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UNCOUNTABLY MANY INFINITE LOOP SPACES
OF THE SAME N-TYPE FOR ALL N

Yosummr SHITANDA

Two CW -complexes are said to have the same #n-type if their Postnikov
n-stages are homotopy equivalent. J.F. Adams [1] gave two spaces which have
the same #n-type for all #» and are not finite type. B. Gray [3] gave two
CW -complexes which have the same #n-type for all # and are loop spaces of finite
type. Let SNT(X) be the collection of spaces of same »-type for all » as X. C.
A. McGibbon and J.C. Mgller [4, 5] obtained theorems which decide the potency
of a set SNT(X). They also investigated SN7T(—) for many examples e.g.
K(Z, n)x 8" Z*K(Z, n)vS”) and classifying spaces BG of Lie groups G.
Especially they proved that SNT(BG) is an uncontable set except for G = T*
(£ =2 0), SU(n) or PSU(n) (n = 2, 3) (cf. Theorem 4 of [4]), and SNT(BU) and
SNT(BS$) are trivial (cf. Example E of [4]). We note that BU = Lim BU(#n)
and BSp = I:i_)mBSp(n) are infinite loop spaces. Hence, we set the following
conjecture,

"If two infinite loop spaces have the same #-type for all », they have the same
homotopy type.”

On the other hand, the author proved the next theorem in [6].

Theorem. Let f, g: Z*CP* - S**2 be continuous maps k = 0 and C(f),
C(g) mapping cones of f and g respectively. 2™C(f) and 2™C(g) are homotopy
equivalent if and only if f and g are homotopic for 0 £ m <k.

In the above theorem, the case £ = oo is an open problem. Since the
homotopy set [Z*CP=, S**3] = Z/Z is a set of phantom maps, the spaces
{2"C(f)} have the same n-type for all # and are finite type (0 < m < &),
Moreover we generalized the above theorem for connected Lie groups and gave
examples of unstable complexes of the same #-type for all # [7].

In this paper, we obtain the solution of the open problem for £ = o and the
negative answer for the above conjecture. Our main theorems are stated as
follows. We remark that the next results are easily generalized for Lie groups
by our paper [7].

Theorem. Let £ g: 2*CP™ — S**? pe continnous maps and C(f), C(g)
mapping cones of f and g vespectively. Q(C(f)) and Q(C(g)) are homotopy
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218 Y. SHITANDA
equivalent if and only if f and * g are homotopic, where Q(X) = Lim Q"3"X.

Theorem. Let 7 g: Z*CP™ - S**° be continwous maps Q(C(f)) and
Q(C(g)) are homotopy equivalent if and only if f and * g are homotopic, where
QU X) is the g-time iteration of the functor @ on X.

The author would like to thank Prof. N. Iwase and a referee for their advice.

1. Preliminary. In this paper, we work in the category Cw of based spaces
with homotopy type of CW -complexes and based continuous maps, and the
category Spec of CW -spectra. We shall use the terminologies and the notations
of [6], [8]. Now we review the results of [6, 7]. Let CP* and S™ be the infinite
dimensional complex projective space and z-sphere respectively. Let j: S*+? —
2*CP~ be the canonical inclusion. This induces a map of inverse systems (j)« :
[Z*CP", S***] - [Z*CP", Z*CP=] and j«: [Z*'CP> S**?] - [Z*'CP~,
Z*CP=]. The group [Z*'CP=, S**?)is Z/Z by Theorem D of [8] and [Z*CP?,
2*CP=] is a finitely generated nilpotent group for £ > 0. We obtained the next
lemma in [6].

Lemma 1.1. If a map h: X*CP" - X*CP~ satisfies H™(h) = 0 for m >
k2, the degree of H**¥(h): H**¥(Z*CP>) » H*** (X*CP") is divided by 11,
Max{ve(j)| 7 =12, ++=e= , n} where vu(7) is the factor of a prime p of J.

In the above statement, we remark that the number IT, Max{v,(7) | 7 = 1,
2, e , n} does not depend on k. If we take S**? instead of 2*CP~, we can get
the similar result. Hence we obtained the next proposition.

Proposition 1.2. The canonical inclusion j: S*** - S*CP™ induces a
monomorphism jx: [Z*'CP>, §**?] - [Z*'CP>, Z*CP~] for k 2 1.

Now we prove the analogous theorem for J = Q(j): Q(S**?) -
Q(Z*CP=) induced by the canonical inclusion j: S**2 - I*CP=. It is difficult
to determine the homotopy sets [Z*'CP=, @Q(S***)] and [Z*'CP~,
Q(Z*CP>)]. But it is comparatively easy to determine sets of phantom maps,
because they are determined by the systems of homotopy groups. We set as
follows :

S(k, j. n) = [Z*CP", S**7*2] S(k, n) = [2*CP", Q(S**%)]
T(k, j, n) = [Z*HCP", Z*+CP™)] T(k, n) = [Z*CP", Q(Z*CP™)]



UNCOUNTABLY MANY INFINITE LOOP SPACES 219

Since the inverse systems {S(%., »)}, {7 (%, »)} are the stable homotopy groups
of {S(&. j, )}, {T(k, j, n)}, they are evaluated by Lemma 1.1. Hence by using
the method of Proposition 1.2 in [6], we have sets of phantom maps [ 2* ' CP~,
Q(S**)] = Lim' S(k, n) = Z/Z and §[Z*7'CP~, Q(Z*CP")] = Lim' T(k, »)
which contains Z/Z. Hence we get the next theorem.

