ~ 05" ~ o(e'—e:]o
[BDZO(-'—») ,bb’:?, D4;0/' , G%:O/' ,66’:3.
o/‘ o/‘

Proof of Theorem 1.6. (a) = (b) It follows from Proposition 3.1
that R is schurian of the triangular from (1.3) and (Ig,d) is a bipartite
valued poset such that d;,di; < 3, for all i € I4, s € Ig. By Corollary 3.8,
the poset (Ig,d) is symmetrizable. Then in view of Proposition 2.12 it is
sufficient to show that adj(R)4 is of infinite representation type if (Ig,d)
is one of the critical forms presented in Table 1 or the forms in Lemma 5.3.

If (Ig,d) is either A? or is of one of the forms in Lemma 5.3 we easily
conclude from [4] that adj(R) is of infinite representation type. By [9,
Theorem A], adj(R)# is of infinite representation type if (Ig.d) is one of
the forms in Table 1 having a unique black vertex. If (Ig,d) is one of the
forms in Table 1 and the full subposet of (Ir,d) consisting of black points
is a homogeneous chain of length > 2 then according to Theorem 4.1 there
is an equivalence of categories mod;.(R)p = mod,p(2(R)) and by [9, Theo-
rem A], the schurian right peak PI-ring Q(R) is sp-representation-infinite.
Since the functor @ g in the diagram (2.8) preserves the representation type
the category a,dJ(R) # is of infinite representation type. The proof in the
remaining cases ]F‘ t = 5,6 presented in Table 1 follows from Lemma 5.2.

(b) = (a) Since rw(R) < 3 then di;d}, < 3, then the bimodule ; M,
is simple and Proposition 3.1 yields it <n+tforieIsandt=1,...,m.
It follows that the rules (rg) = (r2), (13) - (r%) in Lemma 3.7 and (rr) in
Proposition 3.9 apply to the bipartite valued poset (Ig,d) of R.

If m = 1, B is division ring, R is a right peak ring (by [15, Propo-
sition 2.2]) and according to [9, Theorem A] the category modsp(R) =
mod;.(R)p is of finite representation type. Consequently, in view of (2.8)
the statement (a) follows.

If n =1, Ais a division ring, R is a left peak ring, R°P is a right
peak ring and the valued poset of R° is equal to (IR,d) Then the case
m = 1 applies to R°P and in view of Corollary 2.7 we conclude that (b)
implies (a).

Suppose that » > 2 and m > 2. Since (I4,d) does not contain the
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poset A® presented in Table 1, then (I4,d) or (Ip.d) is linearly ordered
and i <m+41forall i €14,

Suppose that (Ip,d) is linearly ordered and that (b) holds. First we
prove that if, in addition, di,n+td§;n+t =3 forsomei€lyandn+telp
then n = m = 2 and (Igr,d) has the form

(e e') (e’.€)

O—?.—}.
(5.4) 1\2 3 74

(1.1)
where ee¢’ = 3, (di3,di3) = (e,€’) and (da4,d54) = (€', €). For, suppose that
i and ¢t are as above. Then (I4,d) is linearly ordered, because rw(R) < 3.
It follows from Proposition 3.9 that i = 1 or t = m, because otherwise
(Ir,d) contains G} or G2; a contradiction. In view of the duality in Corol-
lary 3.7 we can consider only the case ¢ = 1.

We shall show that ¢ = 1. Assume, to the contrary, that ¢t > 2.
Applyving Proposition 39 to i = 1, 7 = n, s = 1 and ¢t we con-
clude that dy, 41 = d;yn“ = 1, because otherwise dy, = dj, = 1
and (dnntsdynye) = (dinseydngs) OF dngipge = diyy,y = 1 and
(d1nt1.4} 71+1) = (dintt,d) ngt) (2pply (r1) and (r})). It follows that
G} or G2 is contained in (Ig,d) and we get a contradiction. Then
dnny1 = dy, = 1 and by (1), (17) we get dgndm = dypp1d] 4 < 3
If dind}, = 1 or dnpnytdy ., = 1 then G} or G is contained in (Ig,d),
a contradiction. Thus dy,dy, # 1 and dpn4edy, ., # 1. 1t follows that
din # dy,s dpnyt # dy, ., and in view of (r2), (r5) we get

din :dl.n+td;;,n+t and

dnntt = dngingt = A ppdings = dy pyydin
It follows that dl,n+td'1,n+t = 1; a contradiction. This proves that t = 1 as
we claimed.

