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GLOBAL DIMENSION
OF 2x2 GENERIC TRACE ZERO MATRICES
AND INVARIANTS OF 2X2 GENERIC MATRICES

CuaNy HUH

0. Introduction. Let K be a field and

x=(3 _5) aa v=(2 _¥)

be 2 X 2 generic trace zero matrices. Then the algebra R = K{X, Y}, generated
by X and Y, is a graded K-algebra with X-degree (1, 0) and Y -degree (0, 1).
Moreover, R = K<{x, y>/T, where K<x, ¥ is the noncommuting free algebra
and T is the weak identity of Mat:(K) In K<x, y. that is, the set of all
polynomials f(x, ¥) € K<{x, y> such that /(X, Y) = 0.

The notion of a weak identity was introduced by Razmyslov in connection
with the study of central polynomials. P. Halpin [3] calculate the Poincare series
of T and R. In section 1, we calculate the global dimension of R. In section 2,
we give an example of group G acting on the 2X 2 generic matrix algebra S =
K{X, .... Xn, Y, ..., Ya} such that the fixed subalgebra S¢ ={s € S| sf = s
for all g € G} is finitely generated for any integers m, n = 1.

1. The global dimension of 2X 2 generic trace zero matrix algebra.
Let x1, x2, x3, y1, ¥2, ¥3 be algebraically independent indeterminates over K and

X = (xl xg)’ Y = (J/x y2>
X3 —X Y3 — W
be 2X 2 trace zero matrices. Then R = K{X, Y} is a subalgebra of Mat,(X[x:,
vi | i=1,2 3]), and is a graded K-algebra. Let Z = XY — YX ; then det(Z)
= — (223 — x3¥2)* — 4(x1y2— 2231 (1 33— x331) + 0. Hence Z is not a zero divisor
in Mat(K[x:, y: | i = 1, 2, 3]). Furthermore, R has some "Universal Mapping
Property” in the sense that, if C is a commutative K-algebra and A, B €
Mat(C) with trace A = 0 and trace B = 0, then there exists a unique algebra
homomorphism & : R = Mat:(C) such that 8(X) = A4, and 8(Y) = B.
The following Lemma is easy to prove.
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Lemmal. (1) X?®= —det(X)], Y?= —det(Y)I, and Z? = —det(Z)I,

where
-0 )

is the 2X2 identity matrix. In particular, X*, Y* and Z* are contained
in the center of R,

Q@ XZ=-ZX and YZ = —-2Y. In fact, X'Z’ =(—1)Z°X" and
YiZ:=(-1)Z°Y for i, j =2 0.

B XY =-Z+XY.

Let / = [R, R] be the commutator ideal of R. Then R/J = K[x, y], the
commutative polynomial ring in two indetermintates x and y. Also it follows
directly from Lemma 1(2) that /] = RZ = ZR.

Lemma 2. R = @ROKZ XY’ a direct sum of vector spaces over K.

Proof. Since every element f(X, Y) of R is a sum of monomials in X and
Y,by Lemma 1 f(X, V) = Zisez0ainZ* XY with aix € K and @i = 0 for
all but a finitely many 7, 7, 2. Then it suffices to prove that the set {Z*X*Y" |
i, j, £ =0} is linearly independent over K. Suppose that 0 = &;Z*' X" Y*
‘a2 XY 2 a2 XY (%), withn 21, a,#0in Kand & <
k2 < ... < ks Since R is a graded algebra, we may assume that this sum is
homogeneous, that is,

kit+i = keti.= ... = kn+in = (the X-degree of the each monomial) and

kBitji = ketj: = ... = kat+jn = (the Y-degree of the each monomial).
But Z is not a zero divisor in R, we may also assume that & = 0. If n = 2, then
0 < k2 because %k, = 0 (= k) implies that #; = #; and /1 = j.. By specializing

0 1 0 _ (1 O)"‘”'
_1) and,Y—->(O _1), we have 0—(110 -1

1

X*(o

and this is a contradiction to the assumption that @1 # 0. So # must be 1 and (*)
is reduced to 0 = @:. X" Y?'. However, this is an impossibility since a: # 0.
Therefore the set {Z*X*Y” | i, j, £ = 0} is linearly independent and this com-
pletes the proof.

Lemma 3. Let R, = K[Z] be the polynomial ving in Z over K. Then
(1) R.= K{Z, X}, the subalgebra of R generated by Z and X is an Ore
extension of R\, and
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(20 R=K{X, Y} is an Ore extension of R..

Proof. (1) Let a@: Ry = R: be the K-automorphism induced by the corre-
spondence Z —» —Z. Then it is straightfoward to show that R, = K{Z, X} =
Ri[X ; a] is an Ore extension of automorphism type. (2) Since every element of
R, can be expressed uniquely in the form X sz0a:Z* X’ (@ € K), the mapping
,8 . Rz g Rz defined by B(Ei.kzoaikaXi) - Zi,kgo(_l)kaikaXi isa K-algebra
automorphism of R.. Now define a linear mapping §: R, » R: by

sviy | 0 for even ¢
o(2*X") = {(—1)“12‘*“)("-‘ for odd 7.
Then for any element f = X:sz0aZ* X" of R», we have Yf = S(F)Y + ().
Therefore, by [1, Theorem 12.2.1] and Lemma 2 R = K{X, Y} = R[Y ; 5, 6]
is an Ore extension of R.

