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THE INTEGRAL COHOMOLOGY RINGS
OF F,/Spin(n) AND E;/Spin(m)

Masaaki YOKOTANI

1. Introduction. Let G2, Fi and Es be the exceptional compact simple Lie
groups of rank 2, 4 and 6 respectively, particularly E¢ be simply connected. As
is well-known, Fi has the subgroups Spin{») for » = 7,8,9 and Fs has the
subgroups Spin(m) for m = 7,8,9,10. The following Hasse diagram holds :

Es
Ev )/ AN
F4 Spin(lO)
FII ~ P2\ /s°
F:NSpin(10)
I}
Spin(9)

Spin(7)
5|

Ga.

For example, F; is a subgroup of Es and the homogeneous space Es/F; is the
compact irreducible symmetric Riemannian space EIV of exceptional type,
Spin(9) is a subgroup of Spin(10) and the homogeneous space Spin(10)/Spin(9)
is homeomorphic to the 9-dimensional sphere S®, and so on. These conditions are
described in [4] and [5].

The integral cohomology ring structure of the homogeneous space
F4/Spin(9) is well-known, and L. Conlon determined that of the homogeneous
space Es/Spin(10) ; see [3, Corollary 4]. Our aim is to do that of the homogene-
ous spaces Fi/Spin(#) for n = 7.8 and Es/Spin(m) for m = 7, 8, 9.

In this paper, we donote by Z the ring of integers, by R the field of real
numbers, by C the field of complex numbers, by Z. the cyclic group Z/kZ of
order k for a positive integer %, by Z[xi, ** -, x»] the polynomial ring over Z
generated by variables x), **+, x», by (—) the ideal generated by —, by <x>» a
module M generated by a base x, by <{xi, -+, x»>u the module {x;Dy@® ¢+
@<xnds, and by Amlx1, + -+, xx) the exterior algebra over <xi, ***, Xndu.
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Mimura and to Professor N. Iwase who gave me helpful comments.

2. The integral cohomology rings of F,/Spin(n). In this section, we
determine the integral cohomology ring structure of the homogeneous space
Fy/Spin(n) for n =7, 8.

For the homogeneous space F.:/Spin(9), it is well-known that F3/Spin(9) is
homeomorphic to the Cayley projective plain € P2. Therefore we have

(2.1) H*(Fi/Spin(9) ; Z) = Z[xs]/(xs®)

as a graded ring, where deg xs = 8. For the homogeneous space F1/Spin(8), A.
Borel showed that additively

(2.2) H*(Fi/Spin(8); Z) = Z[ys, vs]/(¥s®, ¥&%)

as a graded module, where deg vs = 8 and deg ys = 8 see [2, Lemma 20.4].
Furthermore, if we denote by p: Fi/Spin(8) — Fi/Spin(9) the obvious projec-
tion, then we can choose generators such that

(2)3) p*(xﬂ) = :VS-
For the homogeneous space F:/G:, he also showed that
(24) HXFi/Gs; Z) = (K10 2PLusd 2s B uts®> 2, P 23> 2)R2Z [ 1015 / (20157)

as a graded ring, where 1 is the unit, deg us = 8, deg u2; = 23 and deg w5 =
15 ; see [2, Proposition 23.1].
For the homogeneous space F./Spin(7), we obtain the following theorem :

Theorem 2.1. As a graded ring
(2.5) H*(E/Spin(?); Z) = 1D 20 D262 2,P< 23) 2P 282230 2,

where 1 is the unit, deg 2z = 8 and deg zs = 23. Futhermore, if we donote by
b1 Fu/Ga— Fi/Spin(7) the obvious projection, then we can choose generators such
that

(2.6) P*(28) = us,
(2.7) 1)*(223) = U2s.

