REAL HYPERSURFACES IN $P_n(C)$ WITH CONSTANT PRINCIPAL CURVATURES

Dedicated to Professor Hisao Nakagawa on his 60th birthday

U-HANG KI* and RYOICHI TAKAGI

Introduction. Let M be a real hypersurface in a complex projective space $P_n(C)$ of complex dimension n with the metric of constant holomorphic sectional curvature. We shall say M to be d-isoparametric if all principal curvatures of M are constant, and the number of different principal curvatures is equal to d. So far, T.E. Cecil and P.J. Ryan [1] proved that any real hypersurface in $P_n(C)$ with at most two principal curvatures must be a part of a geodesic hypersurface, and one of the present authors [3] and Q.M. Wang [4] classified 3-isoparametric hypersurfaces in $P_n(C)$. In this paper we consider a $d \ge 4$ -isoparametric real hypersurface in $P_n(C)$. Our main result can be stated as follows:

Main Theorem. Let M be a $d(\ge 4)$ isoparametric real hypersurface in $P_n(C)$. Assume that dim $M > 3 \cdot 2^{d-2}$. Then at each point of M there exists a principal subspace whose image by the complex structure of $P_n(C)$ is again tangent to M.

Note that if M is a d-isoparametric real hypersurface in $P_n(C)$ and at each point of M there exist d-1 principal subspaces all of whose images by the complex structure of $P_n(C)$ are again tangent to M, then M is congruent to one of examples given in [3], which was proved by M. Kimura [2]. Thus our theorem gives a step to see whether a d-isoparametric real hypersurface in $P_n(C)$ exists except for known examples or not. Moreover, we observe that for $d \ge 4(d \ne 5)$ we have no examples of a d-isoparametric real hypersurface in $P_n(C)$.

1. **Preliminaries.** Let M be a real hypersurface in $P_n(C)$. Choose a local field $\{\tilde{e}_1, \dots, \tilde{e}_{2n}\}$ of orthonormal frame in such a way that, restricted to M, the vectors $\tilde{e}_1, \dots, \tilde{e}_{2n-1}$ are tangent to M. Hereafter the indices $i, j, k, l, \alpha, \beta, \gamma$ run from 1 to 2n-1, and the indices A, B, C, D run from 1 to 2n. Let ω_A be the 1-forms dual to \tilde{e}_A . Then the connection forms ω_{AB} of $P_n(C)$ are the 1-forms uniquely determined by

^{*}Supported by TGRC-KOSEF.

$$(1.1) d\omega_A = -\sum_B \omega_{AB} \wedge \omega_B, \omega_{AB} + \omega_{BA} = 0.$$

The curvature forms of $P_n(C)$ are given by

$$(1.2) d\omega_{AB} + \sum_{C} \omega_{AC} \wedge \omega_{CB} = c\omega_{A} \wedge \omega_{B} + c\sum_{C} (I_{AC}I_{BD} + I_{AB}I_{CD})\omega_{C} \wedge \omega_{D},$$

where 4c denotes the constant holomorphic sectional curvature of $P_n(C)$ and $I = (I_{AB})$ does the complex structure of $P_n(C)$. Moreover I satisfies

(1.3)
$$\sum_{C} I_{AC} I_{CB} = -\delta_{AB}, \qquad I_{AB} + I_{BA} = 0,$$

$$dI_{AB} = \sum_{C} I_{AC} \omega_{CB} - \sum_{C} I_{BC} \omega_{CA}.$$

In the sequel we denote by e_A , θ_A , θ_{AB} and J_{AB} the restriction of \tilde{e}_A , ω_{A} , ω_{AB} and I_{AB} to M respectively. Then we have

(1.5)
$$d\theta_i = -\sum_j \theta_{ij} \wedge \theta_j, \qquad \theta_{ij} + \theta_{ji} = 0,$$

which implies that θ_{ij} are the connection forms of M. By Cartan's lemma $\theta_{2n,i}$ can be written as

(1.6)
$$\phi_i := \theta_{2n,i} = \sum_i h_{ij} \theta_{ji}, \qquad h_{ij} = h_{ji}.$$

The quadric form $\sum \phi_i \theta_i$ is called the second fundamental form of M with respect to the normal vector e_{2n} . The symmetric matrix (h_{ij}) of degree 2n-1 is called the shape operator. An eigenvalue of the shape operator is called a principal curvature.

