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PSEUDO-RIEMANNIAN SUBMANIFOLDS WITH
POINTWISE PLANAR NORMAL SECTIONS

Younc Ho KIM

0. Introduction. A normal section of a surface in a Euclidean space is
naturally defined. B.-Y. Chen [3], [4], defined a normal section of submanifolds
in a Euclidean space and studied some geometric properties. We can extend this
definition to that of pseudo-Riemannian submanifolds in a pseudo-Euclidean
space and we will give the definition in §1.

In the present paper, we study some properties of pseudo-Riemannian
submanifolds with pointwise planar normal sections in a pseudo-Euclidean space.

The author wishes to express his thanks to the referee who suggested
valuable comments to improve the paper.

1. Preliminaries. Let M7 s be an n-dimensional smooth manifold with a
scalar product <, > whose canonical form is

Inrs
)
Os

where I is the 7 X r-identity matrix and Os the sXs-0 matrix. The scalar
product <, > is nondegenarate if and only if s = 0. In particular, M7, will be
denoted by M7 which is said to be an »-dimensional pseudo-Riemannian mani-
fold of signature (7, n—7).

Let M7 be an n-dimensional pseudo-Riemannian submanifold of signature
(r, n—7) in an m-dimensional pseudo-Euclidean space EZ of signature (s, m
—s). For any point p in M7 and any non-zero vector ¢ at p tangent to M7, the
vector ¢ and the normal space T§ M7 determine an (#— #+1)-dimensional
affine space E(p, t) in EZI. The intersection of E(p, ¢) and M7 gives rise to a
curve y(s) in a neighborhood of p which is called the normal section of M? at p
in the direction ¢. In general, the normal section y is a twisted space curve in
E(p, t). A pseudo-Riemannian submanifold is said to have planar normal
sections if its normal sections are planar curves, that is, ¥’ A y” A y” = 0 for each
normal section y. A pseudo-Riemannian submanifold M7 is said to have
pointwise planar normal sections if each normal section y at p satisfies (' A y”
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Ar”)(p) = 0 for every point p in M7
Let 7 and I be Levi-Civita connections of M7 and ET, respectively.
For any tangent vector fields X and Y to M7, we have

(L1) Y = Y+h(X,Y),

where % is the second fundamental form.
For any normal vector field & to M7, we write

(1.2) Px€& = —AX+Dxé,

where — A.X and Dx€ denote the tangential and normal components of Fx £,
respectively. Then we have

(L.3) CAX, Y> = —<(X, Y), &,

where <, > denotes the scalar product defined in E¢. For the second fundamental
form &, we define the covariant derivative, denoted by Px %, to be

(14) (e b)Y, Z) = Dxh(Y,Z)— h(lxY, Z)— h(Y,Vx Z).
We then have the equation of Codazzi;

(15) ‘ (b)Y, Z) = h)(X, Z)= ()Y, X).
Let us introduce some typical pseudo-Riemannian manifolds :

() SH¢) ={x€ E'| &x—a,x—a> =1/c}, ¢ >0.
V) Ne)={x€ EMl | &x—a,x—a> =1/c}, c<O.

(1) is called a pseudo-Riemannian sphere with radius 1/+vc¢ and (2) is called a
pseudo-hyperbolic space with radius 1/v—c. Both spaces have planar geodesics.

2. Pointwise planar normal sections. Let M7 be an n-dimensional pseudo-
Riemannian submanifold of signature (7, #—7) of an m-dimensional pseudo-
Euclidean space E of signature (s, m—s).

We now prove

Theorem 2.1. Let M? be an n-dimensional pseudo-Riemannian submanifold
of an m-dimensional pseudo-Euclidean space ET. Then M7 has pointwise planar
normal sections if and only if h and Uh satisfy

(2.1) (Th)(t, t, t)NR(t, t) =0
for any vector | tangent to M?, where (Th)(t, t, t) = (Fh)(¢, t).