Proof. 'We consider the Serre spectral sequence ( E¥*, d«) associated to the
fiber bundle (F:/Spin(7), p, F1/Spin(9), Spin(9)/Spin(7),Spin(9)), whose E:-
term is as follows:
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(2.8) E$? = H?(F/Spin(9) ; H*(Spin(9)/Spin(7) ; Z))

as a module. Since the homogeneous space Spin(9)/Spin(7) is homeomorphic to
the Stiefel manifold RV, we have

(2.9) H*(Spin(g)/Spin(T); Z) = {1>:P<vedz.D<tns) 2

as a graded ring, where 1 is the unit, deg vs = 8 and deg s = 15. Since the
homogeneous spaces Spin(8)/Spin(7) and Spin(7)/G: are homeomorphic to the
7-dimensional sphere S7, for any module M we obtain the following two Gysin
exact sequences associated to (Fi/Spin(7), p, F:/Spin(8), Spin(8)/Spin(7),
Spin(8)) and (F./Gs, p, Fs/Spin(7), Spin(7)/Gs, Spin(7)) :

@10) -+ — HP*(F./Spin(8); M) HP(F./Spin(8); M)
2, HP(Fy/Spin(7); M)— HP'(Fu/Spin(8); M)— -+ |
@11) -+ — HP*(F/Spin(7); M)3 HP(F./Spin(7); M)
2 HP(FiGy: M)— HP(Fy/Spin(7); M)— -+
By the Serre spectral sequence, (2.1) and (2.9), we have

Z for p=0,23, 31,

@12 H(F/Spin(D); 2) = {o for p # 0,8, 15, 16, 23, 24, 31

For p = 8, we have

(2.13) H¥F.,/Spin(7); Z)=Z or ZDZ.
By (2.4) and (2.11) for M = Z, we see that
(2.14) . H¥F/Spin(7); Z) = Z.

Furthermore we can choose a generator zs of H¥(%:/Spin(7) ; Z) such that (2.6)
holds.
For p = 24, we have

(2.15) H*(F/Spin(7); Z) =0 or Z..

By (2.1) and (2.9), we obtain the following Serre exact sequence associated to
(F4/Spin(7), p, F+/Spin(9), Spin(9)/Spin(7), Spin(9)) :

(2.16) H(Spin(9)/Spin(7); Z)
— HY(F/Spin(9) ; Z)Z HY(F/Spin(7); Z)5 H¥(Spin(9)/Spin(7) : Z)
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— H%F4/Spin(9) ; Z),

where 7: Spin(9)/Spin(7) — F./Spin(7) is the obvious map induced by the
inclusion map 7 : Spin(9) — Fi. By (2.1), (2.9) and (2.14), we can choose genera-
tors such that

217 p*(xs) = 223,

and hence, by (2.3), we see that

(2.18) p*(ys) = 22s.
Therefore, by (2.18), we have
(2.19) p*(ys’ys) = 4z°p*(3s).

Hence, by (2.2) and (2.10) for M = Z, we see that H*(F./Spin(7); Z) has no
2-torsion submodules, and so, by (2.15), we see that

(2.20) H*(F./Spin(7); Z) = 0.
For p = 15, 16, there are six possibilities as follows:

(2.21) H®(F/Spin(7); Z) = 0, H®(F./Spin(7); Z) = 0,
(2.22) HY(F/Spin(7); Z) = 0, H™(F/Spin(7); Z) = Z.,
(2.23) HY(F,/Spin(7): Z) = Z, H“(F/Spin(7); Z)= Z,
(224) H'™(F.,/Spin(7); Z) = Z, H“(F./Spin(7); Z) = ZDPZ,,
(2250  H“™(F./Spin(7); Z)= 0, H®(F/Spin(7); Z) = Z. for some &,
(2.26) HY(F,/Spin(7); Z) = 0, H“™(F./Spin(7); Z) = Z.DZ:
for some even number £.

By (2.4), 2.11) for M = Z and (2.12), there are no possibilities for (2.21) and (2.22).
By (2.18), we have

(2.27) P*(9s?) = 428,
(2.28) P*(3vsys) = 2z8p*(vs).

Therefore, by (2.2), (2.10) for M = Z and (2.12), H'*(F./Spin(7) ; Z) is not a free
module and has no 2-torsion submodules, and hence, there are no possibilities for
(2.23), (2.24) and (2.26). Hence (2.25) holds, and, by (2.4) and (2.11) for M = Z, we
can choose a generator u23 in H®*(Fy/G.; Z) such that (2.7) holds. By (2.4), (2.11)
for M = Z and (2.12), we see that % is divisible by 3.