The curvature forms Θ_{ij} of M are defined by

(1.7)
$$\Theta_{ij} = d\theta_{ij} + \sum_{k} \theta_{ik} \wedge \theta_{kj}.$$

Then from (1.2) we have the equations of Gauss

$$(1.8) \Theta_{ij} = \phi_i \wedge \phi_j + c\theta_i \wedge \theta_j + \sum_{k,l} c(J_{ik}J_{jl} + J_{ij}J_{kl})\theta_k \wedge \theta_l.$$

Put $f_i = J_{2n,i}$. Then from (1.2) and (1.6) we obtain the equations of Codazzi

$$(1.9) d\phi_i + \sum_j \phi_j \wedge \theta_{ji} = c \sum_{i,k} (f_j J_{ik} + f_i J_{jk}) \theta_j \wedge \theta_k.$$

Moreover it follows from (1.3) and (1.4) that

$$J_{ij}+J_{ji}=0,$$
 $\sum_{k}J_{ik}J_{kj}-f_{i}f_{j}=-\delta_{ij},$

(1.10)
$$\sum_{i} f_{ij} f_{j} = 0, \qquad \sum_{i} f_{i}^{2} = 1,$$

$$(1.11) dJ_{ij} = \sum_{k} J_{ik} \theta_{kj} - \sum_{k} J_{jk} \theta_{ki} - f_i \phi_j + f_j \phi_i,$$

$$(1.12) df_i = \sum_i f_i \theta_{ii} - \sum_i J_{ii} \phi_{ii}.$$

2. Formulas. In this section we assume that all principal curvatures x_1 ,, x_{2n-1} of M are constant. Denote by $m(x_i)$ the multiplicity of x_i . We may set $\phi_i = x_i \theta_i$. Then by (1.9) we can write the connection forms θ_{ji} in the form

$$(2.1) (x_i - x_j)\theta_{ij} = c\sum_{k} (A_{ijk} + f_i J_{jk} + f_j J_{ik})\theta_k,$$

where $A_{ijk} = A_{jik} = A_{ikj}$ (cf. [3]). In particular we have

(2.2)
$$A_{ijk} = -f_i J_{jk} - f_j J_{ik} \text{ if } x_i = x_j,$$

(2.3)
$$f_i J_{jk} = 0 \text{ if } x_i = x_j = x_k.$$

For an index i, we do note by [i] the set of indices j with $x_j = x_i$. Then it is obvious that the vector $F_i = \sum_{j \in [i]} f_j e_j$ is independent of the choice of orthonormal frame $\{e_j \mid j \in [i]\}$ for the eigenspace belonging to x_i . Therefore for any index i we can indicate a special index i so that the vector F_i linearly depends on $e_{i'}$. In other words, $f_j = 0$ for $j \in [i] \setminus \{i'\}$. Note that $f_{i'} = 0$ is possible.

Lemma 2.1. Assume $J_{ij} = 0$ for $i, j \in [i']$. Then

(2.4)
$$\sum_{\alpha \in [i]} \frac{2c}{x_{\alpha} - x_{i}} (f_{i}J_{j\alpha} - f_{j}J_{i\alpha}) J_{k\alpha} - f_{i}x_{j}\delta_{jk} + f_{j}x_{i}\delta_{ik} = 0$$

for $i, j, k \in [i']$,

(2.5)
$$\sum_{\alpha \in [i]} \left(\frac{J_{i\alpha}}{x_{\alpha} - x_{i}} (A_{\alpha j\beta} + f_{\alpha} J_{j\beta} + f_{j} J_{\alpha\beta}) - \frac{J_{j\alpha}}{x_{\alpha} - x_{i}} (A_{\alpha i\beta} + f_{\alpha} J_{i\beta} + f_{i} J_{\alpha\beta}) \right) = 0$$

for $\beta \in [i']$ and $i, j \in [i']$.

