A NOTE ON THE LIE GROUP G_2 AS A FRAMED BOUNDARY

MASAAKI YOKOTANI

1. Introduction. Let G_2 be the exceptional compact simple Lie group of rank 2. We consider the problem of finding a parallelizable compact smooth manifold whose boundary is diffeomorphic to G_2 . Our candidate is the total space of the disk bundle of the canonical complex or quaternionic line bundle over a homogeneous space G_2/S , where S is a closed subgroup of G_2 that is isomorphic to the group S^1 of unit complex numbers or S^3 of unit quaternions as a Lie group.

Some motivation is provided by the problem of identifying the elements represented in the stable homotopy group of spheres by a Lie group with various framings. K. Knapp shows in the last remark of [2] that any Lie group is framed cobordant to the boundary of a parallelizable compact smooth manifold. Our aim is to further clarify this situation by giving specific framed null cobordism of G_2 .

It is a pleasure to express my gratitude to Professor M. Mimura who suggested the problem and Professor N. Iwase who gave me helpful comments.

2. The Lie group G_2 as a framed boundary. We first establish some notation.

We denote by R, C and H the fields of real numbers, complex numbers and quaternions respectively. Furthermore $\mathbb C$ is the Cayley algebra that is an 8-dimensional R-module with additive basis e_0 , e_1 , \cdots , e_7 , and the ring structure is given as follows: e_0 is the unit 1, $e_i^2 = -1$ for $i \neq 0$, $e_ie_j = -e_je_i$ for $i, j \neq 0$, $i \neq j$, $e_1e_2 = e_3$, $e_2e_5 = e_7$, $e_2e_4 = -e_6$ and so on. We consider R, C and H as

$$R = R1,$$

 $C = R1 \oplus Re_1$

and

$$H = R1 \oplus Re_1 \oplus Re_2 \oplus Re_3$$

respectively. Then the following inclusion holds:

$$R \subset C \subset H \subset \mathfrak{C}$$
.

As is well-known, G_2 is given as the group of automorphisms of \mathfrak{G} :

$$G_2 = \{x \in \operatorname{Iso}_R(\mathfrak{C}, \mathfrak{C}) \mid x(uv) = x(u)x(v) \text{ for any } u, v \in \mathfrak{C}\}.$$

where $\operatorname{Iso}_{\mathcal{R}}(\mathbb{C}, \mathbb{C})$ is the group of all R-isomorphisms from \mathbb{C} to \mathbb{C} itself, and the group structure is given by the composition of maps.

We denote by S^1 and S^3 the Lie groups of unit complex numbers and of unit quaternions respectively :

$$S^{1} = \{a_{0} + a_{1}e_{1} \in C \mid a_{0}^{2} + a_{1}^{2} = 1\},$$

$$S^{3} = \left\{ \sum_{i=0}^{3} a_{i}e_{i} \in \mathbf{H} \mid a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 1 \right\}.$$

Furthermore we denote by $\sigma_1: S^1 \to SO(2)$ the canonical real representation of S^1 defined by

$$a_0 + a_1 e_1 \mapsto \begin{pmatrix} a_0 & -a_1 \\ a_1 & a_0 \end{pmatrix}$$

and by $\sigma_3: S^3 \to SO(4)$ the canonical real representation of S^3 defined by

$$\sum_{i=0}^{3} a_i e_i \mapsto \begin{pmatrix} a_0 & -a_1 & -a_2 & a_3 \\ a_1 & a_0 & -a_3 & -a_2 \\ a_2 & a_3 & a_0 & a_1 \\ -a_3 & a_2 & -a_1 & a_0 \end{pmatrix},$$

where SO(2) and SO(4) are the special orthogonal groups.

Let S be a closed subgroup of G_2 . Furthermore let $\theta: S \to \operatorname{GL}(n, \mathbb{R})$ be any real representation of S of degree n, where $\operatorname{GL}(n, \mathbb{R})$ is the general linear group over \mathbb{R} . Then we denote by $\alpha_{(G_2,S)}(\theta)$ the real vector bundle $(G_2 \times_S \mathbb{R}^n, p', G_2/S, \mathbb{R}^n, \operatorname{GL}(n, \mathbb{R}))$ over the homogeneous space G_2/S of degree n associated to the principal S-bundle $(G_2, p, G_2/S, S)$ via $\theta: S \to \operatorname{GL}(n, \mathbb{R})$. We denote by $\operatorname{RO}(S)$ the real representation ring of S and by $\operatorname{KO}(G_2/S)$ the KO-ring of G_2/S ; they are the Grothendieck rings of classes of real representations of S and of real vector bundles over G_2/S respectively. Then, as is well-known, $\alpha_{(G_2,S)}$ defines a ring homomorphism $\alpha_{(G_2,S)}: \operatorname{RO}(S) \to \operatorname{KO}(G_2/S)$ which we call α -construction.

