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CURVATURE FORMS AND EINSTEIN-LIKE METRICS
ON SASAKIAN MANIFOLDS

Ersa ABBENA* and Sercio GARBIERO*

1. Introduction. Let & be the class of Einstein manifolds, # the class of
Riemannian manifolds with parallel Ricci tensor and @ the class of Riemannian
manifolds with constant scalar curvature. Then

ECPCHE.

Following A. Gray, [4], it is possible to define two interesting classes lying
between @ and ®. If (M, g) is a Riemannian manifold, Ric(g) its Ricci tensor and
I the Levi Civita connection of g, we donote with .« and & the classes of all
Riemannian manifolds satisfying the following conditions, respectively,

@xyz[VxRiC(g)]( Y, Z) = 0,
[PxRic())(Y, Z) = [PyRic(g)(X, 2), X.Y,Z € %(M)

where & is cyclic sum and ¥(M) is the Lie algebra of the @~ vector fields on M.
The manifolds which belong to the above classes are called Einstein-like because

ECPCAUBCE.

The Einstein-like conditions have been studied for some particular types of
Riemannian manifolds ; for a survey about recent results and examples see [4],
[2] and their references.

The purpose of this paper is to study Einstein-like metrics on a Sasakian
manifold (M, ¢, 7, €, g). The definitions are given in the next section.

In section 2, the connection and the curvature forms, the Ricci tensor and its
covariant derivative of a Sasakian manifold are computed using the technique of
Cartan’s moving frame. The connection and the curvature forms are written as
matrix-valued forms, in this way some problems can be directly attacked and the
calculations can be performed in a compact form. For example, in [1] it is
shown how to construct Einstein metrics by means of a deformation of the
contact metric in the direction of the contact form. In this way we obtain in a
nice way a result of Tanno, [5].

Finally, we find the conditions which ensure that a Sasakian space is of class
./ and we show that all Sasakian manifolds of class 48 are Einstein.
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This last result should be compared with Theorem 6.1 of [4] where it is
proved that a Kidhler manifold of class & has parallel Ricci tensor, but it is not
necessarily Einstein.

2. Sasakian manifolds of class .«# and #B. Let (M, ¢, 7, £, g) be a Rieman-
nian manifold endowed with an almost contact metric structure. More precisely,
M is a €~ differentiable manifold of dimension 2#+1, g is a Riemannian metric,
@, 7, € are tensor fields of type (1, 1), (0, 1), (1, 0), respectively, such that

2.1) ' = —I+3Q¢, (&) =1,
(2.2) 9Wd(X), ¢(Y)) = 9(X, V)—5(X)(Y), X, Y &€ XM),

where [ is the Kronecker tensor of type (1,1). From (2.1) and (2.2) it follows

2.3 (&) =0, 7°¢ =0,
2.4) 7(6) = 9(X, &), X < x(M).

The structure (¢, 7, &, g) is called a contact metric structure if 7 is a contact
form compatible with g, i.e.

(2.5) 9 X, dY)=dn(X,Y) X, Y€EXM).

A contact metric structure is K-contact if £ is a Killing vector field, which
is equivalent to

Vx€ = —¢(X), X € X(M).
On the other hand, a contact metric structure is called Sasakian if
(2.6) FxpY) = g(X, V)E-n(Y)X, X, Y € X(M),

where I7 is Levi-Civita connection of g. It follows immediately that Sasakian
manifolds are K-contact manifolds. Sasakian spaces are, in some sense, the odd
dimensional analogue of K#hler manifolds (see [3]).

The following index conventions will be used

L ho.=1..n; a8, 7 ..=1..2n: ABC, ...=1,..2n+1.

Let (M, ¢, 5, £, g) be a Sasakian manifold ; it is always possible to consider,
around each point of M, a coordinate neighbourhood U with a local orthonormal
frame (E\, Es, ..., Ez2s4+1) which is adapted to the almost contact structure, i.e.

