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SOME EXAMPLES OF BENFORD SEQUENCES

Kazvo GOTO

1. Introduction. It seems empirically that the first digits of random num-
bers do not occur with equal frequency. After making many counts from a large
body of physical data, Farmer's Almanac, Cencus Reports etc, ---. F. Benford
first noticed that the proportion of numbers with first significant digits equals to
orless than 2 (= 1,2, -++,9) is approximately logio(£+1). Hence this logar-
ithmic law for the first significant digits is called Benford’s law. Tables 1 and 2
below are the examples. In Table 1,

L(n) = logi(n+1)—logio n,
B(n) = the empirical frequency found by Benford (1938) is his ensemble of 20,
229 entries,
P(n) = the frequency of leading digits #» among the first hundred powers of
2, 1e, 2° 2, 2% «+, 2%,
Applying x*-test with 9—1 = 8 degrees of freedom to Table 2, we obtain ¥* =
5.59 < 15.5 = x£(0.05). Therefore we should not have to reject the hypothesis :
the events do obey Bewford’s law. Therefore we may say the events obey
Benford’s law.

In this paper we show another example of this type and also give a Benford

sequence in the sense of natural density which is not a strong Benford sequence.

Table 1 (due to Raimi [3]).

n 1 2 3 4 5 6 7 8 9
Benford's law ZL(s)| 301 | .176 | .125 | .097 | .079 | .067 | .058 | .051 | .046
Benford's data B(n)| .306 | .185 | 124 | .094 | .080 | .064 | .051 | .049 | .047
Powers of two P(»)| 30 | 17 | 13 | .10 | 07 | O7 | .06 | .06 | .05

Table 2, Distribution of the first significant digits of the first page number of
each paper appearing in the Bibliography of the book by Kuipers and Niederreiter
[2] (total 866).

Range of = 1 2 3 4 5 6 7 8 9
Frequency of events | 268 | 162 | 111 | 85 74 51 43 42 30
Expected frequency | 261 | 153 | 108 | 84 69 58 50 44 40
Proportion 3095 [ 1871 | .1282 | .0982 | .0855 | .0589 | .0497 | .0485 | .0346
Expected proportion | .3010 | .1761 | .1249 | .0969 | .0792 | .0669 | .0580 | .0512 | .0458
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2. Definitions. We denote the first significant ( 4-digit) b-adic expression by
ds(x) (or shortly d(x)), i.e.

do(x) = [x/b1%X17**1] if x > 0.

Definition 1. We call that a sequence (x») obeys Benford’s law if for £ =
1,2, -+, 51

th#{n 1 < n <N, do(xx) = k} = logs(k+1)—logsk.

Definition 2 (¢f [4]). Let P = (#(n)),n=1,2,+++, be a sequence of
non-negative real numbers with p(1) > 0. For N =1, we put S(N) = (1)
+p(2)+ -+ +p(N). Then a sequence (x») is said to be (M, p(n))-uniformly
distributed mod 1, if for every positive integer £,

LiEE(LNF,gp( n)ezm'hxrn =0,

Definition 3. A positive sequence (a.) is said to be a strong Benford
sequence if (log a») is uniformly distributed mod 1.

Definition 4. A positive sequence (a») is said to be a weak-Benford sequence
if (log @») is (M, 1/n)-uniformly distributed mod 1.

It was J. Cigler [¢f 1] who first proposed the notions of strong and resp.
weak Benford sequence. He observed that if for a sequence (a») of positive reals,
(log @=) is uniformly distributed mod 1 (abbreviated, u.d. mod 1), then (z.) obeys
Benford’s law in the sense of natural density of Dk in (a»). This was proved by
P. Diaconis in 1977 [1, Theorem 1].

Definition 5. We call that a sequence (x») obeys k-th digit Benford’s law to
the base b if for j = b*7', b* ' 41, +++, b*—1

th#{ 1< n <N, do(Xn)=j} = (logs(j+1)—logss).
3. Results.

Theorem 1. There exists a positive real sequence (un) which obeys Benford’s
law in the sense of natural density such that (un) is not a strong-Benford’s
sequence.