Let $f_1: S \to S^1$ or $f_3: S \to S^3$ be an isomorphism of the Lie groups. We denote by $D(\alpha_{(G_2,s)}(\sigma_1f_1))$ or $D(\alpha_{(G_2,s)}(\sigma_3f_3))$ the total space of the disk bundle of the real vector bundle $\alpha_{(G_2,s)}(\sigma_1f_1)$ or $\alpha_{(G_2,s)}(\sigma_3f_3)$ respectively. Then $D(\alpha_{(G_2,s)}(\sigma_1f_1))$ or $D(\alpha_{(G_2,s)}(\sigma_3f_3))$ is a compact smooth manifold whose boundary is diffeomorphic to G_2 . These manifolds are our candidates.

For a closed subgroup S of G_2 that is isomorphic to S^1 as a Lie group, we obtain the following proposition:

Proposition 2.1. There does not exist a closed subgroup S of G_2 , isomorphic to S^1 as a Lie group, such that $D(\alpha_{(G_2,S)}(\sigma_1f_1))$ is parallelizable, where $f_1: S \to S^1$ is an isomorphism of the Lie groups.

Proof. Let S be any closed subgroup of G_2 . If we denote by $i: S \to G_2$ the inclusion map, then, for the isomorphism $f_1: S \to S^1$ of the Lie groups, the composite map $if_1^{-1}: S^1 \to G_2$ represents an element $[if_1^{-1}]$ in the fundamental group $\pi_1(G_2)$ of G_2 . It is well-known that G_2 is simply connected, that is, $\pi_1(G_2) = 0$; see [5, Theorem 5.4]. Therefore we have

$$[if_1^{-1}] = 0 = 2 \cdot 0.$$

and so the element $[if_1^{-1}]$ in $\pi_1(G_2)$ is halvable. By [1, Proposition 3.1] the real vector bundle $\alpha_{(G_2,S)}(\sigma_1f_1)$ is not stably trivial, hence by [1, Proposition 2.2 a)] the manifold $D(\alpha_{(G_2,S)}(\sigma_1f_1))$, our candidate, is not parallelizable. Thus the proof is complete.

For a closed subgroup S of G_2 that is isomorphic to S^3 as a Lie group, we obtain the following theorem:

Theorem 2.2. There exists a closed subgroup S of G_2 , isomorphic to S^3 as a Lie group, such that $D(\alpha_{(G_2,S)}(\sigma_3f_3))$ is parallelizable, where $f_3: S \to S^3$ is an isomorphism of the Lie groups.

Proof. Let $S = \{x \in G_2 \mid x(e_1) = e_1, x(e_2) = e_2\}$, then S is a closed subgroup of G_2 ; see [5, Example 5.1]. We define a map $g: S^3 \to S$ by

$$g\left(\sum_{i=0}^{3} a_{i}e_{i}\right)\left(\sum_{i=0}^{7} b_{i}e_{i}\right) = b_{0}e_{0} + b_{1}e_{1} + b_{2}e_{2} + b_{3}e_{3} + (a_{0}b_{4} - a_{1}b_{5} - a_{2}b_{6} + a_{3}b_{7})e_{4} + (a_{1}b_{4} + a_{0}b_{5} - a_{3}b_{6} - a_{2}b_{7})e_{5} + (a_{2}b_{4} + a_{3}b_{5} + a_{0}b_{6} + a_{1}b_{7})e_{6} + (-a_{3}b_{4} + a_{2}b_{5} - a_{1}b_{6} + a_{0}b_{7})e_{7}$$

for any elemests $\sum_{i=0}^3 a_i e_i$ in S^3 and $\sum_{i=0}^7 b_i e_i$ in the Cayley algebra \mathfrak{C} . Then the map $g(\sum_{i=0}^3 a_i e_i): \mathfrak{C} \to \mathfrak{C}$ is an element in G_2 and the map $g: S^3 \to S$ is an isomorphism of the Lie groups. Here we put $f_3 = g^{-1}: S \to S^3$.

