GLOBAL DIMENSION OF 2×2 GENERIC TRACE ZERO MATRICES AND INVARIANTS OF 2×2 GENERIC MATRICES

CHAN HUH

0. Introduction. Let K be a field and

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & -x_1 \end{pmatrix}$$
 and $Y = \begin{pmatrix} y_1 & y_2 \\ y_3 & -y_1 \end{pmatrix}$

be 2×2 generic trace zero matrices. Then the algebra $R = K\{X, Y\}$, generated by X and Y, is a graded K-algebra with X-degree (1, 0) and Y-degree (0, 1). Moreover, $R \equiv K\langle x, y \rangle/T$, where $K\langle x, y \rangle$ is the noncommuting free algebra and T is the weak identity of $\mathrm{Mat}_2(K)$ in $K\langle x, y \rangle$, that is, the set of all polynomials $f(x, y) \in K\langle x, y \rangle$ such that f(X, Y) = 0.

The notion of a weak identity was introduced by Razmyslov in connection with the study of central polynomials. P. Halpin [3] calculate the Poincare series of T and R. In section 1, we calculate the global dimension of R. In section 2, we give an example of group G acting on the 2×2 generic matrix algebra $S = K\{X_1, ..., X_m, Y_1, ..., Y_n\}$ such that the fixed subalgebra $S^c = \{s \in S \mid s^g = s \text{ for all } g \in G\}$ is finitely generated for any integers $m, n \geq 1$.

1. The global dimension of 2×2 generic trace zero matrix algebra.

Let x_1 , x_2 , x_3 , y_1 , y_2 , y_3 be algebraically independent indeterminates over K and

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & -x_1 \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 & y_2 \\ y_3 & -y_1 \end{pmatrix}$$

be 2×2 trace zero matrices. Then $R=K\{X,Y\}$ is a subalgebra of $\mathrm{Mat}_2(K[x_i,y_i\mid i=1,2,3])$, and is a graded K-algebra. Let Z=XY-YX; then $\det(Z)=-(x_2y_3-x_3y_2)^2-4(x_1y_2-x_2y_1)(x_1y_3-x_3y_1)\neq 0$. Hence Z is not a zero divisor in $\mathrm{Mat}_2(K[x_i,y_i\mid i=1,2,3])$. Furthermore, R has some "Universal Mapping Property" in the sense that, if C is a commutative K-algebra and $A,B\in\mathrm{Mat}_2(C)$ with trace A=0 and trace B=0, then there exists a unique algebra homomorphism $\theta:R\to\mathrm{Mat}_2(C)$ such that $\theta(X)=A$, and $\theta(Y)=B$.

The following Lemma is easy to prove.

This paper was partially supported by KOSEF (1989).

158 с. нин

Lemma 1. (1) $X^2 = -det(X)I$, $Y^2 = -det(Y)I$, and $Z^2 = -det(Z)I$, where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

is the 2×2 identity matrix. In particular, X^2 , Y^2 and Z^2 are contained in the center of R.

- (2) XZ = -ZX and YZ = -ZY. In fact, $X^iZ^j = (-1)^{ij}Z^jX^i$ and $Y^iZ^j = (-1)^{ij}Z^jY^i$ for $i, j \ge 0$.
- $(3) \quad XY = -Z + XY.$

Let J = [R, R] be the commutator ideal of R. Then $R/J \cong K[x, y]$, the commutative polynomial ring in two indeterminates x and y. Also it follows directly from Lemma 1(2) that J = RZ = ZR.

Lemma 2. $R = \bigoplus_{i,j,k \ge 0} KZ^k X^i Y^j$, a direct sum of vector spaces over K.

