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STRUCTURE OF p-SOLVABLE GROUPS
WITH THREE p-REGULAR CLASSES II

Yasusat NINOMIYA

J. B. Olsson and his student Madsen kindly pointed out that the proof
of [2, Lemma 3.1] is incorrect and gave counterexamples to the lemma.
The counterexamples show that there are missing groups in the list of [2,
Theorem B]. I thank them for their care and for bringing this error to my
attention. In this note, we give all the missing groups by proving Theorem
below.

We preserve the notation of [2]. In particular, recall that given a finite
group G, ry(G) and 7(G) denote, respectively, the number of p-regular
classes in G and the set of primes diving the order of G.

Let G be a finite p-nilpotent group with O,(G) = {1} and assume
rp(G) = 3. Then |7(V)| < 2, where V = Oy(G). Let |z(V)| = 2, and
set #(V) = {q, r}. Let @ and R be Sylow ¢- and r-subgroups of V
respectively. By our assumption, V is a Frobenius group, and so we may
assume that R is the Frobenius kernel of V. Then r,/(G/R) = 2. In the
proof of [2, Lemma 3.1], we applied Theorem A to the group G/R. For
this G/ R has to satisfy the condition that O,(G/R) = {1}. However, G/R
does not always satisfy the condition. The purpose of this note is to give all
the isomorphism classes of finite p-nilpotent groups G with O,(G) = {1}
which satisfy r(G) = 3 and |7(V)| = 2.

Theorem. Let G be a finite p-nilpotent group with O,(G) = {1}.
Suppose 1,,(G) = 3. If |7(Opy(G))| = 2 then one of the following
holds:

(1) p#2and G ~Z x (Zy X Zpn), where r = 2p™ + 1 is a prime.

(2) p#2, 3and G ~ Ey x(Zg X Zy), where 3! = 2p™ + 1.

(3) p=2and G ~ Es2 x H, where H = (w, a); v® = a® = 1,
a lwa=wl.

(4) p=2andG ~ Ex2xH,vhere H = (w, a, b); w3 =a® =02 =1,
a lwa = w, b"'wb=w", b7 lab = a.

(5) p=2and G ~ F3 « H, where H = (w, a, b); w® = a® =1,
b = a*, a7 lwa = w, b7 wb = w?, b lab = @
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(6) p=2and G ~ E3 x H, where H = {(w, a, b); w® = a'® = b* =
1, a 'wa = w, b~ 1wb = w?, b~1ab = a'l.

Although we used Lemma 3.1 in the proof of [2, Proposition 3.3] and
in [2, Sections 4 and 5], we can now assume, in virtue of Theorem, that
V= Op:(G) is a g-group for some prime ¢ # p, so that the failure of the
lemma affects nothing. Nevertheless, we need to fill a gap in the proof
of Proposition 3.3. In the proof, we applied Theorem A to the group
G /Vo. For this it is necessary to show that O,(G/Vs) = {1}. Madsen
simplified my original proof and here we give the proof due to him: Let
O,(G/ Vo) = SVy/Vp where § is a p-group. Since

[05(G/V0), Op(G/V0)] = {1},

we get [S,V] C Vp, and so § acts trivially on V/Vy. Thus noting that
Vo = ®(V), we have S C Cg(V) by (1, Corollary 5.1.4]. On the other
hand, G is g-solvable and O, (G) = O,(G) = {1}, 04(G) = V. Hence
Cg(V) C V by [1, Theorem 6.3.2]. Therefore S ¢ SNV = {1}. This
proves that O,(G/Vp) = {1}.

Thus we see that [2, Theorem B], which we will use in the proof of
our theorem, holds except when G is p-nilpotent and |r(0,(G))| = 2. To
prove the theorem we need a number theoretical lemma.

Lemma. Let q¢ = 2%+ 1 be a Fermat prime. If a prime number r
satisfies the relation r* — 1 = 2™q for some | > 2 and m > 1 then one of
the following holds:

(1) r=3,1=4, ¢=25;
(2) r=5,1=2,49=3;
3) r=7,1=2,¢=3.