Theorem 1.3. The cononical inclusion J : Q(S**?) » Q(Z*CP>) induces a
monomorphism Jx: O[Z*1CP=, Q(S**?)] - 9[X*1CP=, Q(Z*CP™)] for k =
1.

There exists a natural equivalence between Cw and Spec.
(14) (X )] ={2~X, 2V}

where 2 X, 2= Y are suspension spectra of CW-complexes X, Y of finite type
respectively and {2=X, 2=Y} is a homotopy set in the category Spec of
CW-spectra. Hence we get the next theorem by Theorem 1.3.

Theorem 1.5. The canonical inclusion J : Z=S**? - X°3*CP™ induces a
monomorphism Jy: Q{ZZFICP™, =S} » g{I=X* 1\ CP>, I*X*CP=} in
the category of spectra.

[f suspension spectra 2°X, 2= Y of CW-complexes X, Y of finite type are
homotopy equivalent, infinite loop spaces Q(X), @(Y") are homotopy equivalent.
This is geometricaly clear for specialists [2]. For the completeness, we shall
prove it in Appendix by pure categorical method.

2. Main theorems. A map f: X — Y is called a phantom map if the
restriction f | X™ on the skeleton X" is homotopic to the constant map for all
n. We remark that the suspension functor X induces the isomorphism X :
o{Z=CP>, 2=5% = 9{Z=XCP=, X*S*}. By Theorem D of A. Zabrodsky [8],
the homotopy set [Z*CP=, S**?] is equal to Ext(He+2(E*CP*: Q), mer3(S**?))
= Ext(Q, Z) = Z/Z and all maps f: 5*CP~ — S**3 are phantom maps. By
the results of section 1, the functor 2 induces the isomorphism [Z*CP>, 2*S®]
= §{Z=CP*, X=S% for all £ = 0, and the isomorphism between the components
Z/Z of [Z*CP=, 2*3CP*] and 6{Z“CP=, Z=XCP>} for all # = 0. Hence we
can identify phantom maps f: Y*CP® - §*** and X f: Y°CP* - X=§°
(resp. g: 2*CP® —» X**'CP® and X*g: X*CP~ - Z=3CP>). A symbol "~*“
means a homotopy relation.
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Theorem 2.1. Let f, g: S*CP* - S*** be continuous maps and C(f),
C(g) mapping cones of f and g respectively. The suspension spectra = C(f) and
2= C(g) are homotopy equivalent if and only if f and * g are homotopic. These
spaces are finite type and have the same n-type for all n.

Proof. If f and T g are homotopic, £C(f) and X~C(g) are clearly
homotopy equivalent. If there exists a homotopy equivalence 8: X*C(f) -
2=C(g), we set B*(V) = aV+bZU and B*(ZU) = cV+dZ*U, ad —bc =
+1 where V is the generator of H**3(X>S**3: Z) and 2*U is the generator of
H**3(X>X*CP>: Z). By using the reduced power operation, we have 4 =0
and ¢ = *1, d = £1. Moreover, 8 induces a map a: T°S** - I°S**3 of
degree =1 and ¢ = 0 by the following consideration. Now consider the follow-
ing sequences.

2=f 2= 2=p - 2=f
ZSRCPT—— Z"”S“a——> Z°C(f) — I=I*ICP® —— X=G**

@ ‘ B 4 a

E=SACP® —— Z=S* s To((g)—— T EFICP® ——s EeGh
i°g 2%y 2%q —-3%g

The existence of @ is proved as follows. When f~ g ~0, the statement is clear.
We may assume f+0. X~gBX>iX¥>f is homotopic to the constant map by
2=(if)~0. Since T=gBX~iX=f is homotopic to sXT=f : T*X*CP> - X>§**3
- J=X*CP™ where s : =S**? » ¥*X**'CP" is a map of degree s. A map
s is homotopic to the constant map by Theorem 1.5. Hence £ induces the above
commutative diagram where @, 8, ¥ and 6 are maps of homotopy equivalences.
We have that 2*3f and X~Xg are equivalent under the action of homotopy
equivalences. Hence we have 2*3f~*2*3¢g and also f~ *+g.

By Theorem 2.1 and Theorem A.1 of Appendix, we get the next result.

Theorem 2.2. Let f, g: Z*CP~ — S*** be continuous maps and C(f),
C(g) mapping cones of f and g respectively. The infinite loop spaces Q(C(f))
and Q(C(g)) are homotopy equivalent if and only if f and g are homotopic.
These spaces are finite type and have the same n-type for all n.