Since m > 2 then applying Proposition 3.9 toi =1, 7 = n, s = 1,
t > 2 we conclude as above that dp 541 = d},,,, = 1 and by Lemma 3.7
we get

(din, d}y,) = (di,n41d] n41) and
(dn+1,n+t3d'ln+l,n+t) = (dn,n+tad;z,n+t)-

Since G2 is not contained in (Ig,d), we have (dnt1mtts Ay npe) # (1,1)
and therefore dpyinit # dj,4 4y because otherwise dpnyid), 4y > 4;
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a contradiction. It then follows as above that dy 4t = dj, 4 = 1
and applying Lemma 3.7 to L’ = {1,n + 1,n + t} we conclude that
(dntrnttrdyyynee) = (A7 41,d1041). Tt follows from (r}) and (r}) that
m = 2, because otherwise dpyom43 = d 40,03 = 1 and G3 is con-
tained in (Ig,d). Furthermore, applying the arguments above to (Ig,d)°P
we conclude that » = 2 and therefore (Ig,d) is of the form (5.4) as we
claimed.

It follows that R has an arrow waist and applying Theorem 4.12 we
can show as in Example 4.13 that

1 (ee’) 3
= — —_———
(I&R,d) : (QBNO/E:ﬁ')’ ee/ = 3.
Now we conclude from [9, Theorem 6.10] that adj( R)4 = modsp(8R) is of
finite representation type. Then (b) = (a) is proved under the assumption
above.

Next we suppose that n,m > 2, the poset (Ig,d) is linearly ordered
and disdgs < 2forallielyands € Ig. If d,’sdgs < 1for all ¢ € 14,
s € Ig then in view of Lemma 3.5, R is the path algebra FIg of the
poset Igr = I4 < Ig over a division ring F, (Ig,d) is a homogeneous chain
and Theorem 4.1 applies. It then follows that there is an equivalence of
categories

modic(R)p = modg,(2(R)) = T-sp

where T = I4U{n+1—n+2— .- — n+m—1}is a disjoint union of
posets, that is, the elements 7 and n+s are incomparable in T for all 1 € I4
and s = 1,...,m — 1. Since (Ig,d) does not contain the critical forms of
Table 1, the poset T does not contain as a full subposet the critical posets
(1,1,1,1), (2,2,2), (1,3,3). (N,4), (1,2,5) of Kleiner [7] and therefore
the category T-sp is of finite representation type (see [22, Theorem 10.1]).
Consequently the category adj(R)# is of finite representation type and (a)
follows if d;,di, <1 for all 1 € 14, s € Ip.

It remains to prove the implication (a) = (b) in the case there exist
elements i € I4 and ¢ € Ip such that d;;d;, = 2 and the assumptions above
are satisfied.

First we consider the case when the poset (I4,d) is linearly ordered.
If dyni1dy, 41 = 2 then by Proposition 3.9 the poset (I4,d) or (Ig,d)
is a homogeneous chain. In view of the duality in Corollary 2.7 we can
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suppose without loss of generality that (Ig,d) is a homogeneous chain and
the Theorem 4.1 applies to R. It follows that the categories mod;.(R)p &
mods,(2(R)) are of finite representation type, because (b) implies that
the valued poset (*) in Theorem 4.1 of the right peak ring Q(R) does not
contain any of the critical forms listed in [9, Theorem A]. Hence (a) follows,
because the functor @p in (2.8) preserves the finite representation type.

Now suppose that dy, ,41 = d}, ., = 1. If one of the posets (I4,d)
or (Ig,d) is homogeneous, the statement (a) follows by the arguments
applied above. Suppose that d;;41d};,, # 1 and d, s41d; ;; # 1 for some
i<nand s>n+ 1. Let ¢ be a maximal element and let s be a minimal
element with the respect to this property. It follows from Lemma 3.7 that
di,i+ld:',i+1 = di,n+ld§,n+1 =2, dS.s+1d,s.s+1 = dn.8+1d,n,n+1 =2, dis41 =
digp1 = 1 and (diiy1,d};41) = (d5 541, ds,s41). Moreover, it follows from
Proposition 3.9 that d; ;41 = d};,, = 1 for all j # i,s. Since (I,d) does
not contain F} and F4, a simple combinatorial analysis shows that one of
the posets (Ig,d) or (Ig,d)°P is a full bipartite valued subposet of one of
the posets (i) — (v) listed in Lemma 5.1, and (a) follows.