¢(E:) = FEnyi, Eoppa = f

If (@', &2 ..., w**') denotes the dual frame, from (2.1) and (2.3) it follows
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(27) wn-ﬂ’ — —(l)i°¢, w2ﬂ+l = 7.

Let us consider the matrices

C()l

o-(% ) (1 )

a)2n

where I, is the identity matrix of order », © is a R"-valued 1-form and / is an
element of G/(2n, R).
The connection 1-forms of [7 are defined by

(2.8) wg(X) = (UA(VXEB).

Since 7 is a metric connection, the matrix w = (w#) is an 80(2x +1)-valued
1-form, ( 80o(2#+1): Lie algebra of the skew-symmetric real matrices of order
2n+1). Hence w can be written as

29 o=(_E )

where I' is an 80(2#)-valued 1-form, ¥ is a R*"-valued l-form, and ‘¥ is the
transposed matrix of ¥. The condition (2.6) is equivalent to

(2.10) rj=jo, ¥=Jo,
that is
(2.11) w; = Whtl, Whei = —0F, Wia = 0™ ot = —w'.

The connection 1-form w is the unique solution of the first Cartan's structure
equation

%) -en(D)--(LE D)

Here the wedge product of two matrix-valued 1-forms is defined as the
natural extension of the usual product of two ordinary matrices. The equation
(2.12) implies

= —]'A\ —
2.13) {d@ 'NO—-¥ Ay

dn = ‘TAO.

The curvature tensor of the Levi-Civita connection 7, defined by
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RxvZ = V[x,y]Z—[Vx,Vy]Z, X, Y,ZEBE(M),
gives rise to the curvature two forms 24 such that
Z.Qi;‘(X, Y) = —CUA(nyEa), X, Y e »%(M)

Since they are skew-symmetric with respect to the indices A and B, 2 =
(£2%) is a 80(2n+1)-valued form which satisfies the second Cartan’s structure
equation

(2.14) Q2 =dot+towNo.
Theorem 2.1. The curvature 2-form £ s given by

— t
0.15 Q= (AL TNT OA7)

R CAY)) 0
Proof. From (2.14) and (2.9), the curvature 2-form 2 can be written as

Q__(d]"-i—]"/\]“—!ﬁ/\‘ilf de+F/\?F)
T\ —d(¥)-'AT —'UANT

First of all, note that if ‘¥ = (¥, ¥? ..., ¥?"), then
A =3 TN =0.
Because of (2.10) and (2.13), one has
d¥ = d(JO) = Jd(0) = —J(CAO)—J(¥ Ap).
It is easy to check directly that
J(I'ne) = (A6 =IN)N6 = I'A(J6)
and
J(¥A)=UO)Ny = —-0ONy,

where, again (2.10) is used. Hence
(2.16) d¥ = —I'N(JO)+ONp = —TANT+OA7p

Finally, recall that if A and B are matrix-valued 1-forms, then

‘(AAB) = —'BA*A.

Since I' is 80(2#n)-valued form, the above identity gives
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AT = —*UNT =T AYP),
and the proof of the Theorem is complete.
Remark 1. As described in the Introduction, formula (2.9) and (2.15) are
particulary useful for computations about Sasakian manifolds. For example, it
is possible to construct Einstein metrics on Sasakian manifolds by deforming the

given metric along the contact form (see [1] and [5]). Using (2.9) and (2.15) the
proof of this fact becomes particularly nice.

Remark 2. Some curvature properties of Sasakian manifolds can be easily
deduced from (2.15). In particular, we get the relation
(2.17) 250 = w'N7p
which implies
218)  202%.(Es, Eznni) = 8as, 255ei(Es, Ey) = Qf(Ea, Eznii) =0,
(845 1s the usual Kronecker symbol). Then it follows immediately that
(2.19) RxeX = £,

for any unit vector field X orthogonal to £ and, in general,

(2.20) Ruvé = p(X)Y—3p(Y)X, X, Y € 3¥M).
From (2.11), (2.15) and (2.20) the following identity can be obtained
2.21) 9(RxvZ, W) = g(Rexryon$(Z), (W))

where X, Y, Z, W are vector fields orthogonal to & (see also [3]).