Proof. Since 2™q = (r—1)(r'"'4.--4+1) and q is prime, ¢ is a divisor
ofr—lorrl4...41. We distinguish two cases:

Case 1. g|(r'"! + .-+ 1). We show that (1) or (2) holds. Write
r—1= 29, Py 41 = qu, where ¢ + b = m. Then b # 0, for
otherwise 7"l 4. 47 = g— 1= 2%, which is impossible. Hence [ is even.
We first show that if @ = 1 then (1) holds. In this case, as r = 3,1 > 2. If
2| ! then because

3 —1=(32-1)B"2+-.-+32+1)
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and 372 4 .- 4+ 32+ 1 is odd, we have 3I-2 4+ ... + 32+ 1 = ¢, and so
3-24...43%2 = g—1 = 2%, which is impossible. Hence 4|l. Then, as
(3% — 1)|(3* — 1), we have ¢ = 5. Set [ = 4/'. Then 5-2™ = 3' -1 =
(31 — 1)(34"~D 4 ... 4 3* 4 1). This shows that 34"-1) 4 ... 4 39 41
is a power of 2, and we have I’ = 1. Indeed, if I’ # 1 then !’ is even and
(38 —1)|(3' = 1), and so 5-41|(3' — 1), which is not the case. Thus (1) holds.
We next show that if @ > 1 then (2) holds. Since 2(2°~' +1) = (r+1)|2%q,
we have ¢ = 27! + 1. Since g and r = 2° 4+ 1 are both Fermat primes,
a — 1 and a are both powers of 2. This forces a to be 2, and so ¢ = 3 and
r = 5. The equality

Mg=5—1=(8-1)(8" 2+ + 5 +1)

implies that 572 4 -.- 4 52 + 1 is a power of 2. Suppose [ # 2. Then /2
must be even. Then (5* — 1)|(5' - 1), and so 3 - 13|(5' — 1), which is not
the case. We therefore have { = 2, and hence (2) holds.

Case 2. g|(r — 1). We show that (3) holds. Write r — 1 = 2%,
rl=l4. .41 = 2%, where a+b = m. Since I must be even, (r+1)|(+/~14---+
1) = 2%, Hence r+1 = 2" for some & < b. Then 22¢g = r—1 = 2(2¥'-1-1).
Thus we have ¢ = 2¥'~! — 1. Therefore, as g is a Fermat prime, we have
b’ = 3 and consequently ¢ = 3 and » = 7. From the equality

1= -1 (724 724 1),

it follows that 7'-2 4+ ... 4 72 4+ 1 is a power of 2. This forces [ to be 2, for
otherwise 7/2 is even and (7% — 1)|(7' — 1), and so 3 - 52|(7! — 1), which is
not the case. Hence (3) holds.

Proof of Theorem. Set V. = O,(G) and n(V) = {q,7} and let Q
and R be Sylow g¢- and r-subgroups of V respectively. Because V is a
Frobenius group, we may assume that R is the Frobenius kernel of V.
Then we have Q ~ Z,. If O,(G/R) = {1}, then we can apply (2, Theorem
A] to G/R, and we reach a contradiction by using an argument in the
proof of [2, Lemma 3.1]. We therefore have O,(G/R) # {1}. Now let H
be a complement of R in G and let P be a Sylow p-subgroup of H. We
first assume that O,(H) = P. Then as ry(H) = 2, we have |Q| = 2. Since
H acts transitively on R¥, R¥ is a union of two orbits under the action
of P. Therefore (7) and (8) of [2, Theorem B] apply to the group R x P.
Thus (1) or (2) holds in this case. We next assume that O,(H) # P and
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set Op(H) = §. Since ry(H/S) = 2 and Q is cyclic, by [2, Theorem A(d)),
p = 2 and ¢ is a Fermat prime. Set |P| = 2" and |R| = '. Since H acts
transitively on R#, we have r! — 1 = 2™¢, 1 < m < n. We note that H
is a nonabelian group contained isomorphically in Aut R. Hence [ > 2.
Therefore by Lemma we have the following possibilities:

(r, 1, ) = (3, 4, 5) or (5, 2, 3) or (7, 2, 3).

