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Introduction. Let M be a real hypersurface in a complex projective space
P,(C) of complex dimension # with the metric of constant holomorphic sectional
curvature. We shall say M to be d-isoparametric if all principal curvatures of M
are constant, and the number of different principal curvatures is equal to d. So
far, T.E. Cecil and P.]J. Ryan [1] proved that any real hypersurface in P.(C) with
at most two principal curvatures must be a part of a geodesic hypersurface, and
one of the present authors [3] and QM. Wang [4] classified 3-isoparametric
hypersurfaces in P,(C). In this paper we consider a d{(= 4)-isoparametric real
hypersurface in P.(C). Our main result can be stated as follows:

Main Theorem. Let M be a d(= 4)isoparametric real hypersurface in
P.(C). Assume that dim M > 3:2%7%. Then at each point of M there exists a
principal subspace whose image by the complex structure of P.(C) is again tangent
to M.

Note that if M is a d-isoparametric real hypersurface in P.(C) and at each
point of M there exist d—1 principal subspaces all of whose images by the
complex structure of P,(C) are again tangent to M, then M is congruent to one
of examples given in [3], which was proved by M. Kimura [2]. Thus our theorem
gives a step to see whether a d-isoparametric real hypersurface in P.(C) exists
except for known examples or not. Moreover, we observe that for d > 4(d +
5) we have no examples of a d-isoparametric real hypersurface in P.(C).

1. Preliminaries. Let M be a real hypersurface in P.(C). Choose a local
field { €1, *+**+, @2a} of orthonormal frame in such a way that, restricted to M, the
vectors &, **-*+, €2n-1 are tangent to M. Hereafter the indices ¢, j, %, /, @, 5,
7 run from 1 to 2%z—1, and the indices A, B, C, D run from 1 to 2n. Let wa be
the 1-forms dual to 4. Then the connection forms was of P.(C) are the 1-forms
uniquely determined by
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(1.1) dwa = — gwu/\ ws, wWast+ wea = 0.
The curvature forms of P.(C) are given by
(1.2) dwas+ %:CUAC Nwes = cwaN\ws+ CCED(.[ACIBD + Luslcp)we N wo,

where 4c denotes the constant holomorphic sectional curvature of P.{(C) and
= (Ias) does the complex structure of P»(C). Moreover I satisfies

(1.3) ;chlcs = —Jas, i+ Izqa = 0,
(1.4) dlas = ;]ACQ)CB—;]BCQ)CA-

In the sequel we denote by ea, 84, Oas and Jas the restriction of &4, wa, was
and 4z to M respectively. Then we have

(1.5) dﬁ. = —gﬁy/\ 6,', 0U+ 0_;1' = 0.

which implies that 8;; are the connection forms of M. By Cartan's lemma &a,:
can be written as

(1.6) i1 = Ooni = Zhi0;, hy = h.

The quadric form 2. ¢.8;: is called the second fundamental form of M with
respect to the normal vector ezs. The symmetric matrix (%) of degree 21 —1 is
called the shape operator. An eigenvalue of the shape operator is called a
principal curvature.

The curvature forms ®;; of M are defined by

(L.7) Oy = db;+ Ek} O N Ons.
Then from (1.2) we have the equations of Gauss
(1.8) Oy = ¢iNg;+cO:N 0j+§c(];Jjg+]y]k,)0k A6
Put f; = J2n.:. Then from (1.2) and (1.6) we obtain the equations of Codazzi
(1.9) d¢f+§!¢j/\ 05 = cg(ﬁ],-k—i-f,]jk)ﬁj/\ On.