Next consider the case when (I4,d) is not linearly ordered. We can
suppose that (Ig,d) is not homogeneous, because otherwise (a) follows
from Theorem 4.1 and the arguments used above. Let s > n+ 1 be a
minimal element such that d;s11d} ,,; # 1. It follows from Lemma 3.7
that dss41 = dng1,s41, d 541 = 4y 541 and since rw(R) < 3, there
is no triple of incomparable elements in I4,. Moreover, if i,j € I4 are
incomparable and d; n41d; ,,, # 1 then djn41 = d} ., = 1. Choose i and
j maximal with respect to this property. It follows from Lemma 3.7 that
dimprdi g = 2, (dssr1ds 541) = (4 n 1 dimgr) and disyr = di oy = 1.

Since CD is not contained in (Ig,d), there is no ¢t € Ig such that
diiy1 = di, = 1, because otherwise the set {7,5,t,t + 1} generates a
bipartite valued subposet of (Igr,d) of type CD. It follows that s = n + 1
and Proposition 3.9 yields m = 2. Moreover, Proposition 3.9 together
with the discussion above implies that the full bipartite valued subposet of
(I4,d) consisting of all points & such that A < ¢ is a homogeneous chain.

Suppose that I4 has a unique maximal element n. It follows from
Lemma 3.7 and Proposition 3.9 that dynyy = @) 4, if 1,7 <k <n+ 1.
Since (Ir,d) does not contain the critical forms F} and F§ then a simple
analysis shows that (Ig,d) is a full bipartite valued subposet of the poset
(vii) in Lemma 5.1 and (a) follows.
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Finally we suppose that I4 has two maximal elements n — 1 and =.
Since rw(R) < 3 and FS, F3 are not contained in (Ig,d), a simple combi-
natorial analysis shows that (Ig,d) is a full bipartite valued subposet of
the poset (vi) in Lemma 5.1 and (a) follows. This finishes the proof of (b)
= (a).

(a) = (c) It follows from Proposition 3.1 and Corollary 3.8 that
(Ir,d) is a symmetrizable bipartite valued poset. Then Lemma 3.7, [9,
Theorem 3.5] and its dual form apply to R and to the rings Ry’ , Ré;‘“,
respectively. It follows from Theorem 3.10 that there exists a basic finite
dimensional algebra R over an infinite field K such that C(R) = C(R),
(Ir.d) = (Ir,d) and ¢g = gr. By the equivalence of (a) and (b), the
category adj(ff)% is of finite representation type and therefore prin(R)%-
is also of finite representation type, because the functor ®5 in (2.8) pre-
serves finite representation type. Then, by [13, Proposition 4.2] and the
discussion in [13, Section 4], the quadratic form xz = g5 = qr is weakly
positive and (c) follows.

(a) => (f) = (c¢) Apply the arguments used in [13, Section 4] and in
the proof of [15, Theorem 3.11].

(c) = (b) Applying the arguments in the proof of Lemma 4.12 in [13]
we show that d;,d}; < 3 for all : € I and s € Ig. Then Proposition 3.1
yields the first part of (b). In order to prove the second part it is sufficient
to show that the quadratic form gr of R is not weakly positive if (Ig,d) is
one of the critical forms in Table 1 or one of the forms in Lemma 5.3. For
the one peak valued posets apply [9, Theorem A]. The proof in remaining
cases is an easy exercise and we leave it to the reader.

(a) => (d) Suppose that adj(R)% is of finite representation type and
X is an indecomposable module in adj(R)A. Then (d) holds if and only
if edn(X)(j5) < 6 for all j € Igr. In view of Proposition 2.14(c) and
Corollary 2.16, the problem reduces to the case when R is adj-sincere and
X is sincere. Consequently, (d) follows from Theorem 1.11 proved below.