Proof. From (1.11) we have

$$0 = dJ_{ij} = \sum_{\alpha} J_{i\alpha} \theta_{\alpha j} - \sum_{\alpha} J_{j\alpha} \theta_{\alpha i} - f_i x_j \theta_j + f_j x_i \theta_i.$$

It follows from this and (2.1) that

$$\sum_{\beta} \sum_{\alpha \in [i]} \frac{cJ_{i\alpha}}{x_{\alpha} - x_{i}} (A_{\alpha j\beta} + f_{\alpha}J_{j\beta} + f_{j}J_{\alpha\beta}) \theta_{\beta}$$

$$-\sum_{\beta}\sum_{\alpha\in\{i\}}\frac{cJ_{j\alpha}}{x_{\alpha}-x_{i}}(A_{\alpha i\beta}+f_{\alpha}J_{i\beta}+f_{i}J_{\alpha\beta})\theta_{\beta}-f_{i}x_{j}\theta_{j}+f_{j}x_{i}\theta_{i}=0.$$

Taking account of the coefficients of $\theta_k(k \in [i])$ and $\theta_{\beta}(\beta \in [i])$, we have (2.4) and (2.5).

Lemma 2.2. Assume $f_{i'} = 0$. Then

$$(2.6) J_{ij}\left(\sum_{\alpha \in [i]} \frac{cf_{\alpha}^2}{x_{\alpha} - x_i} + x_i\right) = 0 \text{ for } i, j \in [i'],$$

(2.7)
$$\sum_{\beta \in [i]} \frac{cf_{\beta}}{x_{\beta} - x_{i}} A_{\beta i\alpha} + J_{i\alpha} \left(\sum_{\beta \in [i]} \frac{cf_{\beta}^{2}}{x_{\beta} - x_{i}} + x_{\alpha} \right) = 0$$

for $\alpha \in [i']$ and $i \in [i']$.

Proof. From $df_i = 0$ and (1.12) we have

$$\sum_{\alpha} f_{\alpha} \theta_{\alpha i} - \sum_{\alpha} J_{\alpha i} x_{\alpha} \theta_{\alpha} = 0,$$

which together with (2.1) implies that

$$\sum_{\beta} \sum_{\alpha \in \{i\}} \frac{cf_{\alpha}}{x_{\alpha} - x_{i}} (A_{\alpha i \beta} + f_{\alpha} J_{i \beta} + f_{i} J_{\alpha \beta}) \theta_{\beta} - \sum_{\alpha} J_{\alpha i} x_{\alpha} \theta_{\alpha} = 0.$$

Taking account of the coefficients of $\theta_i(j \in [i'])$ and $\theta_a(\alpha \in [i'])$ and making use of (2.1), we have (2.6) and (2.7).

Lemma 2.3. Assume $f_{i'} \neq 0$ and $m(x_i) \geq 2$. Then

$$\sum_{a \in [i]} \frac{2c}{x_a - x_i} J_{ja} J_{ka} - x_i \delta_{jk} = 0 \text{ for } i, j, k \in [i'] \text{ and } j \neq i'.$$

Proof. Put i = i' and take $j \in [i'] \setminus \{i'\}$ in (2.4).

Lemma 2.4. Let x_i be a positive maximal or negative minimum principal curvature. Then $f_{i'} = 0$ or $m(x_i) = 1$.

Proof. For example, let x_i be a positive maximal principal curvature. If $f_{i'} \neq 0$ and $m(x_i) \geq 2$, we put $j = k \in [i'] \setminus \{i'\}$ in Lemma 2.3. Then we have

$$\sum_{\alpha \in [i]} \frac{2c}{x_{\alpha} - x_{i}} J_{j\alpha} J_{j\alpha} = x_{i} > 0,$$

which contradicts the fact that $x_{\alpha} - x_i < 0$ for $\alpha \in [i']$.