Moreover it follows from (1.3) and (1.4) that
JotTn =0,  ZJaJu—fifi = —0u,
(1.10) 2Jof; =0, T =1,
(1.11) dfi = ZJ b — L inbni— fibi+ fidhs,
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1.12) df: = ?f:ieji_;]ﬁqsi-

2. Formulas. In this section we assume that all principal curvatures xi,
------ xan-1 of M are constant. Denote by m(x;) the multiplicity of x;. We may
set ¢: = x:0;. Then by (1.9) we can write the connection forms & in the form

2.1) (xi—x;)05 = Cg(Aiik‘*’ijk"‘fj]m)ah,
where Aix = Ajie = Ay (cf. [3]). In particular we have
2.2) Aie = —fidw— il if x: = x5,
(2.3 fJie =01if x; = x; = X

For an index 7, we donote by [7] the set of indices j with x; = x,. Then it
is obvious that the vector F; = X;e(af;e; is independent of the choice of orth-
onormal frame {e; | 7 € [{]} for the eigenspace belonging to x;. Therefore for
any index ¢ we can indicate a special index 7" so that the vector F: linearly
depends on e~ In other words, /5 = 0 for j € [{/]\{i"}. Note that fr =0 is
possible.

Lemma 2.1. Assume J; =0 for i, j € [i'). Then

2.4 (f Jia— FiJia)ra— Fix 0+ fix:8n = 0

ﬂ'$[llxa

for i, j, ke [i],
@5 B (LAt folat fil o)
— LAt felw+ fien)) = 0

for B& [i'] and i, j € [i'].
Proof. From (1.11) we have
0=dl; = ;]iaaaj_g]jagai_ﬁ'xjej"'fjxie{.
It follows from this and (2.1) that

& L Auis+ fud i+ il )0

8 a€lil Xa—
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_ _Clia (a0 ot f — F it Fools =
%:aem Xa—X: (Amﬁ+fa]:ﬁ+fJaﬁ)6ﬂ _ftx101+f1x10z = 0.
Taking account of the coefficients of 8.(k € [7]) and 8s(8 & []), we have (2.4)
and (2.5).

Lemma 2.2. Assume fir = 0. Then

26) I B L) =0 for i je [,

(27} 2 C—fﬂAﬂx‘a"']ia( 2 Cf; +Xa) = ()

sETI Xp— X+ BETi Xp— X:
for a € [i'] amd i € [i'].
Proof. From df; = 0 and (1.12) we have
;faﬁai—gfafxaﬁa =0,
which together with (2.1) implies that

52 oA+ fol i+ o) b~ S iabl = 0.

8 a&li) Xa— Xz

Taking account of the coefficients of 8;(j € [¢']) and fa(a € [i']) and making
use of (2.1), we have (2.6) and (2.7).

Lemma 2.3. Assume fr + 0 and m(x:) = 2. Then

2c Y . - C
o2 xa_xi]ja]ka x6u=0for i,j k€ [i'l and j + 7.

Proof Put i =7 and take j € [#]\{i'} in (2.4).
Lemma 24, Let x: be a positive maximal or negative minimum principal

curvature. Then fo» =0 or m(x;) = 1.

Progf.  For example, let x; be a positive maximal principal curvature. If fir
#+ 0 and m(x:) = 2, we put j = 2 € [i]\{#’} in Lemma 2.3. Then we have

ag z—cxi].ia]ja =x; >0,

&(i] Xa —

which contradicts the fact that x.—x; < 0 for a € [7'].
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Let Ay, -+++*+, A4 be all different principal curvatures with A, < ««++-- < Ae, and
put mr: = m(Ar).
We may assume A; < 0 by reversing the unit normal vector ez» if necessary.

Lemma 2.5. (1) Let r € {1, -+ , d} be an index such that Ar = x: for
some { with fo + 0. If mr = my+ cooee +mr+2, then Ar > 0. If My 2 My
+ e +mat2, then A- < 0.