Assume that £ > 3. By (2.4) and (2.11) for M = Z,, it holds that

(2.29) H*(F:/Spin(7) ; Z:) = Z[ zs]/( 283)®ZZI:[215]/(2_152)
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as a ring, where 1 is the unit, deg zs = 8 and deg 215 = 15, since it holds that

(2.30) H*(F4/Gz : Zk)
= (102,87 2:P< k8D 2K 7 th8Y 2, X 15" 2. DL T1 62> 2.) Rz #H15) 2

as a ring, where 1 is the unit, deg #» =7, deg #s = 8 and deg 115 = 15.
Furthermore we can choose generators such that

(2.31) p*(Zs) = s,
(2.32) p*(2i5) = @s.

Let ,82 H”(F4/Spin(7); Zk)"" HP+1(F4/SDiI’I(7); Zk) and /9: HP(F4/Gz; le)
— H?*Y(Fy/G.: Z:) be the Bockstein operations associated to the exact
sequence

(2.33) 0> 2,5 Zo—o Zo—0.
We see that

(2.39) B(zi5) = Zd,

(2.35) A 277) = Uas.

Consider the following commutative diagram :

HS(F/Spin(7) : Za) 5 H(F/G.: 2)
(2.36) B o J:4
HIG(F4/SDiI1(7) ; Zk) - HlG(F4/Gz N Zk).

By (2.31), (2.32) and (3.34), we see that

(3.37) Blis) = @d.
Then, by (2.35) and (2.37), we have

(2.38) B(u:ts) = @slirs— 11ds"

This contradicts (2.30) and the fact that the Bockstein operation 8 : H**(F./Gs ;
Z,)— H®(F./G:; Z:) is a homomorphism. Hence £ = 3, and so we have (2.5).
Thus the proof is complete.

Here we establish some notation. Let X be any topological space. We
denote by KO(X) and K(X) the KO- and K-ring of X respectively ; they are the
Grothendieck rings of classes of real and complex vector bundles over X
respectively. For any real vector bundle £ over X, we denote by e(£) the
complex vector bundle £®rlc over X, where 1¢ is the trivial complex vector
bundle over X of degree 1. Then, as is well-known, ¢ defines a ring homomor-
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phism
¢: KO(X)— K(X)

which is called complexification.

Let G be any Lie group and H any closed subgroup of G. Furthermore let
8 : H — GL(#%, R) be any real representation of H of degree »n, where GL(#,
R) is the general linear group over the field R. Then we denote by ac,x(8) the
real vector bundle (G X #R”, ', G/H, R", GL(#%, R)) of degree # over the homo-
geneous space G/H associated to the principal H-bundle (G, p, G/H, H) via 8 :
H — GL(n, R). We denote by RO(H) the real representation ring of H : it is
the Grothendieck ring of classes of real representations of H. Then, as is
well-known, ac,x) defines a ring homomorphism

.y : RO(H)— KO(G/H)

which is called a-construction.
We can show the following lemma by an elementary way :

Lemma 2.2. If H, and H, are closed subgroups of a Lie growp G with H
C H,, then the following diagram commules :
RO(H?) L RO(H:)
(239) G, H2) l *ﬂ’(G.n.) l

KO(G/H) & KO(G/HY),

where i* : RO(H:) — RO(H,) is the induced homomorphism of the real represen-
tation vings by the inclusion homomorphism i: Hy— Hz and p* : KO(G/H) —
KO(G/H,) is the induced homomorphism of the KO-rings by the obvious projec-
tion p: G/H\— G/H,.

For the homogeneous space Fi/Spin(8), we obtain the following theorem :

Theorem 2.3. As a graded ving
(2.40) H*(F./Spin(8); Z) = Z[ys. vs]/(¥s°, ys*+ ysya+3i).

where deg ys = 8 and deg yi = 8. Furthermore, if we denote by p: Fi/Spin(7)
— F/Spin(8) the obvious projection, then we can choose generators such that

(2.41) p*(vs) = 22,
(2.42) p*(¥8) = — 2.
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Proof. We have already obtained (2.41) in the proof of Theorem 2.1, that is,
(2.18). By (2.2), (2.5), (2.10) and (2.18), we can choose a generator ¥ in
H8 F:/Spin(8) ; Z) such that (2.42) holds, furthermore,

(2.43) ds(1) = ye+2ys.
By (2.1) and (2.3), we have
(2.44) ve® = p*(x:®) = 0.

