PSEUDO-RIEMANNIAN SUBMANIFOLDS WITH POINTWISE PLANAR NORMAL SECTIONS

Young Ho KIM

0. Introduction. A normal section of a surface in a Euclidean space is naturally defined. B.-Y. Chen [3], [4], defined a normal section of submanifolds in a Euclidean space and studied some geometric properties. We can extend this definition to that of pseudo-Riemannian submanifolds in a pseudo-Euclidean space and we will give the definition in §1.

In the present paper, we study some properties of pseudo-Riemannian submanifolds with pointwise planar normal sections in a pseudo-Euclidean space.

The author wishes to express his thanks to the referee who suggested valuable comments to improve the paper.

1. Preliminaries. Let $M_{r,s}^n$ be an *n*-dimensional smooth manifold with a scalar product \langle , \rangle whose canonical form is

$$\begin{pmatrix} I_{n-r-s} & & \\ & -I_r & \\ & & O_s \end{pmatrix}$$

where I_r is the $r \times r$ -identity matrix and O_s the $s \times s$ -0 matrix. The scalar product \langle , \rangle is nondegenerate if and only if s = 0. In particular, $M_{r,o}^n$ will be denoted by M_r^n which is said to be an n-dimensional pseudo-Riemannian manifold of signature (r, n-r).

Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of signature (r, n-r) in an m-dimensional pseudo-Euclidean space E_s^m of signature (s, m-s). For any point p in M_r^n and any non-zero vector t at p tangent to M_r^n , the vector t and the normal space $T_p^\perp M_r^n$ determine an (m-n+1)-dimensional affine space E(p,t) in E_s^m . The intersection of E(p,t) and M_r^n gives rise to a curve $\gamma(s)$ in a neighborhood of p which is called the normal section of M_r^n at p in the direction p. In general, the normal section p is a twisted space curve in E(p,t). A pseudo-Riemannian submanifold is said to have planar normal sections if its normal sections are planar curves, that is, $\gamma' \wedge \gamma'' \wedge \gamma''' = 0$ for each normal section p. A pseudo-Riemannian submanifold M_r^n is said to have pointwise planar normal sections if each normal section p at p satisfies p

This work was partially supported by TGRC-KOSEF.

250 Y. H. KIM

 $\wedge \gamma''')(p) = 0$ for every point p in M_r^n .

Let ∇ and $\tilde{\mathcal{V}}$ be Levi-Civita connections of M_r^n and E_s^m , respectively.

For any tangent vector fields X and Y to M_r^n , we have

$$\tilde{\mathcal{V}}_X Y = \mathcal{V}_X Y + h(X, Y),$$

where h is the second fundamental form.

For any normal vector field ξ to M_r^n , we write

$$\tilde{\mathcal{V}}_{X}\xi = -A_{\xi}X + D_{X}\xi,$$

where $-A_{\xi}X$ and $D_{X}\xi$ denote the tangential and normal components of $\tilde{\mathcal{V}}_{X}\xi$, respectively. Then we have

$$\langle A_{\xi}X, Y \rangle = -\langle h(X, Y), \xi \rangle,$$

where \langle , \rangle denotes the scalar product defined in E_s^m . For the second fundamental form h, we define the covariant derivative, denoted by $\overline{\mathcal{V}}_X h$, to be

$$(1.4) \qquad (\overline{\mathcal{V}}_X h)(Y, Z) = D_X h(Y, Z) - h(\mathcal{V}_X Y, Z) - h(Y, \mathcal{V}_X Z).$$

We then have the equation of Codazzi;

$$(\overline{\mathcal{D}}_X h)(Y,Z) = (\overline{\mathcal{D}}_Y h)(X,Z) = (\overline{\mathcal{D}}_Z h)(Y,X).$$

Let us introduce some typical pseudo-Riemannian manifolds:

(1)
$$S_r^n(c) = \{x \in E_r^{n+1} \mid \langle x - a, x - a \rangle = 1/c\}, c > 0.$$

(2)
$$H_r^n(c) = \{x \in E_{r+1}^{n+1} \mid \langle x-a, x-a \rangle = 1/c\}, \quad c < 0.$$

- (1) is called a pseudo-Riemannian sphere with radius $1/\sqrt{c}$ and (2) is called a pseudo-hyperbolic space with radius $1/\sqrt{-c}$. Both spaces have planar geodesics.
- 2. Pointwise planar normal sections. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of signature (r, n-r) of an m-dimensional pseudo-Euclidean space E_s^m of signature (s, m-s).