Let $\lambda_1, \dots, \lambda_d$ be all different principal curvatures with $\lambda_1 < \dots < \lambda_d$, and put $m_r := m(\lambda_r)$.

We may assume $\lambda_1 < 0$ by reversing the unit normal vector e_{2n} if necessary.

Lemma 2.5. (1) Let $r \in \{1, \dots, d\}$ be an index such that $\lambda_r = x_i$ for some i with $f_{i'} \neq 0$. If $m_r \geq m_1 + \dots + m_{r-1} + 2$, then $\lambda_r > 0$. If $m_r \geq m_{r+1} + \dots + m_d + 2$, then $\lambda_r < 0$.

(2) Let $r, s \in \{1, \dots, d\}$ be indices such that r < s and $\lambda_r = x_i, \lambda_s = x_j$ for some i, j with $f_{i'}f_{j'} \neq 0$. Then $m_r \leq m_1 + \dots + m_{r-1} + 1$ or $m_s \leq m_{s+1} + \dots + m_d + 1$.

Proof. We consider a matrix $A = (J_{ij})$, where the indices i and j take all values such that $x_i = \lambda_r$ and $x_j = \lambda_1$ or,, or λ_{r-1} . Thus A is an $m_r \times (m_1 + \dots + m_{r-1})$ -matrix, which can be considered as a linear mapping of the m_r -dimensional vector space $V(m_r)$ into the $(m_1 + \dots + m_{r-1})$ -dimensional vector space $V(m_1 + \dots + m_{r-1})$. Denote by $V(m_r - 1)$ the orthogonal complement of $Re_{i'}$ in $V(m_r)$. Putting $\tilde{A} := A \mid V(m_r - 1)$, we have $ker \tilde{A} \neq 0$ by the assumption. Then we retake an orthonormal frame $\{e_A\}$ so that $ker \tilde{A} \ni e_i$ for some $i \in [i']$. Now since $J_{ij} = 0$ for any j with $x_j = \lambda_1$ or,, or λ_{r-1} , by Lemma 2.3 we have $\lambda_r \geq 0$. But $\lambda_r = 0$ cannot occur by (1.10) and (2.3). Similarly we can prove the second statement. Now, (2) is an immediate consequence of (1).

Lemma 2.6. (1) Let $r \in \{2, \dots, d\}$ be an index such that $\lambda_r = x_i$ for some i with $f_{i'} \neq 0$. Assume $m_r \geq 2$. Then $\lambda_r(\lambda_{r-1} - \lambda_r) < 2c$ and

$$m_1 + \cdots + m_{r-2} + m_{r+1} + \cdots + m_d \ge m_r - 1$$

or $\lambda_r(\lambda_{r-1}-\lambda_r)=2c$ and

$$m_{r-1} \geq m_r - 1$$
.

(2) Let $r \in \{1, \dots, d-1\}$ be an index such that $\lambda_r = x_i$ for some i with $f_{i'} \neq 0$. Assume $m_r \geq 2$. Then $\lambda_r(\lambda_{r+1} - \lambda_r) < 2c$ and

$$m_1 + \cdots + m_{r-1} + m_{r+2} + \cdots + m_d \ge m_r - 1$$
.

or $\lambda_r(\lambda_{r+1}-\lambda_r)=2c$ and

$$m_{r-1} \ge m_r - 1$$
.

Proof. (1) According to Lemma 2.3., we have

(2-8)
$$\sum_{\alpha \in [i]} \frac{2c}{x_{\alpha} - x_{i}} J_{j\alpha} J_{k\alpha} = x_{i} \delta_{jk} \quad \text{for } i, j, k \in [i'] \text{ and } j \neq i'.$$

On the other hand, it follows from (1.10) that

$$\frac{2c}{\lambda_{r-1} - \lambda_r} \sum_{\alpha} J_{j\alpha} J_{k\alpha} = \frac{2c}{\lambda_{r-1} - \lambda_r} \delta_{jk}.$$