We show that for the first case (5) or (6) holds; for the second case (3) or (4)
holds; and the third case is impossible. Now let (r, I, ¢) = (5, 2, 3). Since
ry(H/S) =2 and |Q| = 3, we have |P : §| = 2. Further, by |R¥| = 3-8,
we have |P| > 8, and so |S| > 4. We may regard H as a subgroup of
GL(2, 5). Then because [Q, S] = {1}, S centralizes a cyclic subgroup
of GL(2, 5) of order 3, which is a Sylow 3-subgroup of GL(2, 5). Now
choose an element u = _? 3 of GL(2, 5). Because u is of order 3, we
may assume that § centralizes u. We can see that Cgy,,, 5)(2) = (u, a),
where a = g (1) , which implies that |S| < 8 because a is of order 8.
Hence |S| = 4 or 8. We show that if |S| = 4 then (3) holds. In this case,
because | P| = 8, P acts semiregularly on R#, and P ~ Zg or Qs. Because

2 =

0 2
subgroup of H. If P ~ Qg, each element of order 4 lying in P is not a
central element. This shows that P ~ Zg, and hence (3) holds in this
case. Indeed, w = i _; and a satisfy the relation described in (3),
and the semidirect product of the 2-dimensional vector space over GF(3)
by H = (w, a) is a group of type (3). Suppose next |§| = 8. A Sylow
(1) _(1) , and
its order is 16. Therefore, because P is of order 16 and normalizes {(u), we
have P ~ (a, b). This shows that (4) holds. We next consider the case
(r, I, ) = (3, 4, 5). Since ros(H/S) = 2 and |Q| = 5, we have P/S ~ Z4.
Further, by |R¥| = 5-16, |[P| > 16 and |S| > 4. By regarding H as a
subgroup of GL(4, 3), we see that S centralizes a cyclic subgroup of GL(4,
3) of order 5, which is a Sylow 5-subgroup of GL(4, 3).

is a central element of GL(2, 5), we see that S is a central

2-subgroup of Ngy(;.5)({u)) is given by (a, b), where b =
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An element

1 -1 -1 -1
1 -1 0 1
Y11 o0 -1 o0
1 1 -1 0

of GL(4, 3) is of order 5. Hence we may assume that § centralizes u. Now
the elements

0 -1 1 0 0 -1 1 -1
P I U L S I U B
o 1 0 -1|> "~ | 0o o1 o

1 -1 0 -1 -1 -1 0 -1

are of order 16 and 4 respectively and

Cava, 3)(u) = (u, s), Naraz)((u)) = (u, s, ¢},
where the action of ¢ on (u, s) is given by
t~lut = uz,t“l.st = st

Thus obviously 4 < |§] < 16. We first show that the case |S| = 4 is
impossible. Suppose |S| = 4. Then |P| = 16 and so P acts semiregularly
on R#¥. Hence P ~ Z;g or Q16. Because P has a cyclic group of order
4 as a factor group, it is not isomorphic to Q6. On the other hand, if
P ~ Zj6 then P = (st?) because P # (s) and the subgroups of (s,t) of
order 16 are (s) and (st?). Hence, because (st?)? = s'® and s'° centralizes
u, the maximal subgroup of P centralizes u, which contradicts the fact
that S = Cp(u). Thus we have |S| = 8 or 16. We now show that if
|S| = 8 then (5) holds. Since |P| = 32, by regarding P as a subgroup
of (s,1),P = {(s2, t) or (s2, st). For the former case, we can check that
R# is a union of two orbits under the actionof H = {(u, s2,t). This is
not the case. On the other hand, for the latter case, H = (u, s?, st)
acts transitively on R#*. Hence, setting w = u, a = s%, b = st, we see
that (5) holds. Assume |S| = 16. Then P is a Sylow 2-subgroup (s, ¢)
of NgL(4, 3)({u)). Because H = (u, s, t) contains (u, s, st), which acts
transitively on R#, it acts transitively on R#¥. Thus (6) holds. In final,
we show that the case (v, I, ¢) = (7, 2, 3) is impossible. Suppose by way
of contradiction that this case occurs. Since r»(H/S) = 2, |@Q| = 3 and
|R#| = 3. 16, we have |P/S| = 2 and |P| > 16. We may regard H as a
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subgroup of GL(2, 7). A Sylow 3-subgroup of GL(2, 7) is given by (u, v),
20 -1 3 .

where u = (0 2) and v = ( 9 0). Because u is a central element,

we may assume that § centraliezes v. So |S| is a divisor of [Cqy 2, 7)(v)l,

but it is impossible, for [§| > 8 and [Cgr(z, 7)(v)| = 4:9. This shows that

the case (r, [, q) = (7, 2, 3) does not occur, and the theorem is proved.

In conclusion, by adding six types of groups given in Theorem to the
list of [2, Theorem B], we obtain all the finite p-solvable groups G with
O0,(G) = {1} which have exactly three p-regular classes.
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