We denote by pspinsy : Spin(8) — SO(8) and pspincsy : Spin(9) — SO(9) the
covering group homomorphisms respectively. Since Fi/Spin(7) is homeomor-
phic to Fi X spine(Spin(8)/Spin(7)), and hence, to Fi X spin)S’, the fiber bundle
(F./Spin(7), p, F./Spin(8), Spin(8)/Spin(7), Spin(8)) is equivalence to the
sphere bundle (FiXsom® S, p, F1/Spin(8), S7, SO(8)) associated to the real
vector bundle @(r,spinen(pseins)) as a fiber space. Therefore, if we denote by e
and e’ the Euler classes of (Fi/Spin(7), p, F1/Spin(8), Spin(8)/Spin(7), Spin(8))
and &r.soinen(Pseiney) Tespectively, then we have

(2.45) e=¢'

in H¥F./Spin(8) ; Z). Let i* : RO(Spin(9)) — RO(Spin(8)) be the induced ring
homomorphism of the real representation rings by the inclusion homomorphism
i : Spin(8) — Spin(9). We see that

(2.46) *(pspin®) = 1+ pspincs)

in RO(Spin(8)), where 1 is the trivial real representation of Spin(8) of degree 1.
Therefore, by (2.46), the naturality of the complexification ¢ and Lemma 2.2, we
have

(2.47) prearusonen(Dson®) = €p* arispinen(Pspine)
= craspinEnt *(Dspinee))
= (14 arasoinen(Pspins))
= lc+ car,soine( Psoins))

in K(F./Spin(8)), where 1 and 1¢ are the trivial real and complex vector bundles
of degree 1 respectively. Let ¢: and p; be the Chern and Pontryagin classes of
complex and real vector bundles respectively. Here there is an integer £ such
that

(2.48) C8CaFspineon( Dspine)) = kxs”

in H'®(F./Spin(9) ; Z). Since ar.spinen(pspinsy) is orientable and of even num-
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ber degree, by (2.3), (2.43), (2.45), (2.47), (2.48) and the naturality of the Chern
classes, we have

(2.49) kys® = p*(kxs’)
= p*csear.spnen(Dspince)
= csp*cair, spmon(Dspins)
= cs(le+ earospmnen(bseince)))
= CsCFysoin@) Dspines))
= Darospin@ Dspin®)
= e? = e = dy(1)?
= ysz+4ysyé+4yé".

Therefore, we have

(2.50) vt = kzl V8" — Va Vs,

furthermore £—1 is divisible by 4.
By (22), 2.5), (2.10) for M = Z, (2.18), (2.42), (2.43) and (2.50), we have

2.51) P*(ys) = dz’ = 2,
(2.52) p*(ysys) = — 2z = 2,
(2.53) ds(ys) = ya®+ 23835,
(254) di(ys) = £ Ly~ ye3i.

Since we see that Coker ds = Z; as a module, we have # = *3. Since we have
already seen that £#—1 is divisible by 4, we have £ = — 3, Therfore, by (2.50), we
see that y&* = — ys°— ys¥s. Thus the proof is complete.

3. The integral cohomology rings of Es/Spin(m). In this section, we
determine the cohomology ring structure of the homogeneous space Es/Spin()
for m =17,8, 9.

For the homogeneous space Es/Fi, S. Araki showed that

(3.1) H*(Es/Fy; Z) = N(so, s17)

as a graded ring, where deg ss = 9 and deg si17 = 17 ; see [1, Proposition 2.5].
For the homogeneous space Es/Spin(10), L. Conlon showed that

(3.2) H*(Es/Spin(10); Z) = Z[ts, ti2]/(#5 b

as a graded ring, where deg #; = 8 and deg &y = 17 ; see [3, Corollary 4].
For the homogeneous space Es/Spin(9), we obtain the following theorem :
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Theorem 3.1. As a graded ring
(3.3) H*(Es/Spin(9) ; Z) = H*(F./Spin(9); Z)®z/\z(xs, x17),

where degxo =9 and deg xyy = 17.  Furthermore, if we denote by p:
Es/Spin(9) — Es/F: and p: Es/Spin(9) — Es/Spin(10) the obvious projections
respectively, then we can choose genervators such that

(3.9 *(se) = o,
(3.5) p*(ts) = xs,
(3.6) p*(t7) = x17.