Subtracting this from (2.8), we have

$$2c \sum_{\alpha \notin [i]} \frac{\lambda_{r-1} - x_{\alpha}}{(x_{\alpha} - \lambda_{r})(\lambda_{r-1} - \lambda_{r})} J_{j\alpha} J_{k\alpha}$$

$$= \left(\lambda_{r} - \frac{2c}{\lambda_{r-1} - \lambda_{r}}\right) \delta_{jk} \text{ for } j, \ k \in [i'], \ j \neq i'.$$

This implies that $\lambda_r(\lambda_{r-1}-\lambda_r) \leq 2c$ and there are m_r-1 linearly independent $(m_1+\cdots+m_{r-2}+m_{r+1}+\cdots+m_d)$ -dimensional vectors.

If $\lambda_r(\lambda_{r-1}-\lambda_r)=2c$, then we have $J_{ja}=0$ for $j\in [i']\setminus\{i'\}$ and any α with $x_{\alpha}\neq\lambda_{r-1},\lambda_r$. Thus we have

$$\sum_{\alpha} J_{j\alpha} J_{k\alpha} = \delta_{jk} \text{ for } j, \ k \in [i'] \setminus \{i'\},$$

where the summation is taken over all a's with $x_a = x_{r-1}$. This implies $m_{r-1} \ge m_r - 1$.

Similarly, by considering λ_{r+1} instead of λ_{r-1} , we have (2).

3. Proof of Theorem. As for special indices i', confer the beginning of section 2. It is sufficient to prove $f_{i'} = 0$ for some index i. For this, assume the contrary. Then we see $m_1 = 1$ by Lemma 2.4. We need to consider two cases.

Case I: $m_d \ge 2$. Then from Lemma 2.5 (2) we have

$$m_r \le 1 + m_1 + \cdots + m_{r-1}$$
 for $r = 1, \cdots, d-1$.

This implies $m_r \le 2^{r-1}$ for $r = 1, \dots, d-1$. And hence

$$(3.1) m_d = \dim M - m_1 - \dots - m_{d-1} \ge \dim M - 2^{d-1} + 1.$$

On the other hand, it follows from Lemma 2.6 (1) that

$$(3.2) m_d \le 2^{d-2} + 1,$$

which together with (3.1) implies dim $M \le 2^{d-1} + 2^{d-2} = 3 \cdot 2^{d-2}$.

Case II: $m_d = 1$. Define two indices r and s by

$$r := \max\{t \mid m_{t-1} \le 1 + m_1 + \cdots + m_{t-2}\}$$

and

$$s := \min\{t \mid m_t \le 1 + m_{t+1} + \cdots + m_d\}.$$

Then $2 \le r$, $s \le d$. If r < s, then owing to Lemma 2.5 (2), we have s = r + 1. Then, as in the Case I we have

$$m_t \le 2^{t-1}$$
 for $t = 1, \dots, r-1,$
 $m_t \le 2^{d-1}$ for $t = r+1, \dots, d.$

If $r \ge s$, then above two inequalities hold obviously. Consequently we see that

$$m_r = \dim M - (m_1 + \dots + \widehat{m}_r + \dots + m_d)$$

 $\geq 2n - 1 - 2^{r-1} - 2^{d-r} + 2 > n$

since $n \ge 3 \cdot 2^{d-3} + 1$ by the assumption. Thus from (2.3) we have $J_{ij} = 0$ for all i and j with $x_i = x_j = \lambda_r$, which contradicts the fact rank J = 2n - 2.

REFERENCES

- [1] T. E. Cecil and P. J. Ryan: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481—498.
- [2] M. KIMURA: Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137—149.
- [3] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43—53, 507—516.
- [4] Q. M. Wang: Real hypersurfaces with constant principal curvatures in complex projective spaces (1), Sci. Sin. Ser. A 26 (1983), 1017—1024.

U-H. KI
DEPARTMENT OF MATHEMATICS
KYUNGPOOK UNIVERSITY
TAEGU, 702-701 KOREA

R. Takagi
Department of Mathematics
Faculty of Science
Chiba University
Chiba-Shi 260, Japan

(Received December 9, 1991)