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ON VALUES OF CYCLOTOMIC POLYNOMIALS

Kaoru MOTOSE

It is very important to study values of cyclotomic polynomials, espe-
cially, values for integers (cyclotomic numbers) because important theo-
rems were proved using properties of these values, for examples, Wedder-
burn’s theorem for finite division rings, Artin’s theorem for the orders of
simple groups (see [1], [2]) and Bang’s theorem where we shall give a simple
proof of his theorem in the section 2 of this paper (see [3], [5, p.221]).

In the Galois theory of commutative rings, I. Kikumasa and T. Na-
gahara proved that the polynomials fu(z) = 34, u(d)z™? are strictly
increasing functions for z > 1, where u is the Mobius function, and they
used essentially this property in their paper [4]. We shall show that cyclo-
tomic polynomials ®,(z) have the same property in the section 1 of this

paper. For a prime p, the p-part of a natural number m is the largest
power of p dividing m.

1. Let g(z) be a real valued and infinitely differentiable function
defined on an interval. Then for a natural number n, we define a new

function
n
fa(z) =D u(d)g (Ex) :
d|n
We have the following theorem and corollary.
Theorem 1. (1) If ¢*)(z) > 0 for all k, then f,(lk)(:r) >0 for all k.
) Ifa<g'(z)y<a+1/z fora>1 then fl(z) >0 forz > 1.

Proof. We proceed by induction on n. In case (1), let p°* be the p-part
of n and m = n/p°. Then we have

sm g 8— m 3 S—
fa(z) = u(d)g (p gw) = u(d)g (p ‘gar> = fu(p°T) = fm(p° ).
dlm dlm
Thus it follows from the induction hvpothesis that
fP(z) = p* B (p°e) — pO IR B (P ) > 0.
35
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In case (2), we get

dln
or—1

= ag(n) -

ful@) = S )3 (5e) = agla) + Sl (32) -
% > ¢(n)— 2771 > 0.

T

where ¢ is the Euler ¢ function and r is the number of distinct prime
divisors of n.

Corollary 1. The nezxt polynomials are strictly increasing functions
foraz > 1.

(1) falz) = p(d)zd
dln

(2) q’n(a:) = H(CK% - 1)’-‘(‘1)

d|n

Proof. Tt is sufficient to prove f,(e*) and log ®,(e”) are strictly in-
creasing functions. The functions e* and log(e® — 1) satisfy the first and
the second conditions for g(z) of theorem, respectively.

2. In this section we shall give a simple proof of Bang’s theorem.
Assume n > 2 and a > 1. Then it follows from Corollary 1 that ®,(a) >
®,,(1) > 1 since ®,,(1) is a prime or 1 according as n is a power of a prime
or not. However we shall give a much better estimation in the next lemma.

Lemma 1. We have the nezt inequality for a > 2 and n > 2. We
set that v is the number of distinct prime divisors of n, n’ is the product
of all distinct prime divisors of n and m = n/n’.

In case r is even,
a™ -1

am

26

™ > ®,(a) >

In case r is odd,
a™

a®™ > &, (a) > o).
a™ —1
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Proof. It is easy tosee (1 —z!)(1-2°)>1—2z°!fort>s>1and
1/2>z >0, and so

(1-z™)(1—2™)---(1—2™)>1-=z

for ny > ng > ... > np > land 1/2 > 2 > 0. It is easy to see that
®,(a) = ®,.(a™) and ¢&(n) = md(n'). So we may assume n is square free,
We set b = 1/a. Using the last inequality together with

Myay=1(1 — b4)

®,(b) =
) [Tu@)=—1(1 — b4)

we obtain that in case r is even,

_,(1—bd _
3, (b) = [u=1 _) < 1-0 — <1,
[Mu@)=—1(1 = 82)  [l@)=—1(1 — b)
) Hs|2,u(s)=—l(1 - bps)
<1>n(b)>(1—b)1|'[ — >1-b,
p|n
and In case 7 is odd,
1-0b° 1

®,(b) < 1in

pln

< ,
Hsl%,u(s):—l(]‘ — br?) 1-b

[Tu@)=1(1 - bd)
1-b
where d and p are extended over divisors and prime divisors of n, respec-

tively. Thus we have our result from ®,(a) = a®(™ &, (b).

®,(b) > > 1,

It is easy to prove the next lemma. We can see this in many text
books. In the remainder of this paper, we shall study only cyvclotomic
numbers and so all small characters represent integers.

Lemma 2. Let p be prime and let b > 2. If b =1 mod p in case p
is odd and b = 1 mod 4 in case p = 2, then p is the p-part of
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The next lemma shall show that prime divisors of the degree do not
so contribute to prime divisors of cyclotomic numbers.

Lemma 3. Leta > 2. If p is a prime divisor of n and of ®,(a)
where n = 0 mod 4 in case p = 2, then p is the p-part of ®,(a).

Proof. We obtain that a®? = 1 mod p since (a,"/p -1P=a"-1=0
mod p. Thus we have also ™2 = 1 mod 4 in case p = 2. It follows from
Lemma 2 that p is the p-part of

with a divisor ®,(a).