These results are easily generalized for non-trivial connected Lie groups by
considering the results of [7].
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Theorem 2.3. Let f g: X*BU(n) - S**(or X* BSp(n) » S**°) be
continuous maps and C(f), C(g) mapping cones of f and g respectively. The
infinite loop spaces Q(C(f)) and Q(C(g)) are homotopy equivalent if and only
if f and £ g arve homotopic. These spaces are finite type and have the same n-type
Jor all n.

By studying the proof of Theorem 2.1 carefully, we get the next corollaries.

Corollary 2.4. Let f, g: Z*CP= — S**? be continuous maps which are not
howmotopic to the constant maps. If there exists a map ¢ : TC(f) » ZT=C(g),
with Hyvs () = 0, it holds nf ~mg for some non-zero integers m, n.

Corollary 2.5. Let £ g: X*CP* - S**3 be continuous maps which are not
homotopic to the constant maps. If there exists a map ¢: Q(C(F)) —» Q(C(g))
with Hevs (@) =0, it holds nf ~mg for some non-zevo integers m, n.

Proof. Consider the following map,
eX=pX=n: Z=C(f) = Z=Q(C(f)) » Z=Q(C(g)) » Z=C(g)

where € and 7 induce isomorphisms of homology groups at £+ 3 dimension. See
Appendix for €, . Hence we get the result by Corollary 2.4.

Theorem 2.6. Let f, g: Z*CP~ - S*** be continuous maps. Q° (X) is the
g-time itevation of the functor @ on X. If QUC()) and Q7 (C(g)) are
homotopy equivalent, if and only if f and T g ave homotopic. These spaces are
finite type and have the same n-type for all n.

Proof. 1t is sufficient to prove for ¢ = 2. For large g, it is inductively
proved. When f~g~0, it is clear. We may assume f~+0. Let ¢: Q¥ C(f)) -
Q*(C(g)) be a homotopy equivalence. Now consider a map,

® = egn: Q(C(F)) » QUC(F)) -~ Q*(C(g)) ~» QC(g))

1 and 7 induce isomorphisms of homology groups at 4+ 3 dimension. Hence we
have the isomorphism Hi+3s(®). Hence the result follows by the methods of
Theorem 2.1 and Corollary 2.5.

Appendix. We prove Theorem A.l1 by the pure categorical theorem A.2
and the natural equivalence (1.4).
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Theorem A.l. If suspension spectra =X and 2°X of CW-complexes X
and 'Y ave homotopy equivalent in Spec, Q(X) and Q(Y) are homotopy
equivalent. ’

Theorem A.2, Let F: C = D, G: C — C be functors which satisfy the
natural equivalence C(X, G(Y)) = D(F(X), F(Y)). Then F(X)= F(Y)
mplies G(X) = G(Y).

Proof. By C(G(X), G(X)) = D(FG(X),F(X)), we have a natural trans-
formation €: FG - F in D which corresponds Id : G - G. By C(X, G(X))
= D(F(X), F(X)), we have a natural trasformation 7: Id - G in C which
corresponds Id : F = F. By C(GXX), G(X)) = D(FGXX), F(X)), we have
a natural trasformation g: G* - G in C which corresponds ee: FG* - F.
These transformations satisfy the next relations by the definitions:

ce = eF(p), eF(p)=1d
(A3) pn = Id = pG()
pp = pG(p)

The above natural equivalence @: C(X, G(Y)) -» D(F(X), F(Y) is
described by @(f) = eF(f). We define

Q: C(X, GY) - CGX)GY)
Q: D(F(X), F(Y)) » C(G(X), G(Y))

by (f) = uG(f) and 2 = Q0™ respectively. By 7*Q(f) = pG(f)n = (/)
= f, £ and £2 are monomorphisms. The theorem is easily proved by the next
two lemmas.

Lemma Ad. The adjoint of gf : F(X) -» F(Y) - F(Z) is 2(g)f': X
- G(Y) > G(Z) where [ is the adjoint of f.

Proof 1t is sufficient to prove @(2(g)f) = ®(g")P(f’) where g’ is the
adjoint of g. We get the result by the following calculation ;

O(2(g)f) = eF(2(g)f) = eF(uG(g)F(f) = eF(p) F(G(g" ) F(f')
= eeF(G(g))F(f') = eF(g)eF(f) = 0(g)O0(f).
Lemma A.5. Q2 satisfies 2(gf) = 2(g)2(f), 2(Id) = Id where f: F(X)
- F(Y), g: F(Y) - F(2Z).

Proof.  Since the adjoint of g7 is 2(g")f, we get the result by the following
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calculation ;

Qef) = vG(g)f) = nG(R(g)G(f) = pG(pG(eNG(f)
= uG(p)GHg)G(f) = nuG*(g)G(f) = uG(g)uG(f) = (g)R(f)

Id) = nG(y) = Id.
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