We now prove

Theorem 2.1. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of an m-dimensional pseudo-Euclidean space E_s^m . Then M_r^n has pointwise planar normal sections if and only if h and $\overline{V}h$ satisfy

$$(\overline{\nu}h)(t,t,t) \wedge h(t,t) = 0$$

for any vector t tangent to M_r^n , where $(\overline{\nabla}h)(t, t, t) = (\overline{\nabla}_t h)(t, t)$.

Proof. Let t be a nonzero tangent vector to M_r^n at p in M_r^n and let γ be the normal section of M_r^n at p in the direction t with $\gamma(0) = p$. Let T be the tangent vector field to the normal section $\gamma(s)$ such that $\gamma'(s) = T$ and $\gamma'(0) = t$. Then we obtain by the equation of Gauss (1.1) and that of Weingarten (1.2)

$$(2.2) \gamma''(s) = \tilde{\mathcal{V}}_T T = \mathcal{V}_T T + h(T, T),$$

(2.3)
$$\gamma'''(s) = \tilde{\mathcal{V}}_T \gamma''(s)$$

$$= \mathcal{V}_T T + h(\mathcal{V}_T T, T) - A_{h(T,T)} T + D_T h(T, T).$$

At $p = \gamma(0)$, the definition of the normal section gives

$$(2.4) t \wedge \nabla_t T = 0 \text{ and } t \wedge (\nabla_t \nabla_T T - A_{h(t,t)} t) = 0.$$

We now assume that M_r^n has pointwise planar normal sections. Let γ be a normal section of M_r^n at p in the direction t. Then, $\gamma'''(0)$ is a linear combination of $\gamma'(0)$ and $\gamma''(0)$. Thus (2.2), (2.3) and (2.4) give

$$(\overline{\nabla}h)(t,t,t)\wedge h(t,t)=0.$$

Conversely, we assume that $(\overline{\nu}h)(t, t, t) \wedge h(t, t) = 0$ for any nonzero tangent vector t of M_r^n at p. Let γ be the normal section of M_r^n at p in the direction t. By considering (2.4), we obtain

$$\gamma'(0) \wedge \gamma''(0) \wedge \gamma'''(0) = t \wedge h(t, t) \wedge (\overline{\mathcal{P}}h)(t, t, t) = 0.$$

Lemma 2.2. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of signature (r, n-r) in a pseudo-Euclidean space E_s^m of signature (s, m-s). If M_r^n has pointwise planar normal sections, then for a nonnull vector $t \in T_pM_r^n$, we have

where $T = \gamma'(s)$, γ being the normal section of M_r^n at in the direction t.

Proof. Since $\langle t, t \rangle \neq 0$, we may assume $\langle T, T \rangle = \varepsilon = \pm 1$ by the arc length parametrization. Thus, $\langle \mathcal{V}_T T, T \rangle = 0$ along γ . Since $t \wedge \mathcal{V}_t T = 0$, we have $\mathcal{V}_t T = 0$.

Definition. A normal section γ of M_r^n at p is said to be nondegenerate if $\gamma'(p), \dots, \gamma^{(k)}(p)$ span a nondegenerate subspace of E(p, t), where $\gamma'(p) = t$, $\gamma'(p) \wedge \dots \wedge \gamma^{(k)}(p) \neq 0$ and $\gamma'(p) \wedge \dots \wedge \gamma^{(k+1)}(p) = 0$.

252 Y. H. KIM

Proposition 2.3. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold with pointwise planar normal sections in a pseudo-Euclidean space E_s^m . If every normal section is nondegenerate, then M_r^n is spacelike or timelike.

Proof. It suffices to show that there are no null vectors tangent to M_r^n at every point p. Let p be a point of M_r^n and let t be a null vector tangent to M_r^n at p. Let p be the normal section of M_r^n at p in the direction p. Without loss of generality we may assume $p'(p) \wedge p''(p) \neq 0$. Making use of (2.2), we see that $p'(p), p''(p) \wedge p''(p), p''(p$

We now define a function L defined by

$$L(p, t) = L_p(t) = \langle h(t, t), h(t, t) \rangle$$

on $U_p M_r^n$, where $U_p M_r^n = \{ t \in T_p M_r^n | |\langle t, t \rangle|^{1/2} = 1 \}$.

Note. If L = 0, then M_r^n does not have nondegenerate pointwise normal sections.

By a vertex of curve γ we mean a point p on γ such that its curvature κ satisfies $d\kappa^2(0)/ds = 0$.