PSEUDO-RIEMANNIAN SUBMANIFOLDS 251

Proof. Let t be a nonzero tangent vector to M7 at p in M7 and let y be the
normal section of M7 at p in the direction ¢ with y(0) = p. Let T be the tangent
vector field to the normal section 7(s) such that '(s) = T and y’(0) = ¢. Then
we obtain by the equation of Gauss (1.1) and that of Weingarten (1.2)

2.2) y(s)=0T =T+ hT, T),

23) 7" (s) = Pry'(s)
= VTT‘l'h(VTT, T)—Ah(r,r)T-l-Drh(T, T)

At p = 7(0), the definition of the normal section gives
(2.4) tAVT =0 and tAWIAT —Anent) = 0.

We now assume that M7 has pointwise planar normal sections. Let 7 be a
normal section of M7 at p in the direction ¢£. Then, y"'(0) is a linear combination
of ’(0) and y”(0). Thus (2.2), (2.3) and (2.4) give

(Th)(¢t, t, t)NK(E, t) = 0.

Conversely, we assume that (Fh)(t,t, t)AK(t, t) = 0 for any nonzero
tangent vector ¢ of M7 at p. Let y be the normal section of M7F at p in the
direction ¢{. By considering (2.4), we obtain

y(OA Y (OAY0) = tAR(E, t)ANTh)E, t, t) = 0.

Lemma 2.2. Let M? be an n-dimensional pseudo-Riemannian submanifold
of signature (v, n— r) in a pseudo-Euclidean space ET of signature (s, m—s). If
M7 has pointwise planar normal sections, then for a nonnull vector t € TpM7,
we have

2.5 T =0,
where T = v'(s), v being the normal section of M7} at in the divection .

Proof. Since <t, t> + 0, we may assume (T, T> = ¢ = *+1 by the arc
length parametrization. Thus, <IF7T, T> = 0 along y. Since tAL T =0, we
have ;' T = 0.

Definition. A normal section y of M7 at p is said to be nondegenerate if
Y (p), +++, ¥*(p) span a nondegenerate subspace of E(p, ¢), where y'(p) = ¢,
Y(OIN-Ay*®(p) #= 0 and 7' (PIA -+ Ay*+D(p) = 0.
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Proposition 2.3. Let M7 be an n-dimensional pseudo-Riemannian sub-
wmanifold with pointwise planar novmal sections in a pseudo-FEuclidean space ET.
If every normal section is nondegenerate, then M7 is spacelike or timelike,

Proof. It suffices to show that there are no null vectors tangent to M7 at
every point p. Let p be a point of M7 and let ¢ be a null vector tangent to M7
at p. Let y be the normal section of M7 at p in the direction ¢, Without loss of
generality we may assume 7' (p) A 7"(p) + 0. Making use of (2.2), we see that
Y (D), YOy (p), v (0)>—<¥'(p), y"()>* = 0. Thus, a plane spanned by
Y'(p) and 7”(p) is degenerate, which implies that y'(p), "(p), *++, ¥***(p) for any
k(= 3) cannot span a nondegenerate subspace in E(p, ¢), which is a contradic-
tion.

We now define a function L defined by
L(p, t) = L(t) = <h(t, t), h(t, t)>
on UpM?, where UpsM? = {t € T,M?| |<¢, t)|'* = 1}.

Note. If L =0, then M7 does not have nondegenerate pointwise normal
sections.

By a vertex of curve y we mean a point p on ¥ such that its curvature «
satisfies dx?(0)/ds = 0.

Theorem 2.4. Let M7 be an n-dimensional spacelike or timelike submanifold
with nonvanishing L in a psendo-Fuclidean space EF. Then the following are

equivalent,
(@ k)t t) =0 for all t tangent to M,
(b) Fh=0,

() M7 has nondegenerate pointwise planar normal sections and each normal
section at p € M7 has one of its vertices at p.

Proof. By linearization we easily see that (a) & (b). We now prove (b)
implies (c). Since Pk = 0, M} has pointwise planar normal sections by Theorem
2.1. Since L is nonvanishing, every normal section is nondegenerate. Let ¥ be
the normal section of M7 at y(0) = p in a given direction ¢t € Tp,M. We may
assume 7 is parametrized by arc length, that is, <y'(s), 7 (s)> = ¢, ¢ = *1.
Since ex’(s) = 2T, i T>+<HW(T, T), (T, T)>, we get
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2
1 ‘2—’; — T, T +<Deh(T. T), (T, T)>,

where T = 7'(s), which together with Lemma 2.2 yields
26) —%——dd%(o) = Pt b, 1), B2, £)> = 0,

that is, p is one of its vertices of 7.