(d) = (e) It follows from (d) that length (X') < 6(n + m)length (RR)
for all indecomposable modules X in adj(R)4. This implies (e).

(e) => (b) If R has the property (e) then by Proposition 2.14 the rings
(’2)‘ "g{’) also have the property (e) for all : € I4, s € Ig and we conclude
from [9, Theorem A], [11, Theorem 2.7] and from [4] that d;sd}, < 3 for
all 7 € I4 and s € Ig. Hence Proposition 3.1 applies. It follows that R
has the triangular form (1.3) and (Ig,d) is a bipartite valued poset. In
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view of Proposition 2.14 it is sufficient to show that if (Ig,d) is of one of
the forms in Table 1 and in Lemma 5.3 then (e) does not hold in adj( R)%.
If the valued poset (Ig,d) is of type A?, the ring R is hereditary and our
result follows from [4] and [14, Corollary 3.4]. If (Ig,d) has a unique black
vertex, our result follows from [9, Theorem A]. If (Ig,d) is of one of the
types F3, FS we reduce the problem to the right peak case as in the proof
of Lemma 5.2 and our result follows from [9, Theorem A]. If (Ig,d) is
one of the remaining types in Table 1, the black vertices of Iz form a
homogeneous chain and according to Theorem 4.1 there is an equivalence
of categories

mod;c( R)B = mOdsp( Q’(R))

where Q(R) is a schurian artinian right peak PI-ring. It follows from [9,
Theorem A] that there exists a sequence

Y: VS Yy — Y, MYy — e
of proper monomorphisms between indecomposable modules in
mod;.(R)p. It follows from the definition of the functor @p that the se-
quence @ pg(Y) contains a subsequence of proper monomorphisms between
indecomposable modules in adj(R)4. This finishes the proof of (e) =

(b). Since (a) <= (a') follows from (2.8) then the statements (a) — (f) of
Theorem 1.6 are equivalent

As a consequence of the proof of (a) => (b) above we get the following.

Corollary 5.5. Let R = (‘é g) be an artinian piecewise peak PI-
ring of the form (1.3) such that adj(R)§ is of finite representation type
and |I4| > 2, |Ig| > 2. Then

(1) Either (Ir.d) is a homogeneous poset, Ip = 14 4 Ip (see 1.2),
R = F1g for some division ring F' and one of the posets 14, Ig is linearly
ordered; or (Ir,d) is not homogeneous and has one of the following forms
up to duality:

(a) (Ig,d) is a homogeneous chain and rw(I4 U {n+1},d) = 2.

(b) (Igr,d) is of the form (5.4) or of one of the forms (i) — (v), (vii)
listed in Lemma 5.1 with dpnyy = dp 0y = 1.

(¢) (Ir,d) has no arrow waist and is a full bipartite valued subposet of
the poset (vi) in Lemma 5.1.
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(2) The properties of (Ig,d) listed in (1) together with the results in
(9, Sections 5-7] completely determine the structure of the ring R.
(3) There are equivalences of the categories

8 : adj(R)p — mods,(éR),
(56) oI A D' oyyop &P — *\\OP
adj(R)pg — (adj(R*))™ — (modsp(6 R*))

in the case (b) and (c), respectively, and an equivalence

N4 : mod;c(R)p — mods,(Q(R))

in remaining cases, where 6R, §R* and Q(R) are sp-representation-finite
schurian artinian right peak PI-rings and

mod.,(6R*) = modep(§R*)/[6E(1),....8 E(n)]

Corollary 5.7. If R is as in Corollary 5.5 then the Auslander-
Reiten quivers I'(adj(R)) and T(prin(R)) of adj(R)% and of prin(R)§ have
preprojective components which are equal to T'(adj(R)) and to I'(prin(R))
respectively, and can be constructed in the way presented in [10, Section 3].
Every indecomposable module in adj(R)4 (resp. in prin(R)4, mod;.(R)B,
modP8(R)*) is uniquely determined by its dimension vector as well as by
its coordinate vector.