Theorem 2.4. Let M_r^n be an n-dimensional spacelike or timelike submanifold with nonvanishing L in a pseudo-Euclidean space E_s^m . Then the following are equivalent.

- (a) $(\overline{\mathcal{P}}_t h)(t, t) = 0$ for all t tangent to M,
- (b) $\nabla h = 0$,
- (c) M_r^n has nondegenerate pointwise planar normal sections and each normal section at $p \in M_r^n$ has one of its vertices at p.

Proof. By linearization we easily see that (a) \iff (b). We now prove (b) implies (c). Since $\overline{\mathcal{V}}h = 0$, M_r^n has pointwise planar normal sections by Theorem 2.1. Since L is nonvanishing, every normal section is nondegenerate. Let γ be the normal section of M_r^n at $\gamma(0) = p$ in a given direction $t \in T_pM$. We may assume γ is parametrized by arc length, that is, $\langle \gamma'(s), \gamma'(s) \rangle = \varepsilon$, $\varepsilon = \pm 1$. Since $\varepsilon \kappa^2(s) = \langle \mathcal{V}_T T, \mathcal{V}_T T \rangle + \langle h(T, T), h(T, T) \rangle$, we get

$$\frac{1}{2}\varepsilon\frac{d\kappa^2}{ds} = \langle \nabla_T \nabla_T T, \nabla_T T \rangle + \langle D_T h(T, T), h(T, T) \rangle,$$

where $T = \gamma'(s)$, which together with Lemma 2.2 yields

(2.6)
$$\frac{1}{2} \frac{d\kappa^2}{ds}(0) = \langle (\overline{V}h)(t, t, t), h(t, t) \rangle = 0,$$

that is, p is one of its vertices of γ .

We shall show that (c) implies (a). Let γ be a nondegenerate pointwise planar normal section at p in a given direction t. Then, we have by Theorem 2.1

$$(\overline{\nabla}h)(t, t, t) \wedge h(t, t) = 0.$$

Since p is a vertex of γ , (2.6) gives rise to

$$(\overline{\nabla}h)(t,t,t)=0.$$

This completes the proof.

Theorem 2.5. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of E_s^m . If every normal section of M_r^n in nonnull direction is planar and has the same constant curvature, then the function L defined on a unit tangent bundle is constant and normal sections are one of the following:

- (a) L > 0: a part of circle $S^1 \subset E^2$ of radius $1/\sqrt{L}$,
- (b) L > 0: a part of $S_1^1 \subset E_1^2$ of radius $1/\sqrt{L}$.
- (c) L < 0: a part of $H^1 \subset E_1^2$ of radius $1/\sqrt{-L}$,
- (d) L < 0: a part of $H_1^1 \subseteq E_2^2$ of radius $1/\sqrt{-L}$.
- (e) L=0: a straight line segment or a curve in a degenerate plane $E_{0,1}^2$ or $E_{1,1}^2$.

Proof. Let p be a point of M_r^n . Let $O_p = \{u \in U_p M_r^n \mid L(u) = \langle h(u, u), h(u, u) \rangle \neq 0\}$. Suppose $O_p \neq \phi$. Let γ be the normal section of M_r^n at p in the direction $t \in O_p$. Since $\nabla_t T = 0$, $L(t) = \langle h(t, t), h(t, t) \rangle = \varepsilon \kappa^2$, where $T = \gamma'(s)$, $\gamma'(0) = t$, $\gamma(0) = p$ and κ is the curvature of γ . By continuity, O_p is closed and thus $U_p M_r^n = O_p$. Choose $t \in U_p M_r^n$ and let γ be denoted by the normal section of M_r^n at p in the direction t. We may assume that γ is parametrized by arc length s. Since γ is a plane curve, we may write

(2.7)
$$\gamma(s) = \gamma(0) + f(s)t + g(s)h(t, t)$$

for some smooth functions f and g, from which we have

$$(f'(s))^{2} \varepsilon + (g'(s))^{2} L = \varepsilon,$$

$$(f''(s))^{2} \varepsilon + (g''(s))^{2} L = L,$$

$$f(0) = g(0) = 0,$$

$$f'(0) = 1, \quad g'(0) = 0,$$

$$f''(0) = 0, \quad g''(0) = 1.$$

Then we have only the following cases:

(a)
$$\varepsilon = 1$$
, $L > 0$, (b) $\varepsilon = -1$, $L > 0$,

(c)
$$\varepsilon = 1$$
, $L < 0$, (d) $\varepsilon = -1$, $L < 0$,

(e) L = 0.