Proof. We put p(j) = logio(1+1/7) for j =1,2,-++,9. Let (u.) be a
sequence of integers with repetition :
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Sirst block second block
(un) f— (i’]_, "'-1,2»2- ...'2‘ ...’glg’ ...’9! 1‘ 1‘ ...71,2’2, ...’2, see
—_—— S—— —_—— —
m(l) 7’11(2) ‘121(9) nz(l) 7’12(2)
m-th block

...’9’9,...’9_... ’1‘1’--.,1'.--‘j‘]',...'j,...!9,9,...'&-..)’
—— —— N—_———— ——— ——— e ——

72(9) 7m(1) nm(7) #1m(9)
where in each block, . takes the value 7, #n(7) = [m(m+21)p(;)] times, for

eachj (j = 1,2, +++,9) where [x] is the greatest integer < x. We remark that
nm(j) = 1 holds. If the term ux is included in the m-th block, we may write

N = 215" 2%1ndj) 4 Na,
where Ny is the number of elements u. included in the m-th block and satisfies
1 < Nu £ 2a(1)+0n(2)+ +++ + nm(9).
First we show that N ~ m?/2 as m — co. Suppose N, satisfies
A1)+ =2+ +2a((—1)+1 < Nu < 20(1)+ +++ +n2a(5),

for j=1,2, +++,9. We consider the following three cases.
Casel. Fork=1,2 -+ j—1,

Ni=HMur=k 1< n< N} =" nk).
Case 2. For k= j,

Li=#u.=k 1< n <N}
= :'"=—1172i(k)+Nm_(nm(1)+ e +72m(k_1)).

Case 3. Fork=j;+1,---,9,
Jo:=#un= k1< n<N}= 25 nk).
Now we estimate N. For j = 1,2, -+, 9, since Nn satisfies
An(D)+ < 4 0a(j—1)4+1 < Np < na(1)+ -+ + #a(),

we obtain

N = 2525 1n7)+ No < 275" 231+ 21)p(7) + 2ici(m+21)p(3)
= 231G (m~+20)(m+21)/2— 6} + (m+21) 2%, 6(7)
< (m+20)(m+21)/2—6+(m+21).

On the other hand,
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N 2 223G+ 2D)p() — 1+ 2EH(m+21) (1) — 1}
= 22 (1 +21) = 9m—1)+(m+21)Dizip(D) — (G —1)
> (m+20)(m+21)/2—9(m—1)—(G—1).

So we have N ~ m?/2.
Next we show that Ji, J. and Js ~ m?p(k)/2.
Case 1.

Ji = 2Eindk) = DR+ 21)p(k) =1} = p(k)(m+21)(m+22)/2—m,
and
S < ZR(E+2D)p(k) = p(k)(m+21)(m+22)/2.

Consequently we have J, ~ m?p(k)/2.
Case 2.

Jo: =2 nd k) + Nn—(nam(1)+ <+« +nn(k—1))
= MG+ 2D)p(k)—1) = pE)(m+20)(m+21)/2—(m—1).

Jo < 2SN+ 2D (k) + nm(k) < DAY +21)p(R)+(m+21) (k)
= p(R)(m+20)(m+21)/24+ (m+21) p( k).

Consequently we have J» ~ m?p(k)/2.
Case 3. Similarly, we have

k) ~ mPp(k) /2.

Hence /i, /. and Js ~ m’p(k)/2 (N — o).

Thus we obtain /i/N, J:/N and J3/N — p(k) (m — o).

Therefore the sequence (u.) obeys Benford’s law in the sense of natural
density. But obviously, the sequence (log u») only consists of the set {log 1, log
2,1og 3, «++, log 9}. Thus the sequence (log u.) is not uniformly distributed mod
1. This completes the proof.

For a k-th digit problem to the base b, we may have easily a similar result,
ie.,

Theorem 2. Let (un) be a sequence of integers with repetition :
Jirst block second block
(#n) = (¢, ¢, ***,c,c+1, c+1, 2o ¢+ eon b5—=1 oo, b*~1,¢,C, 0, C, "
~——— ~ N —
m(l) 11(2) m(b%—1) na2(1)
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m-th block
I T N N Y LSS T VI [,
nm(1) naly) Na(b*—1)
where ¢ = b*7, nn(j) = [(m+a)p(7)], p(7) = logs(1+1/j) and a = (1—log(b
— 1)), then (un) obeys the k-th digit Benford's law fo the base b in the sense of
natural density, but (log u») is not uniformly distributed mod 1.

R. E. Whitney [5] showed that the sequence of primes is a weak but not
strong Benford sequence. We show an example of this type, whch is not a
monotone sequence.

Example. Let us define

o = { n if n ¥+ k for every integer k,
"7 lexp((log #)?) otherwise.

Then (x») is a weak, but not strong Benford sequence.