Corollary. R = K{X, Y} is a Noetherian Ore domain.

Theorem 4. gl. dim R = 3.

Proof. Let] = [R, R] be the commutator ideal. Then J = ZR = RZ and
R/] = K[x, y], the commutative polynomial ring in two indeterminates. Since
Z is regular, normal, and non-unit in R, by [4, Theorem 35], gl. dim R >
(gl. dim R/J)+1 = gl. dim K[x, y]+1 = 3. On the other hand, R is an iterated
Ore extension of K, so by [4, Theorem 5.3], gl. dim R < (gl. dim R2)+1 = (gl
dim R1)+1+1=3.

2. Invariants of groups acting on the 2X2 generic matrix algebras.
Let m and » be (arbitrary) positive integers and Xj, ..., X» and Y1, ..., Yz be
2 X2 generic matrices, that is,

_ (xu(d)  x(?) _ (yu(j)  ye(f)
X{_(le(l') xzz(i)> and YJ’_(J’Zl(J') yaz(f))’

where the entries {xpe(7), Voo(f) | 1< p, ¢ <2, 1<i<m 1<j<n} are
algebraically independent variables over K. Then the generic matrix algebra S
= K{X,, ..., Xn, Y1 ..., Vu} generated by X; and Y is a graded algebra with
X:-degree (1, 0) and Yj-degree (0, 1) forallz,j (1< i < m,1<j < n). Forthe
case when m+#n = 2, there are some examples of nonscalar group G acting
linearly on S such that the invariant subalgebras S¢ are finitely generated. But
for the case of m+# = 3, no example of nonscalar group G acting on S where
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S€ is finitely generated have been given as yet.

In this section, we give a nonscalar group G acting linearly on S such that
the invariant subalgebra S°€ is finitely generated for arbitary positive integers m
and . In the finite generation problem of invariant subalgebras of groups acting
on generic matrix algebras, it is well-known that the base field K can be replaced
by its algebraic closure so that we may assume that K is algebraically closed.
Now suppose that char X + 3. Let w (€ K) be a primitive 3rd root of unity and
let

_ Cl)[m 0 _ '.w
g —< 0 (l)zjm) - cuz.

be the diagonal matrix of size m+ », where I» and I, are mXm and nX n
identity matrices, respectively. Then g acts linearly on S as an K-automorphism
with the action defined by Xf = wX;and Y= a?Y; ({1 =1,2,....m,7 = 1,2,
cee, ).

From now on, we will show that the invariant subalgebra S¢ = {s € S| s¢
= s} is finitely generated over K, where G = {g>. To do this we need some
preliminaries.

Lemma 5. For any 2X2 matrices A and B with entries in a commutative
K-algebra, the following identities hold :

1 A*-tr(A)A+det(A =0

2 AB+BA = [tr(AB)—tr(A)tr(B)]I+tr(A)B+tr(B)A.

@)  #(AXAB—BA) = A(AB—BA)+(AB—BA)A

and
tr(BY{AB— BA) = B(AB—BA)+(AB—BA)B.

(Here tr( ) and det( ) denote the trace and the determinant vespectively and
I is the 2X2 identity matrix.)

Proof These identities are from the Cayley-Hamilton theorem and its
multilinearization.

Corollary. If A and B ave trace zevo 2 X2 matrices, then A* = —det(A)I
is a diagonal matrix and tr(AB) = AB+ BA.

Proof. The first identity is from Lemma 5(1) and the second is from Lemma
5(2).
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Foreachpairz,j (1< i< m,1<; < n)let Wy = X;Y;— Y;X:. Thenby
Corollary to Lemma 5, W3 is a scalar matrix and tr(W;Wi) = WyWa
+ W..W;. Note that since there are exactly mn Wy's, we will relabel them with
the indexed set {1, 2, ..., mn} for notational simplicity so that Wi, W, ..., Wan
stand for all the Wy;’s.

Now we return to the invariant subalgebra S¢ where G = {(g>. Since

_ (wIm 0 )
£\ 0 oL
is a diagonal matrix, S¢ is generated by monomials in X; and Y;. In fact, it is
easy to prove that S° is generated by the set £ of monomials:

Xil(Xkl Yll) coe (th KP)XI'ZXI'S: )(i(Xkl Yll) vee (ka Yln) Y}n
YJ( },thl) coe (Xl.oXka)Xi; and Kl( YhXIu) .o (Ylekp) Ytiz y}s,

fori, k(1,2 ... mland j, I €{1,2, ..., n} and p = 0.

Remark 6. (1) Since S is a domain, if 0 # «, v in S such that uv € S¢
and « € S then v € S°.