By the straightforward computation, we obtain:

For (a), $\gamma(s) = \gamma(0) + (\sin\sqrt{L} s)t/\sqrt{L} - (\cos\sqrt{L} s - 1)L^{-1}h(t, t)$, which is a part of S^1 with radius $1/\sqrt{L}$.

For (b), $\gamma(s) = \gamma(0) + (\sinh \sqrt{L} s)t/\sqrt{L} + (\cosh \sqrt{L} s - 1)L^{-1}h(t, t)$, which is a part of $S_1^1 \subset E_1^2$ with radius $1/\sqrt{L}$.

For (c), $\gamma(s) = \gamma(0) + (\sinh \sqrt{-L} s)t/\sqrt{-L} - (\cosh \sqrt{-L} s - 1)L^{-1}h(t, t)$, which is a part of $H^1 \subset E_1^2$ with radius $1/\sqrt{-L}$.

For (d), $\gamma(s) = \gamma(0) + (\sin \sqrt{-L} s)t/\sqrt{-L} + (\cos \sqrt{-L} s - 1)L^{-1}h(t, t)$, which is a part of $H_1^1 \subset E_2^2$ with radius $1/\sqrt{-L}$.

For (e), it is obvious that γ is a straight line segment or a curve in a degenerate plane $E_{0,1}^2$ or $E_{1,1}^1$.

Corollary 2.6. Let M_r^n be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclidean space E_s^m with nonvanishing L. If every normal section of M_r^n in nonnull direction is planar and has the same constant curvature κ , then M_r^n is a parallel submanifold, that is, $\overline{\nabla}h = 0$.

Proof. In the proof of Theorem 2.5 we see that the function L defined on the unit tangent bundle $UM_r^n = \bigcup_{p \in M} U_p M_r^n$ is constant. Let t be a nonnull unit vector tangent to M_r^n at p. Let γ be the normal section of M_r^n at p in the direction t. Without loss of generality we may assume that γ is parametrized by arc length s. Since the normal section γ has the forms (a)-(d) in Theorem 2.5, $\gamma'(s)$ and $\gamma'''(s)$ are proportional. Making use of this fact and (2.3), we see that

$$(\overline{\mathcal{P}}h)(T, T, T) + 3h(\mathcal{P}_T T, T) = 0.$$

On the hand, L = constant and Lemma 3.1 which will be discussed in §3 imply that $\langle h(\overline{V_T}, T, T), h(T, T) \rangle = 0$. Thus, Theorem 2.1 and (2.8) give $(\overline{\overline{V}}h)(T, T, T)$

T) = 0. This holds for all nonnull unit vector fields and thus h is parallel, i.e., $\overline{V}h = 0$ by linearization.

Theorem 2.7. Let M_r^n be an n-dimensional spacelike or timelike submanifold of a pseudo-Euclidean space E_s^m . Then M_r^n has planar geodesics if and only if every normal section of M_r^n is planar and has the same constant curvature κ .

Proof. (Sufficiency). Let γ be the normal section of M_r^n at p in the direction t. We may assume that γ is parametrized by arc length s. Let $\gamma(0) = p$, $\gamma'(s) = T$ and T(0) = t. Then we have

$$\kappa^2 \varepsilon = \langle \mathcal{V}_T T, \mathcal{V}_T T \rangle + (h(T, T), h(T, T)).$$

According to (2.5), we get

$$\kappa^2 \varepsilon = \langle h(t, t), h(t, t) \rangle.$$

Since κ is constant and L is constant by Theorem 2.5, we have $L = \kappa^2 \varepsilon = \langle h(u, u), h(u, u) \rangle$ for any unit vector u. Thus, $\langle \nabla_T T, \nabla_T T \rangle = 0$. Since M_r^n is spacelike or timelike, $\nabla_T T = 0$, that is, γ is a part of geodesic. Thus, M_r^n has planar geodesics.

(Necessity.) Suppose M_r^n has planar geodesics. Then, L is constant (see [2]). Let γ be a geodesic with initial velocity t. Then, γ is a part of $S^1 \subset E^2$, $S^1 \subset E^2$ with radius $1/\sqrt{L}$ or part of $H^1 \subset E^2$, $H^1 \subset E^2$ with radius $1/\sqrt{-L}$ or a line segment or a curve in $E^2_{0,1}$ (See [2] for detail). These curves are generated by $\gamma'(0) = t$ and h(t, t) and thus $\gamma(s)$ lies in $\gamma(0) + Span\{t, h(t, t)\} \subset E(p, t)$. Thus, γ is a planar normal section of the same constant curvature.