Proof. If I4] = 1 or |Ig] = 1 then R is a left peak ring or a
right peak ring and the corollary follows from [9, Theorem A]. If |I4| > 2
or |[Ig > 2 then by Corollary 5.5 the problem for the category adj(R)%
reduces to the schurian right peak case and we are done. The remaining
part of the corollary reduces to the above one by applying the adjustment
functors @4 and @p [13] in a similar way as in [22, Section 11.12].

Proof of Theorem 1.11. The existence of Auslander-Reiten se-
quences in mod;.(R)p can be proved by a slight modification of Auslander’s
arguments applied in [9, Proposition 6.3]. It then follows similarly as in
[13, Section 3] that the categories adj(R)4 and prin(R)#% have Auslander-
Reiten sequences.

If n =1o0rm =1, R is a left peak ring or a right peak ring, and
in view of the duality in Proposition 2.3 our result is a consequence of [9,
Theorem B]. Suppose that » > 2 and m > 2. If R has an arrow waist
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then according to Theorem 4.2(c) R is not adj-sincere. Hence, in view of
Corollary 5.5, we easily conclude that (I4,d) or (Ip,d) is homogeneous
chain, or else (Ig,d) has the form (vi) in Lemma 5.1. Then our theorem
is a consequence of [9, Theorem B] and the following result.

Proposition 5.8. Let R = (‘g g) be as in Theorem 1.6 and sup-
pose that |14] > 2, |Ig| > 2.

(a) If (1g,d) is a homogeneous chain then R is adj-sincere if and
only if (Ig,d) has one of the form in Table 2 ezcept from F;, and ]I—""‘,',.
In this case the right peak ring Q(R) in Theorem 4.1 is of one of the
sp-sincere types listed in [9, Theorem B| and an indecomposable module
X in adj(R)$ is sincere if and only if the socle projective Q(R)-module
N4 (X) = (X],:¢;) is of one of the sp-sincere forms in [9, Appendix] with
X, ym-1 = X 1 m (see Corollary 4.4).

(b) If R has the form (vi) in Lemma 5.1 then R is adj-sincere if and
only if n = 2 and (Ig,d) has one of the forms

v k2
AN
Fye : (1,2)1 \Q'l) Fae : (2,1)1\\(\1"1)
2T T v T2

If this is the case the Auslander-Reiten quiver T'(prin(R)8) of prin(R)%
has one of the forms shown in Figures 4 and 5, if (Ir,d) is of type F;,
and FZ., respectively, where instead of the module X we write edn(X) =
(s1,82,83,84) in the erxponential form (sy,s2,83,84) = u'v*2z%3y® (see
[22, 11.88]), where given a vertezr e € {u,v.z,y} the power e® will be
omitted and we put ¢! = e. The quiver ['(adj(R)§) is obtained from
I'(prin(R)#) by removing the vertices u,v,z,y.

Figure 4. Auslander-Reiten valued quiver T(prin(R)3) for R of type Ff,.

vy ——— uwy ——— v ——— uvy
N / N / N / N
22 B ey B 2, (22 (22
N(12) A1) \(12) Az \12) A21) \(1.2) /(2.;)2 N\(1.2) A21)
uy? 22 uvizy? 22 u2v2zy2—(2—'21 uv?z? —==  wvlz
N / N / N / N / N
r ——— uv?y? ———  ur —-——— viz ——— u
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Figure 5. Auslander-Reiten valued quiver T(prin(R)4) for R of type Fy,

vy ——— uly ——— vzt ——— ulvy

/
2D gy BD 202, B2 002, B2 00 (22
\(z1) (12
21

) \(2.1) /0.2) \(21) 02 \(21) 12 \(21) /(12)
2 2,2 2,2 2 2,2
uy ——-— uvry ——— u‘vry ——-— uvr® ——-— ure

21)
NN SN SN N

- wry —-——  ur ——— T ——— U

Proof. (a) It follows from our assumption that any adjusted R-
module is in mod;.(R)p. Then (a) follows immediately from Corollary 4.4.