Proof. First we show that (log x») is not uniformly distributed mod 1. We
estimate

lens}{eznih logxn-
By Euler summation formula, we have
(*) Eﬁ;lez’m‘ log n
N i 1 ; ¥ 1 ; .. dt

— 2nrh 108 ¢ 2rih 108 N - 2rih 108 ¢ Lt

= [Termontay Loy 1) 4 [ ({t} 2)9 o= 2 ih- AL
Now the second term < 1, the third term < f¥1/tdt = log N and

— v 2xin _ 1 Tih+1 — 7
the first term = ‘/]‘ t dt = m(]\,2 —1) = .Q(]V)

where f = 2(g) and f(x) € g(x) are meant by f # o(g) and |f/g| < constant as
x — 0o, respectively. So we have

D@t heen — Q(N)+ O(log N),

2=l n=2 @B = 3 wet ™8R = Q(J/N)+ O(log N).
Next, in the same way as in (%), we have
(k%) Dy : = Shagwe®rioes”

JAT 8xih(log t)2 1 2rih(log N)?
= _[ e dt +7(e +1)
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w
+ [ (0= F)ermon16in 18 L gy,
where the second term O(1), and the third term < f{¥ log #/t dt < (log N)%. To

estimate the first term, we need the following lemma :

Lemma 1 (Van der Corput: ¢f [2, Lemma 2.1]). Swuppose the real-valued
Sunction f has a monotone derivative ' on [a, b] with f'(x) = 1 > 0 or f(x) <
—A< 0 for x €[a. bl, and

J = [ ep2aif(x))a.

Then
Il < 1/A.
We set f(¢) = 4h(log t)®. Then by the lemma, we have in (*%)
the first term = f JN_e“”"‘“"g“’dt < N
1 log N*

Hence Dy € Nflog N. Thus we have

N 2nih 108 Xn __ N 2nih log n N 2nih 108 n 8mih(log k)?
2n=le ! "= 271:12 _2n=l,n=h2€ +2ks«/17€ 8 k)

= Q(N)+ O((log N)?).

Therefore the sequence (log x») is not u.d. mod 1.
Finally we show that the sequence is (M, 1/n)-u.d. mod 1. We write

1 .
lensN?ezmh 108 X7

1 2mih 1 2nihlogn 1 2rih(lo
— - g n)2
= Dlisnsw o TR IOBT S snsN n=k? n® hIBT L D snsNn=ke 7 ! .

First we estimate the following sum: By Euler summation formula, we have

215 <N 1 glrihlogn
n
n

_ NL 2xih 08 ¢t 1 L 2nih 1og N N( _L 2mih—1 oniniege
_/l‘ e gart+7(1+Ne g)+[ {t} Z}itz e dt,

where the absolute value of the second term < 1, and the third term < /¥¢2dt
< 1. Besides,

N . .
the first term < ,/1‘ PRkl — %%(Nz""'—l) < 1.

So we have

ElsnsN%ez‘ﬁh ken — O(1).
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Similarly,

2rikrlogn 4nih 108 k

= stfﬁ'%i‘e

—_ f‘m—%e‘mmlogtdt_'_i(l_*_ieZﬂiklogAV)
U
+j'~V( 1 )47[2]13 2 4mh1og¢dt
7 .

Absolute value of this second term < 1. Also,

1
=k2"_ €
ElsnsN,n k n

¥ v
the third term € /1. %dt = 0(1), the first term < _[ %a’t = 0(1).
Thus we have
215725N,n=k2%292m-h BN — 0(1)-

Finally we estimate

2rih(log )z 8rnih(log k)2

1 1
ElsnéN,n=k2;e = Elsns./ﬁ'k_ze

Since Dy << Nl/log N, we easily find by partial summation that this sum is O(1).
Consequently, we have

2’___1%627[{}1 log x» _ 0(1) — 0(10g ]V).
Therefore the sequence (log x.) is (M, 1/n)-ud. mod 1.
Remark. FEven if we assume that (g(n)) is a sequence such that g{n) =

o(n) and g(n)/log n 1 oo, (g(n)) is not always uniformly distributed mod 1 as
shown by the following example ;

Fore®* <n< e™71 (k=0,1,+-), we put
g(n) = (/E-l-g(k:i—l)ge‘myog n.
Then g(n) satisfies g(#) = o(n) and g(n)/log n 1 co.
For e’ < n < ™7 we have
JE<Zn < VE+grre T < JE+ 2kt1

log »n 8(!53-1—1)2 <Rt
Hence % < g(n) < £+1/2. Therefore we obtain {g(#)} € [0, 1/2).
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