3. Pseudo-isotropic submanifolds with pointwise planar normal sections. Let M_r^n be a pseudo-Riemannian submanifold of a pseudo-Euclidean space E_s^m . M_r^n is said to be pseudo-isotropic at $p \in M_r^n$, if L_p is independent of the choice of any unit vector t tangent to M_r^n at p. M_r^n is said to be pseudo-isotropic, if M_r^n is pseudo-isotropic at each point p in M_r^n . In particular, if L is independent of points, then M_r^n is said to be constant pseudo-isotropic.

Lemma 3.1 ([5]). M_r^n is pseudo-isotropic if and only if

$$\langle h(t, t), h(t, t^{\perp} \rangle = 0$$

for any orthonormal vectors t and t^{\perp} .

256 Y. H. KIM

Remark. If M_r^n has planar geodesics, then M_r^n is constant pseudo-isotropic.

Proposition 3.2. Let M_r^n be an n-dimensional pseudo-isotropic pseudo-Riemannian submanifold in E_s^m . If M_r^n has pointwise planar normal sections, then M_r^n is constant pseudo-isotropic.

Proof. Let $t(\neq 0)$ be a nonnull vector tangent to M_r^n at p. We may assume that $\langle t, t \rangle = \varepsilon$. Let γ be the pointwise planar normal section of M_r^n at p in the direction t. By theorem 2.1, we have

$$(\overline{\nabla}h)(t,t,t) \wedge h(t,t) = 0.$$

Let $\gamma'(s) = T(s)$. We want to prove that the function L is constant. Let z be a unit vector orthogonal to t at $p \in M_r^n$ and extend z to Z on a neighborhood of p which is parallel along γ and $\langle T, Z \rangle = 0$. Then

$$\frac{1}{2}z(L) = \frac{1}{2}\langle h(T,T), h(T,T)\rangle
= \frac{1}{2}Z\langle h(T,T), h(T,T)\rangle |_{s=0}$$

$$= \langle (\overline{\mathcal{P}}h)(Z,T,T), h(T,T)\rangle |_{s=0} + 2\langle h(\mathcal{P}_{Z}T,T), h(T,T)\rangle |_{s=0}$$

$$= \langle (\overline{\mathcal{P}}h)(Z,T,T), h(T,T)\rangle |_{s=0} \text{ (because of } \langle \mathcal{P}_{Z}T,t\rangle = 0)$$

$$= \langle (\overline{\mathcal{P}}h)(T,Z,T), h(T,T)\rangle |_{s=0} \text{ (Codazzi equation)}$$

$$= \langle (D_{T}h)(Z,T), h(T,T)\rangle |_{s=0} \text{ (because of } \mathcal{P}_{T}Z = 0)$$

$$= T\langle h(Z,T), h(T,T)\rangle |_{s=0} - \langle h(Z,T), D_{T}h(T,T)\rangle |_{s=0}$$

$$= 0 \text{ because of } (3.1) \text{ and } (3.3).$$

Since dim $M_r^n \ge 2$ and p is arbitrary, L is constant on M_r^n , that is, M_r^n is constant pseudo-isotropic.

Considering Theorem 2.7 and Proposition 3.2, we have

Theorem 3.3. If M_r^n be a pseudo-isotropic spacelike or timelike pseudo-Riemannian submanifold of E_s^m with pointwise planar normal section, then M_r^n has planar geodesics.

REFERENCES

- [1] C. Blomstrom: Symmetric immersions in pseudo-Riemannian space forms, Global Differential Geometry and Global Analysis 1984, Lecture Notes in Math. 1156, 30—45, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
- [2] C. Blomstrom: Planar geometric immersions in pseudo-Euclidean space, Math. Ann. 274 (1986),

585-598.

- [3] B.-Y. Chen: Differential geometry of submanifolds with planar normal sections, Ann. di. Mat. Pura ed Appl. 130 (1982), 59—66.
- [4] B.-Y. CHEN: Submanifolds with planar normal sections, Soochow J. Math. 7 (1981), 19-24.
- [5] Y. H. Kim: Surfaces in a pseudo-Euclidean space with planar normal sections, J. Geometry 35 (1989), 120—131.

DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY TEACHERS COLLEGE TAEGU 702-701, KOREA

(Received December 24, 1991) (Revised May 18, 1992)