Proof. Since the homogeneous space Spin(10)/Spin(9) is homeomorphic to
the 9-dimensional sphere S° we obtain the following Gysin exact sequence
associated to (Es/Spin(9), p, Es/Spin(10), Spin(10)/Spin(9), Spin(10)) :

(37 eer— HP(Eo/Spin(10); Z) % HP(Eo/Spin(10); Z)
*
2, HP(Es/Spin(9) ; Z) — HP~%(Es/Spin(10); Z)— -+

By (3.2) and (3.7), we see (3.3), (3.5) and (3.6).
By (2.1) and (3.1), we obtain the following Serre exact sequence associated to
(Eﬁ/Spin(g)l pv EE/F49 F4/Spin(9)y F4) .
Z'*

38  HYE/F: 2)5 H(E:/Spin(9); Z) 2 H(Fy/Spin(9); Z)
— HYEs/Fy; 2) 2 HY(Eo/Spin(9); 2)5 H(F./Spin(9); Z),

where 7: Fi/Spin(9) — Es/Spin(9) is the obvious map induced by the inclusion
map ?: Fy— FEs. Therefore we see (3.4). Thus the proof is complete.

For the homogeneous space Es/Spin(8), we obtain the following theorem :

Theorem 3.2. As a graded ring
(3.9) H*(Es/Spin(8) ; Z) = H*(F./Spin(8); Z)®:z/\z(ys, y17),

where deg yo =9 and deg y.v =17.  Furthermorve, if we denote by p:
Es/Spin(8) — Es/Spin(9) the obvious projection, then we can choose generators
such that

(3.10) p*(xs) = s,
3.11) p*(x0) = s,
(3.12) p*(x17) = yur.
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Proof. We consider the Serre spectral sequence ( E¥*, d) associated to the
fiber bundle (Es/Spin(8), p, Fs/Spin(10), Spin(10)/Spin(8), Spin(10)), whose
E>-term is as follows:

(3.13) Ef? =~ HP(Es/Spin(10) ; H(Spin(10)/Spin(8) ; Z))

as a module. Since the homogeneous space Spin(10)/Spin(8) is homeomorphic
to the Stiefel manifold R Vo, it holds that

(3.14) H*(Spin(10)/Spin(8) ; Z) = Z[ws, ws)/(ws?, ws?)

as a graded ring, where deg ws = 8 and deg ws = 9. Since the homogeneous
space Spin(9)/Spin(8) is homeomorphic to the 8-dimensional sphere S® we
obtain the following Gysin exact sequence associated to (FEs/Spin(8), p,
Es/Spin(9), Spin(9)/Spin(8), Spin(9)) :

(315) -+ — HP%(Es/Spin(9); Z)% HA(Es/Spin(9) ; Z)
2 HP(Es/Spin(8) ; Z)— HP-*(Es/Spin(8); Z)— «--
By the Serre spectral sequence, (3.2) and (3.14), it holds that

VA for p=10,9,
(3.16) HP(Es/Spin(8); Z) =1 ZBZ for p =8,
0 forp=1,++,7

as modules. By (2.1), (2.40) and (3.1), we obtain the following two Serre exact
sequences associated to (Es/Spin(9), p, Es/Fi, F1/Spin(9), Fy) and (Fs/Spin(8),
b, Es/F4, F4/Spil’l(8), F4) :

(17 HYEoFe; Z)2 H(E/Spin(9); Z) H(F\/Spin(9); Z)

— HB/F; 2) 5 H(Es/Spin(9); 2)5 HY(F/Spin(9) ; 2),
(3.18) H¥Es/Fi; Z) LA H¥ Es/Spin(8); Z) L H¥F./Spin(8) ; Z)