We define a map $\rho: G_2 \to SO(7)$ by

$$x \mapsto (a_{i,j}(x))_{i,j=1,\cdots,7}$$

where $x(e_j) = \sum_{i=1}^7 a_{i,j}(x)e_i$ for $j = 1, \dots, 7$ and SO(7) is the special orthogonal group. Then the map $\rho: G_2 \to SO(7)$ is a real representation of G_2 . Since we have

$$\rho g\left(\sum_{i=0}^{3} a_i e_i\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_0 & -a_1 & -a_2 & a_3 \\ 0 & 0 & 0 & a_1 & a_0 & -a_3 & -a_2 \\ 0 & 0 & 0 & a_2 & a_3 & a_0 & a_1 \\ 0 & 0 & 0 & -a_3 & a_2 & -a_1 & a_0 \end{pmatrix}$$

for any element $\sum_{i=0}^{3} a_i e_i$ in S^3 , we see that

$$\rho g = 3 \oplus \sigma_3$$

where 3 is the trivial representation of degree 3. Let i^* : $RO(G_2) \to RO(S)$ be the ring homomorphism of the real representation rings induced by the inclusion homomorphism $i: S \to G_2$. Since we have

$$\rho i = \rho g f_3 = (3 \oplus \sigma_3) f_3 = 3 \oplus \sigma_3 f_3$$

we see that

$$i^*(\rho - 3) = \rho i - 3 = 3 + \sigma_3 f_3 - 3 = \sigma_3 f_3$$

in RO(S). Therefore $\sigma_3 f_3$ is an element in the image of $i^* : RO(G_2) \to RO(S)$. So by [1, Lemma 2.1] we have

$$\alpha_{(G_2,S)}(\sigma_3 f_3) = 4$$

in KO(G_2/S), where 4 is the trivial real vector bundle of degree 4. So the real vector bundle $\alpha_{(G_2,S)}(\sigma_3 f_3)$ is stably trivial. Hence by [1, Proposition 2.2 b)] the manifold D($\alpha_{(G_2,S)}(\sigma_3 f_3)$), our candidate, is parallelizable. Thus the proof is complete.

When we consider G_2 as a framed manifold with the left invariant framing, G_2 represents an element $[G_2]$ in the 14-stem stable homotopy group π_{14}^s of the spheres via the Pontrjagin-Thom construction, since G_2 is of dimension 14. Let $\lambda: G_2 \to SO(n)$ be a real representation of G_2 . Then it twists the left invariant framing of G_2 and gives a new element $[G_2, \lambda]$ in π_{14}^s . Let $\rho: G_2 \to SO(7)$ be the same real representation of G_2 as the one in the proof of Theorem 2.2. Then we obtain the following corollary:

Corollary 2.3 ([3, Theorem 2]). We have $[G_2, 3\rho] = 0$ in π_{14}^s .

Proof. In the proof of Theorem 2.2, we have obtained

$$\rho i = 3 \oplus \sigma_3 f_3$$
.

By [4, Theorem] we have

$$Ad(G_2) = \wedge^2(\rho) - \rho$$
.

Therefore by [1, Corollary 5.4] the proof is complete.

REFERENCES

- [1] L. Astey, M. A. Guest and G. Pastor: Lie groups as framed boundaries, Osaka J. Math. 25 (1988), 891—907.
- [2] K. Knapp: On the bi-stable *J*-homomorphism, Algebraic Topology, Aarhus 1978, Lecture Notes in Math. 763, Springer-Verlag, 1979, 13—22.
- [3] B. F. Steer: Orbits and the homotopy class of a compactification of a classical map, Topology 15 (1976), 383—393.
- [4] I. YOKOTA: Representation rings of group G2, J. Fac. Sci. Shinshu Univ. 2 (1967), 125-138.
- [5] I. YOKOTA: Groups and Representations, 5th ed., Shokabo, Tokyo, 1982 (in Japanese).

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY
OKAYAMA UNIVERSITY
OKAYAMA 700, JAPAN

(Received December 3, 1992)