(2) By definition of g, each W; lies in S, hence for any p = 0, W, W,, ...
W, € S°.

Lemma 7. Let S) be the subslgebra of S generated by the set Q2 of
elements :

Xa Wiy oo Wi, XX, XW, ... W,Y;
YW, ... W, X;, and YiWy ... W, Y5 Y,

for1<i<m1<;j<nl1<I<mnand p=20. Then S, = S°.

Proof. By Remark 6(2) above, 2 is a subset of S€, so S, C S¢, For the
opposite inclusion, it is enough to show that each element of 2 is contained in S;.
By definition of &, clearly X:Y;, Y;X:, XuX:Xs, Y, Y Yy (when o = 0) and
W, are contained in Si. Consider any monomial # in £2. Suppose that u =
X Xu, Yo X Xk Y1) ... (XioY1,) Ys. We will show that # € S by induction on
© 2 0. The case when p = 0 is trivial. Now assume that o > 0 and every
element of £ involving A number of factors X, Y is contained in S, for each A,
where 0 < A< p.

For any A (0 < A < p), substituting X:Y; with Wy+ Y;X;, we have
XiVVu vee I"T/!;(Xlun Ylbl) ces (ka Yla)y:'
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=X:Wi, ... W, Wh.\+1la+|(Xk;.+z Kuz) ces (th K,)Y}
+X!'ml ser VV[A( K1+1Xk1+1)(Xk,\+z },l“z) ren (ka Ylp) I]j-

Here the last term in the previous equation is an element of Si. That is so
because the X;:Wi, ... W, Y., € £, C S by definition and X,..(Xz., Yi..,) ...
(X, Y1) Y; € Si by induction hypothesis. Therefore,

X;‘I/V[ cee ml(XkHl Yhu) vee (ka Yln)Y;
= Xinl ee VVu .[Vk;ul,\-l(Xk,\‘mz Y’luz) ren (ka I,lp) Y](mod Sl) for any (0 < /l <p).

If we begin this process from the case of A = 0, then

U = Xz'(XIu };h)(sz Y'lz) see (ka Ylp) YI
= )(iWklll(sz },lz) oo (an Ka) YJ

= XiWk.“ szzz Wkpzp},j = (mod Sl)

Thus # € Si. A similar argument shows that the other types of elements of 2
are contained in Si. This completes the proof.

Theorem 8. Let S and G be defined as before. Then SC is finitely
generated,

Proof. Let £ be the set of elements:

XaWi . Wi, X0 X, XiWy, ... W, Y5,
;Wi ... Wi.X;, and YiWi oo W, Y3 Vg,

fori=1,2..mj=12 ...n =12 .. mrand 0 < p < mn, and let S:

be the subalgebra of S generated by £.. Then clearly S: is a finitely generated

subalgebra of S€. Now we need to show that S¢ C S;. It also suffices to prove
that 21 C S: because £2: generaters S°. Note that for each 7 and each j, X:Yj,

Y;X; (when o = 0) are contained in S; hence W, € S; for / = 1, 2, ..., mn, For

an element ¥ = X;W,, ... W..Y; € &1, we will show that # € S by induction

on =0 If o< mn then u € £ C S, by definition of 2. If o > mn, then
since there are precisely mn W,'s, there exist integers 4, £ (1 £ A < u < p) such
that W, = W.. Now we consider two cases.

Case 1: If x = A+1, then since W, W, = W7, is a scalar matrix and W%, € S,
u=WiLXW, ... Wi,., Wiz ... W, Y; is contained in S: by induction
hypothesis and by virtue of the fact that W, € S, as stated previously.

Case 2% If A+1 < g, then since Wi, W,,,, = tr(W, W, )] — Wi, W,

u=XiWy ... W,Wy, ... Wi oo W,



GLOBAL DIMENSION OF 2x2 GENERIC TRACE ZERO MATRICES 163

= XiW[l e {t?’( Wl,l W”l,\n)-[_ Wl,\u VVI,\} ese Wlu ase I/I/lp}/;’
= tr( Wla I'leu)XiVVh ves VVI,\-: WlAez “ee VVlan
_Xz‘m| ) VV.@,H I/Vum,\,z ane I/I/lu ses [/I/lp}{f.

But note that # (W, Wy )= W, Wy, +W,. W,€ S, and X;iW, ...
Wi Wies .. Wi, Y5 € Ss (by induction hypothesis). Then

U = Ximl ves WZJWIZ,\H e I/I/[‘;ij
_Ximl ses W[‘HWI‘ oo I/I/[pW} (I’nOd SZ).

Continuing this process, we get the following :

U = X{Wzl e I’VQI'VI;M ves Wlu e szYj

—XWy oo Wil Wi, oo Wi oo WL, Y5

l

= (—1)#_A_1X5W11 e Woat Wy oo W W Wi, ... WY, (mod Sz).

Since Wi, = W.,, it follows from Case 1 that # € S,. A similar argument proves
for the other types of elements of £,. Thus 2 C S: and S¢ C S,. Therefore S¢
(= S) is finitely generated.
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