The next theorem is a characterization of prime divisors of cyclotomic
numbers.

Theorem 2. We set n > 2, a > 2 and |a|, is the order of a mod p
for a prime p. Then p is a prime divisor of ®,(a) if and only if (a, p) =1
and n = p"|a|, where ¥ > 0. A prime divisor p of ®,(a) for n > 3 has the
property such that n = |a|p, or p is the p-part of ®,(a) according as y = 0
or not.

Proof. Let p be a prime divisor of ®,(a). Since ®,(a) divides a™ — 1
and so " = 1 mod p, we can write n = p*|a|,t where & > 0 and (p, t) = 1.
If t > 2, then we have a contradiction ¢ = 0 mod p since

a” -1

n
at —1

is divisible by ®,(a) and a™/* = 1 mod p. Thus we obtain ¢ = 1.
Conversely we assume n = p”|al,. If p = 2, then n = 27 and a is odd.
So ®,(a) is even. We may assume p is odd. In case v > 1, p” divides ‘

n

= I 1] 4o

-1 s3sas

If p divides ®,5,(a) for some divisor d of n/p” and 3 > 1, then we have
(a® — l)pp =a® -1 =0and soa®— 1 = 0 mod p. But a condition
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la|, = n/p” implies d = n/p”. Thus we have p” divides

H t?p,.ep%(a)

¥>3>1

and so p divides ®,(a) by Lemma 3. In case v = 0, it is easy by the same
method. The last assertion follows from Lemma 3.

The next is a theorem of A. S. Bang.

Corollary 2. Leta > 2 andn > 2. Then there exists a prime p with
n = |alp in all except the following pairs: (n, a) = (2, 27 — 1) or (6, 2).

Proof. In case n > 3, we may assume that p = ®,(a) for the largest
prime divisor p of n by virtue of Theorem 2. This together with Lemma 1
yields the next inequality.

p=®,(a) > a1 > op-2

This gives the exceptional case ¢ = 2 and n = 6. In case n = 2, we have
the exceptional case 27 = ®5(a) = a + 1 since our result follows for @ + 1
with an odd prime divisor.

The next corollary was suggested from Artin’s theorem (see [1], [2]).

Corollary 3. Assume that ®,(a) = &,,,(b) where a, b > 2 and n,
m > 3. Then n = m if and only ifa = b.

Proof. Since ®,(z) is strictly increasing for # > 1 (Corollary 1),
we obtain @ = b in case n = m. Assume a = b and p is the largest
prime divisor of ®,(a) = &,,(b). In case (n, a) = (6, 2), it follows from
3 = ®6(2) = @,,(2) > 2#(™)~! that m = 6. In case (n, a) # (6, 2), then
n = |a|, = m from Corollary 2.

The next corollary is well known but we shall show some applications
to know that Corollary 2 and Theorem 2 are important.

Corollary 4. (1) There exists a Galois extension over the rational
number field such that a given finite abelian group is the Galois group of
this ertension.

(2) The set {ns+ 1ls = 1, 2, ...} contains infinitely many prime
numbers where n > 1.
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(3) @,.-1(a) = 0mod n if and only if n is a prime and a is a primitive
root mod n where a > 1 and n > 2.

Proof. (1) Using Corollary 2, we can define inductively distinct
prime numbers p; satisfying |4|,, = mipr—1 where py = 2 and my, (1 <
k < s) is the order of a cyclic group appearing in the direct decomposition
of a given abelian group. Since Galois group of Q((x)/Q is a cyclic group
of order py — 1 where Q is the rational number field and (. is a primitive
pirth root of 1, it is easy to find a cyclic Galois extension field L; over Q
of degree my. The composite field Ly L;--- L, is our object.

(2) Using Corollary 2, we can define inductively distinct prime num-
bers py satisfying |4|,, = npy_; where pg = 2.

(3) We may assume a > 2 and n > 4. Let p be a prime divisor of
n. Then noting n — 1 = |a|, by Theorem 2 and |a|, is a divisor of p — 1,
we obtain that n = p and a is a primitive root mod p. Conversely, if n
is a prime and a is a primitive root mod n, then n divides ®,_1(a) since
la]lo =n—1and a1 - 1= [T4jn—1 ®a(a).

REFERENCES

[1] E. ARTIN: The orders of the linear groups, Comm. Pure Appl. Math. 8(1955),
355-365.

[2] E. ARTIN: The order of the classical simple groups, Comm. Pure Appl. Math.
8(1955), 455-472.

[3] A. S. BanG: Taltheoretiske Undersggelser, Tidsskrift for Math. 5(1886), 70-80
and 130-137.

[4] I. KikuMasa and T. NAGAHARA: Primitive elements of Galois extensions of
finite fields, Proc. Amer. Math. Soc., 115(1992), 593-600.

[5] H. N. SHAPIRO: Introduction to The Theory of Numbers, 1983. John Wiley &
Sons.

DEPARTMENT OF MATHEMATICS
FAcULTY OF SCIENCE
HirosaKl UNIVERSITY
HirosAKI 036, JAPAN

( Received August 19,1992)