(2) Let v, s € {1, -, d} be indices such that r < s and Ar = xi, As = x;
for some i, ] with fufir = 0. Then m, < ny+ -+ + e+ 1 or ms < Ms+
e g+ 1,

Proof. We consider a matrix A = (J;), where the indices 7 and j take all
values such that x; = A, and x; = A or, *=+- , or A,—1. Thus A is an m, X (»u
4 eeeees + mr_1)-matrix, which can be considered as a linear mapping of the
m.-dimensional vector space V(m.) into the (m+ -+ +m,-1)-dimensional
vector space V{(my+ -+ +mr_1). Denote by V(m,—1) the orthogonal
complement of Rer in V(m,). Putting A: = A| V(m,—1), we have ker A +
0 by the assumption. Then we retake an orthonormal frame {e4)} so that ker A
S e; for some i € [{']. Now since Ji; = 0 for any j with x; = A or, ==+ , or
Ar-1, by Lemma 2.3 we have A, = 0. But A- = 0 cannot occur by (1.10) and (2.3).
Similarly we can prove the second statement. Now, (2) is an immediate conse-
quence of (1).

Lemma 2.6, (1) Let r € {2, - , d} be an index such that Ar = x: for
some 1 with fr # 0. Assume m, 2 2. Then A-(Ar-1—A;) < 2¢ and
myt e t M2t Mrat e +ma = mr—1,
or Ar(dr-1—Ay) = 2¢ and

Mr-o1 = mr— 1.

2 Let r {1, e , d—1} be an index such that A, = x: for some i with
for+0. Assume mr = 2. Then Ar(Are1—Ar) < 2¢ and

7 E + Myt Miaat oo +mag = mr—1,
or A{Arai—Ar) = 2¢ and

Mro1 = mr—1.

Proof. (1) According to Lemma 2.3., we have
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(2-8) JieJra = x:0sn  for i, 7, k€ [i'] and j * 7.

aglil Xa— X
On the other hand, it follows from (1.10} that

2¢ _ 2c ‘
T 2ielva = 7= =30

Subtracting this from (2.8), we have

Aroi—
2c aes[;](x,,-—A,)(/lr . Ar)]ja]ka

=(f'lr Arzl Ar)é‘mforj,kE[z] j#F 7.

This implies that A-(Ar-1—A,) < 2¢ and there are #,—1 linearly independent
(may+ eeer + Mot Mt e + ma4)-dimensional vectors.

If A{A,-1—Ar) = 2c, then we have [« = 0 for ;7 € [{']\{¢"} and any « with
Xa F Ar-1, Ar. Thus we have

;Jju]ka = 8jk for j, ke [z']\{z’}.

where the summation is taken over all a’s with x« = x,-1. This implies m,_; =
me—1.
Similarly, by considering A-.1 instead of A-_1, we have (2).

3. Proof of Theorem. As for special indices i, confer the beginning of
section 2. It is sufficient to prove f» = 0 for some index 7. For this, assume the
contrary. Then we see m; = 1 by Lemma 2.4. We need to consider two cases.

Case I: mas = 2. Then from Lemma 2.5 (2) we have

My < 1+m+ oo +mro1 for v =1, e .d—1
This implies m, < 27! for » = 1, -, d—1. And hence
(31) . ma = dim M —nu— < —mao = dim M—291+1.
On the other hand, it follows from Lemma 2.6 (1) that
3.2) ma < 297241,

which together with (3.1) implies dim M < 2¢7!'+4297%2 = 32972,
Case II: ma4 = 1. Define two indices # and s by

ri=max{t | M1 < 1+m+ oo + -2}
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and
s:=min{t | me < 1+mer+ ooeee + ma).

Then2 < r, s £ d. If » < s, then owing to Lemha 2.5 (2), we have s = »+1,
Then, as in the Case I we have

e <207 fort = 1, ooeeee, 7 —1,
me <2470 for t = 1, oo d.

If » = s, then above two inequalities hold obviously. Consequently we see
that

my = dim M —(nn+ oo + Rt e + ma)
>2n—1-2"""'=2""4+2>n

since # = 3-2%7*+1 by the assumption. Thus from (2.3) we have J; = 0 for all
7 and j with x; = x; = Ar, which contradicts the fact rank J = 2n—2.
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