(b) Suppose that (Ig,d) is of the form (vi) in Lemma 5.1. It follows
from [13, Section 3] and Corollary 5.7 that [(prin(R)#) coincides with
its preprojective component and therefore it can be described by a slight
modification of the construction given in [10, Section 3] for socle projective
modules over right peak rings. The construction will start with indecom-
posable relatively projectives P in prin(R)# with the property that 0 — P
is a sink map in prin(R)$. Here we shall use freely the terminology and
notation introduced in [13]. Since (Ig,d) is of the form (vi) in Lemma 5.1,
we easily conclude from [13, (2.5) and (2.6)] that °I, = (0, Eg(y)) is the
unique relatively projective in prin(R)§ with the sink property above,
where y = n + 2. Moreover the sink maps ending at indecomposable
projectives in prin(R)§ are the following

Py
e
ol ~ ~ ~
\(bfl) ,bb,='2 Z— P, og—+— P— P
Pu\
ol

whereu=n—-1,v=n,z=n+1,y=n+2, P = (e;A, Eg(e; Mp),id)
and Z is the unique indecomposable in prin(R)4 such that cdn(Z) =
ubvy. It follows that I'(prin(R)$) begins with coordinate vectors of
modules in the left hand sink map section above and since the func-
tion edn(-):prin(R)4 — Z"*™ is additive on short exact sequences in
prin(R)% we construct [(prin(R)$) in the forms shown in Figures 4 and 5
if n =2 and (b,0') = (1,2) or (b,b') = (2,1), respectively.
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If n > 3 the procedure will continue, because of the right sink map
section starting from Z. It follows that in the case (b,d') = (2, 1), the quiver
['(prin( R)4) is obtained from the quiver in Figure 5 by removing the vertex
v, enlarging it by the quiver in Figure 6 and by the identification of the four
point sections containing edn(Z) = u?vy. Note that edn(X) has at most
four non-zero coordinates for any indecomposable module in prin(R)4. It
follows that if » > 3 and (b,b') = (2,1) then R is not adj-sincere because
one can easily conclude from [13, Section 3] that I'(adj(R)#) is obtained
from I‘(prin(R)g) by omitting the vertices u,v,2,¥,1,2,...,n — 2. In the
case (b,b’) = (1,2) the result above can be proved in a similar way. This
finishes the proof.

Figure 6.
ly
7N
- 12? e
7N N
——— lvz?
/ 7N
n—d,§ ———
7N 7
n—-3,y ——— n—4,2°——— ...
0N /720N 2N
n—2y ——— n—-3,22 ———n—4pz’-—— ...
/ N / N / N 4 /
cdn(Z)——— n—-2,22 ———n—3,v2%——— Z:QZIZ————
N /7 N/ N7 v NS 0a
wtoz? B 9 g2 (2D n- %xz (22 Z:gﬁlj_(_l :
\(21) /2) \(2 1} /(12) \(2, 15 /1.2) \(21) /'(1 2)
——= n-22g —— n-3x ——— n—4,x———
(2.2) (2.2) (2.2)

Remark 5.9. (a) There exists precisely 327 types of sincere ad-

justed modules over piecewice peak bipartite artinian Pl-rings R = (’é g)

of finite prinjective type and they can be described by applying Proposi-
tion 3.8 as follows.

i) There are precisely 155 forms of sincere adjusted modules for bi-
partite rings R with |[I4| =1 or |Ig| = 1.
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For this purpose we note that if [Ig| = 1 then R = (’3 "g) is a right
peak ring (that is B is a division ring). According to [9, Theorem B] there
are precisely 81 types of sp-sincere socle projective modules over right peak
PI-rings and they are listed in Appendix of [9]. It is obvious that they are
adjusted and sincere. Note that the ring R of type F(0)* has no sincere
adjusted module.

Dually, if [I4] = 1 then R is a left peak ring (i.e. A is a division
ring), there exists precisely 81 sincere types of adjusted modules over left
peak Pl-rings and they are described by the dual forms to those listed in
Appendix of [9].

Since the bipartite poset F(1)*:0 — e is self-dual then the incidence
algebra of F(1)* is a left peak algebra and a right peak algebra and there-
fore its unique sincere adjusted module F' 4, F was counted twice, where
F=A=8B.

Similarly, the bipartite poset B, is dual to Cj, and G} is dual to Gj.
Then the types Si, S2, S15-S1s (see [9, Appendix: Tables II]) of sincere
adjusted modules over the bipartite rings corresponding to these posets
were counted twice.