We shall show that (c) implies (a). Let y be a nondegenerate pointwise
planar normal section at p in a given direction {. Then, we have by Theorem
2.1

(Fr)(t, t, ONK(L, t) = 0.
Since p is a vertex of 7, (2.6) gives rise to
(Fh)(¢t, t, t) = 0.

This completes the proof.

Theorem 2.5. Let M7 be an n-dimensional pseudo-Riemannian submanifold
of EZ. If every normal section of M7 in nonnull divection is planar and has the
same constant curvature, then the function L defined on a unit tangent bundle is
constant and novrmal sections are one of the following :

@ L >0: apanrt of circle S' C E* of radius 1/J/L,

by L >0: apart of St C E? of radius 1//L,

(© L<0:apart of H C E} of radius 1/J—L,

(d L<0:apart of H C E} of radius 1/V/—L,

(&) L =0: a straight line segment or a curve in a degenerate plane E3, or
Ef..

Proof. Let p be a point of M7 Let Op = {u € UsM?| L(u) = <h(ue, ),
W(u, u)> + 0}. Suppose Op = ¢. Let y be the normal section of M} at p in the
direction t € Op. Since I T =0, L(¢) = <h(¢t, t), h(t, t)> = ex? where T =
7'(s), 7(0) = ¢, y(0) = p and « is the curvature of y. By continuity, O» is closed
and thus UpM7 = Op. Choose t € UpM7 and let y be denoted by the normal
section of M7 at p in the direction /. We may assume that y is parametrized by
arc length s. Since 7y is a plane curve, we may write

2.7 7(s) = Y0)+f(s)t+g(s)h(¢, t)

for some smooth functions f and g, from which we have
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(f(s)e+(g ()L =,
(f"(s)?e+(g"(s)’L = L,
£(0) = g(0) =0,

f0) =1, ¢(0) =0,
f70)=0 g7 (0)=1.

Then we have only the following cases:

@ =1 L >0 b) e=-1, L >0,
©0 e=1 L<0O, d e=-1, L<O,
e L=0.

By the straightforward computation, we obtain :

For (a), 7(s) = 7(0)+(sinVL s)#/vL —(cosyL s—1)L "h(¢, t), which is a
part of S! with radius 1//L.

For (b), 7(s) = y(0)+(sinh VL s)#/vVL +(cosh yLs—1)L™'k(t, t), which is
a part of SI C E? with radius 1/VL.

For (c), 7(s) = 7(0)+(sinh y—L s)t/¥—L —(cosh y—L s—1)L™'h(t, t),
which is a part of H' C E} with radius 1/V/—L.

For (d), 7(s) = 7(0)+(sin y=L s)t/y—L +(cos ¥y—Ls—1)L™"'h(t, t),
which is a part of H! C E% with radius 1//—L.

 For (e), it is obvious that 7 is a straight line segment or a curve in a

degenerate plane Ej, or El..

Corollary 2.6. Let M} be an n-dimensional psendo-Riemannian submanifold
of a pseudo-Euclidean space ET with nonvanishing L. If every novmal section of
M} in nonnull direction is planar and has the same constant curvature x, then M7
is a parallel submanifold, that is, Th = 0.

Proof. In the proof of Theorem 2.5 we see that the function L defined on the
unit tangent bundle UM? = UpenUpM7 is constant, Let ¢ be a nonnull unit
vector tangent to M7 at p. Let y be the normal section of M7 at p in the direction
t. Without loss of generality we may assume that y is parametrized by arc
length s. Since the normal section y has the forms (a)-(d) in Theorem 2.5, 7'(s)
and y”(s) are proportional. Making use of this fact and (2.3), we see that

2.8) (PrXT, T, T)+30(: T, T) = 0.