— BB/ ; 2) 2 BB /Spin(8) ; 2)5 H(F/Spin(8); 2),

where 7: Fi/Spin(9) — Es/Spin(9) and 7: F./Spin(8) — Es/Spin(8) are the
obvious maps induced by the inclusion map ¢ : Fi— FEs respectively. By (2.1),
(2.40), (3.1), (3.3) and (3.16), we see that the maps

i*: H¥Es/Spin(9) : Z)— HAF./Spin(9); Z),
i* . H¥(Es/Spin(8) ; Z)— H¥(F:/Spin(8): Z)

are isomorphisms. Furthermore the following diagram commutes:
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cee = HP(Ee/Spin(9) ; Z)2 HP(E4/Spin(9); 2)
(3.19) i* | d * |
+++ — HP™*(F/Spin(9) ; Z) = H*(F./Spin(9); Z)

2 HA(Es/Spin(8); Z) — HP-*(Ey/Spin(9) ; Z)— +--
* * l * l
£ H?(F./Spin(8) ; Z)— H?*(F/Spin(9); Z)— - .-

Therefore, by (2.1), (2.3) and (2.40), we see (3.9), (3.10), (3.11) and (3.12). Thus the
proof is complete.

For the homogeneous space Es/Spin(7), we obtain the following theorem :

Theorem 3.3. As a graded ring
(3.20) H*(Es/Spin(7) ; Z) = H*(F,/Spin(7) ; Z)Q:/A\2(2s, 217),

where deg 20 =9 and degziz = 17.  Furthermore, if we denote by p:
Es/Spin(7) — Es/Spin(8) the obvious projection, then we can choose generators
such that

(3.21) p*(ys) = 22
(3.22) p*(y8) = —2
(3.23) p*(30) = 2,
(3.24) P (7)) = 2

Proof. We consider the Serre spectral sequence ( E¥*, d«) associated to the
fiber bundle (Es/Spin(7), p, Es/Spin(9), Spin(9)/Spin(7), Spin(9)), whose E-
term is as follows:

(3.25) Ef? =~ H?(Es/Spin(9) ; H(Spin(9)/Spin(7); Z))

as a module. Since the homogeneous space Spin(8)/Spin(7) is homeomorphic to
the 7-dimensional sphere S, we obtain the following Gysin exact sequence
associated to (Es/Spin(7), p, Es/Spin(8), Spin(8)/Spin(7), Spin(8)) :

(326)  +++— HP%(Ee/Spin(8); Z)2 HP(E+/Spin(8): Z)
%
2, HP(Ee/Spin(7) ; Z)— HP="(Eo/Spin(8); Z)— - -+
By the Serre spectral sequence, (2.9) and (3.3), it holds that
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VA for p=0,9,
(327 H?(Es/Spin(7); Z) =10 for p=1,+++7,
ZorZ®Z, forp=28

as modules. By (2.5) and (3.1), we obtain the following Serre exact sequence
associated to (Es/Spin(7), p, Es/F:, Fu/Spin(7), Fs) :

(328) HYEs/F:; z)ﬁt H8(Es/Spin(7) ; Z)i*»H“(F}/Spin(?); Z)
— H%Es/F Z)E: H*(Es/Spin(7) ; Z)—iﬁ H*(Fy/Spin(7); Z),

where i : Fi/Spin(7) — Es/Spin(7) is the obvious map induced by the inclusion
map 7: Fy— Es. By (2.5), (3.1) and (3.27), we see that the map

i* 1 H¥(Es/Spin(7): Z)— H¥F,/Spin(7): Z)
is an isomorphism, and hence
(3.29) H%Es/Spin(7); Z) =
In the proof of Theorem 3.2, we have already obtained that
i*: H%(Es/Spin(8) ; Z)— HAF,/Spin(8): Z)
is the isomorphism. Furthermore the following diagram commutes :

( — HP- 8(Ee/Sfm(S) Z) L H"(Es/Spm(S) Z)
3.30)
<+ — H*¥F,/Spin(8) ; Z) L] H"(F.;/Spm(S) Z)

LN H”(Ee/Splm(7) Z)— HP 7(E.—,/Slpm(fi) Z)— e
z H?(F./Spin(7); Z) — H?(F/Spin(8); Z) — «--

Therefore, by (2.5), (2.40), (2.41), (2.42) and (3.9), we see (3.20), (3.21), (3.22), (3.23) and
(3.24). Thus the proof is complete.
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