Consequently, there are precisely 155 (= 81 4+ 81 — 7) forms of sincere
adjusted modules over bipartite rings which are left peak rings or right
peak rings.

ii) There are precisely 172 forms of sincere adjusted modules for bi-
partite rings R with [I4] > 2 or |Ig| > 2.

In this case we construct sincere adjusted modules according to the
recipe given in Proposition 5.8. On this way we construct 86 sincere
adjusted modules over the bipartite rings corresponding to the bipartite
posets listed in Part B of Table 2 and 86 sincere adjusted modules over
the bipartite rings corresponding to the dual of the bipartite posets listed
in Part B of Table 2.

(b) Suppose that R = (g "B’) is as in Theorem 1.6 and adj(R)j is of

finite representation type. Then all indecomposable modules in adj(R)ﬁ
can be reconstructed from the 327 sincere adjusted forms described above
via the idempotent induction functors Z; (see (2.13)) as follows.

Suppose that X is an indecomposable module in adj(R)§3. Then by
Corollary 2.16 there exist idempotents e € A, n € B, an adj-sincere piece-
wise peak bipartite PI-ring T of one of the types listed in Theorem 1.6 and
an indecomposable sincere T-module Y in adj(T) such that T = R and
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the composed functor
Te
adj(T) = adj(R;) —> adj(R)3

carries the module Y to X. Here Tf, is the idempotent induction functor
induced by the functor (2.12). Note that Y is one of the sincere modules
in our collection of 327 sincere adjusted modules.

(c) It follows from our discussion in the introduction that if x Ny, is a
non-zero bimodule satisfying the conditions (p1) and (p2) of Introduction
such that the matrix category Mat(gx/Ny) is of finite representation type
and contains a sincere object W, then the image @(W) of W under the
composed functor (0.1) is a sincere Ry-module, the valued poset of Ry is,
up to duality, of one of the forms shown in Table 2 and @(W) is isomorphic
to one of the 327 sincere forms described above and in Proposition 5.8.
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Note added in proof. Since Corollary 1.9 was essentially used in

Section 5 and was not proved in the paper we give here some arguments for
the proof of its statements (a) and (b). The statement (c) of Corollary 1.9
follows from (a) and (b) by standard arguments (see Section 11.9 of [22]).

For this purpose we suppose that R = (é }3!) is an artinian bipartite

piecewise peak PI-ring of finite prinjective module type.
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If R is an artin algebra the statement (a) (that is, the existence of
Auslander-Reiten sequences in adj(R)3 and in prin(R)$) follows from the
results of [13]. If R is arbitrary we get the proof of (a) by a slight modifi-
cation of the Auslander’s arguments applied in Proposition 6.2 of [9].

According to Corollary 5.5 we split the proof of (b) into three parts.

(i) Assume that the bipartite valued poset (Ig,d) of R has an
arrow waist. By Theorem 4.12 there is an equivalence of categories
adj(R)3 = mods,(6R), 6R is an artinian right peak sp-representation-
finite Pl-ring and according to Theorem 3.7 of [10] the statement (b)
holds for mods,(§R) = adj(R)§. Moreover, it follows from the construc-
tion of Auslander-Reiten sequences given in Section 3 of [13] (see also
Section 11.12 of [22]) that (b) holds for the category prin(R)%.

(ii) Assume that one of the valued posets (I4,d) or (I4,d) is a ho-
mogeneous chain. It follows from Theorem 4.1 that the bipartite artinian
Pl-ring Q(R) (see 4.2) is a right peak ring and according to Theorem 4.1
the category mod;c(R)§ is equivalent with the category mods,(Q(R)) up
to duality. Then by Theorem 3.7 of [10] the statement (b) holds for
modsp(Q(R)) 2 modic(R)4 and again by the arguments used in Section 3
of [13] (see also Section 11.12 of [22]) the statement (b) holds also for the
categories prin(R)4 and adj(R).

(iii) If R is such that (i) or (ii) does not hold then according to Corol-
lary 5.5 the bipartite poset (Ig,d) is a bipartite subposet of the poset (vi)
shown in Lemma 5.1. For any such a ring R a preprojective compo-
nent in I'(prin(R)#) was explicitly constructed in the proof of Proposi-

tion 5.8. Analogous construction produces a preprojective component in
I(adj(R)$).