On the hand, L = constant and Lemma 3.1 which will be discussed in §3 imply
that <(P> T, T), W(T, T)> = 0. Thus, Theorem 2.1 and (2.8) give (Zh)(T, T,
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T') = 0. This holds for all nonnull unit vector fields and thus % is parallel, i.e.,
h = 0 by linearization.

Theorem 2.7. Let M7 be an n-dimensional spacelike or timelike submanifold
of a pseudo-Euclidean space ES. Then M7 has planar geodesics if and only if
every normal section of M7 is planar and has the same constant curvature k.

Proof. (Sufficiency). Let 7 be the normal section of M7 at p in the direction
t. We may assume that y is parametrized by arc length s. Let ¥(0) = p, 7'(s)
= T and T(0) = ¢£. Then we have

e =T .0 T>+(WT, T), (T, T).
According to (2.5), we get
Kre = <h(t, 1), h(¢, t).

Since « is constant and L is constant by Theorem 2.5, we have L = «%*¢ = <{A(u,
u), h(u, ©)> for any unit vector #. Thus, <Ir T, T> =0. Since M7 is
spacelike or timelike, /* T = 0, that is, 7 is a part of geodesic. Thus, M7 has
planar geodesics.

(Necessity,) Suppose M7 has planar geodesics. Then, L is constant (see
[2]). Let ¥ be a geodesic with initial velocity ¢£. Then, 7 is a part of S' C E?,
Si C E? with radius 1//L or part of H' C E?, H}! C E} with radius 1/vV—L
or a line segment or a curve in Ej; (See [2] for detail). These curves are
generated by y'(0) = ¢ and (¢, ¢) and thus y(s) lies in 7(0)+ Span{t, (¢, t)} C
E(p. t). Thus, 7 is a planar normal section of the same constant curvature.

3. Pseudo-isotropic submanifolds with pointwise planar normal sections.
Let M7 be a pseudo-Riemannian submanifold of a pseudo-Euclidean space E¥.
M? is said to be pseudo-isotropic at p € M7, if L, is independent of the choice
of any unit vector ¢ tangent to M7 at p. M7 is said to be pseudo-isotropic, if M7
is pseudo-isotropic at each point p in M7. In particular, if L is independent of
points, then M7 is said to be constant pseudo-isotropic.

Lemma 3.1 ([5]). M7 is pseudo-isotropic if and only if
3.1) Ch(t, ), h(t, tH =0

for any orthonormal vectors ¢ and #*.
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Remark. If M7 has planar geodesics, then M7 is constant pseudo-isotropic.

Propesition 3.2. Let M be an n-dimensional pseudo-isotropic pseudo-
Riemannian submanifold in E?. If M? has pointwise planar normal sections,
then M7 is constant pseudo-isotropic.

Proof. Let t(+ 0) be a nonnull vector tangent to M7 at p. We may assume
that <¢, > = &. Let y be the pointwise planar normal section of M7 at p in the
direction £. By theorem 2.1, we have

(3.3) (Fr)(t, t, t)NK(L, ) = 0.

Let y'(s) = T(s). We want to prove that the function L is constant. Let z be
a unit vector orthogonal to ¢ at p € M7 and extend z to Z on a neighborhood
of p which is parallel along vy and <7, Z> = 0. Then

%z(L) — %<h(T, T), (T, T)>
= 12T, T), W(T, T | om0

=<KWPhNZ, T, T), T, THls=o+2¢k(z T, T), h(T, T)|s=o
=<WrNZ, T, T), l(T, T)ls=0 (because of <7 T, t> = 0)
={FhXT,Z, T), (T, T|s=e (Codazzi equation)

= (Dth((Z, T), (T, T)|s=0  (because of " Z = ()

= TZ, T), (T, TP|s=o—<WZ, T), Dri(T, T)>|s=o

= ( because of (3.1) and (3.3).

Since dim M7 = 2 and p is arbitrary, L is constant on M7, that is, M7 is constant
pseudo-isotropic.

Considering Theorem 2.7 and Proposition 3.2, we have

Theorem 3.3. If M7 be a pseudo-isotropic spacelike or timelike pseudo-
Riemannian submanifold of ET with pointwise planar normal section, then M7
has planar geodesics.
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