By definition, the Ricci tensor and the scalar curvature of the metric g are
(2.22) Ric(g) = ZEA.B.C .Qé‘(Ec, EB)Q)A®CUC,
(2.23) Scal(g) = 24 Ric(g)(Ea, Ea).

Theorem 2.2. The Ricci tensor and the scalar curvature of a Sasakian
manifold M have the following expressions
220) Riclg) = S| 25 QXE,, EN+ 8ur [0 @ + 200 @0,
(225) Scal(g) =2a RiC(g)(Ea, Ea)+27’l.

Proof. (2.24) is the direct consequence of (2.18) and (2.22). (2.25) follows
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immediately from (2.24).

Remark 3. The following relations between the components of the Ricci
tensor, which will be crucial in the last part of the paper, are a direct consequence
of (2.21)

(2.26) {Ric(g)(Ef» E) = Ric(¢)(Ensi, Enss)

RiC(g)(Ei, En+.i) = —Ric(g)(EnH, EJ’)-

Theorem 2.3. The covariant derivative of the Ricci tensor of a Sasakian
manifold M is

7 x(Ric(o)) = 250, X| £ QHEy, BN @ |
@27 + e[ 220 QHEy, E+ 60| [7 50 @07+ 0°@F o]
+ 207 x®* "' Q0" + *" ' QF xw? ],
where

wai — _Za w:"(X)wa_wn+i(X)w2n+l
(2.28) Vo™ = -2 0i" (X))o + 0 (X)e*' X € X(M).
an):!nﬂ —_ Zh (wn+h(X)wh_wh(X)wrz+h)

Proof. (2.27) comes from (2.24) ; the relations (2.28) follow from (2.11).
In particular, from (2.27), (2.28) and (2.26) we get

Ve Ric(g)(Eznsr, E2nsr) = 7 EanniRic(g)(Ea, E3ns1) =0,

17£;RI.C($7)(EJ'y Esni1) = =V en Ric(g)(Enss, Ezns1) = Ric(g)(En+i, E),
VeRic(9)(Envi, E2ns1) = —V ga.Ric(gEs, Ezns1) = Ric(9)(Ei, E;)—2n84,
¥ eann RICGN E, E;) = Vb2 RIC(G)(Ensi, En+s),

Vﬁ:zmlRic(g)(Ei, Ene;) = —VEznuRiC(g)(EnHy Ej),

Ve Ric(g)(Es, E;) = U seaRic(g)(#(Ep), $(E})).

Remark 4. The more general case of K-contact manifolds is slightly
different. In fact, if M is a K-contact manifold only the relation
(2.29) v =]o,

holds but, in general, I'J+/JI". Then, instead of (2.15), the curvature 2-form is
given by
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(2.30) g:( dl' +I'A[ = U AT @/\71+(I’]—1T)/\@)_

e CAYVIERCINONEN /S 0
Let (M, @, 7, £, g) be a Sasakian manifold. The following Theorem holds.

Theorem 2.4. A Sasakian manifold M is of type . if and only if

(2.31) SunlV eRic(@)I(Es, E;) = 0
and
(2.32) (7 £2niRic(9)[(Ea, Eg) = 0.

Proof. (2.31) and (2.32) are a direct consequence of the definition of Einstein-
like metric of type .« (see the Introduction) and of Theorem 2.3.

For Sasakian manifolds of type & we have the following

Theorem 2.5. A Sasakian manifold of type B is Einstein. In other words,
if & denotes the class of Sasakian manifolds, then

PNB=INP=FNE,
(for the notations see the Introduction).

Progf.  From Theorem 2.3 and the definition of a metric of type 4, it follows

Ric(g)(E.-, EJ) = RiC(g)(En+i, En+j) = 21’16.’5
Ric(g)(E.-, En+.i) = _Ric(g)(En+z" EJ) =0,
RiC(g)(E2n+l,. E2n+1) = 2n,

that is ¢ is an Einstein metric.
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