Proof. Since every element f(X, Y) of R is a sum of monomials in X and Y, by Lemma 1 $f(X, Y) = \sum_{i,j,k \ge 0} a_{ijk} Z^k X^i Y^j$ with $a_{ijk} \in K$ and $a_{ijk} = 0$ for all but a finitely many i, j, k. Then it suffices to prove that the set $\{Z^k X^i Y^j \mid i, j, k \ge 0\}$ is linearly independent over K. Suppose that $0 = a_1 Z^{k_1} X^{i_1} Y^{j_1} + a_2 Z^{k_2} X^{i_2} Y^{j_2} + \ldots + a_n Z^{k_n} X^{i_n} Y^{j_n} \ldots (*)$, with $n \ge 1$, $a_1 \ne 0$ in K and $k_1 \le k_2 \le \ldots \le k_n$. Since R is a graded algebra, we may assume that this sum is homogeneous, that is,

 $k_1 + i_1 = k_2 + i_2 = \dots = k_n + i_n =$ (the *X*-degree of the each monomial) and $k_1 + j_1 = k_2 + j_2 = \dots = k_n + j_n =$ (the *Y*-degree of the each monomial). But *Z* is not a zero divisor in *R*, we may also assume that $k_1 = 0$. If $n \ge 2$, then $0 < k_2$ because $k_2 = 0$ (= k_1) implies that $i_1 = i_2$ and $j_1 = j_2$. By specializing

$$X \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $Y \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, we have $0 = a_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{i_1 + j_1}$

and this is a contradiction to the assumption that $a_1 \neq 0$. So n must be 1 and (*) is reduced to $0 = a_1 X^{i_1} Y^{j_1}$. However, this is an impossibility since $a_1 \neq 0$. Therefore the set $\{Z^k X^i Y^j \mid i, j, k \geq 0\}$ is linearly independent and this completes the proof.

Lemma 3. Let $R_1 = K[Z]$ be the polynomial ring in Z over K. Then (1) $R_2 = K\{Z, X\}$, the subalgebra of R generated by Z and X is an Ore extension of R_1 , and

(2) $R = K\{X, Y\}$ is an Ore extension of R_2 .

Proof. (1) Let $\alpha: R_1 \to R_1$ be the K-automorphism induced by the correspondence $Z \to -Z$. Then it is straightfoward to show that $R_2 = K\{Z, X\} = R_1[X; \alpha]$ is an Ore extension of automorphism type. (2) Since every element of R_2 can be expressed uniquely in the form $\sum_{i,k\geq 0} a_{ik} Z^k X^i$ ($a_{ik} \in K$), the mapping $\beta: R_2 \to R_2$ defined by $\beta(\sum_{i,k\geq 0} a_{ik} Z^k X^i) = \sum_{i,k\geq 0} (-1)^k a_{ik} Z^k X^i$ is a K-algebra automorphism of R_2 . Now define a linear mapping $\delta: R_2 \to R_2$ by

$$\delta(Z^{k}X^{i}) = \begin{cases} 0 & \text{for even } i \\ (-1)^{k+1}Z^{k+1}X^{i-1} & \text{for odd } i. \end{cases}$$

Then for any element $f = \sum_{i,k \ge 0} a_{ik} Z^k X^i$ of R_2 , we have $Yf = \beta(f) Y + \delta(f)$. Therefore, by [1, Theorem 12.2.1] and Lemma 2 $R = K\{X, Y\} = R_2[Y; \beta, \delta]$ is an Ore extension of R_2 .

Corollary. $R = K\{X, Y\}$ is a Noetherian Ore domain.

Theorem 4. gl. dim R = 3.

Proof. Let J = [R, R] be the commutator ideal. Then J = ZR = RZ and $R/J \equiv K[x, y]$, the commutative polynomial ring in two indeterminates. Since Z is regular, normal, and non-unit in R, by [4, Theorem 3.5], gl. dim $R \ge (gl. \dim R/J) + 1 = gl. \dim K[x, y] + 1 = 3$. On the other hand, R is an iterated Ore extension of K, so by [4, Theorem 5.3], gl. dim $R \le (gl. \dim R_2) + 1 = (gl. \dim R_1) + 1 + 1 = 3$.

2. Invariants of groups acting on the 2×2 generic matrix algebras. Let m and n be (arbitrary) positive integers and $X_1, ..., X_m$ and $Y_1, ..., Y_n$ be 2×2 generic matrices, that is,

$$X_i = \begin{pmatrix} x_{11}(i) & x_{12}(i) \\ x_{21}(i) & x_{22}(i) \end{pmatrix}$$
 and $Y_j = \begin{pmatrix} y_{11}(j) & y_{12}(j) \\ y_{21}(j) & y_{22}(j) \end{pmatrix}$

where the entries $\{x_{pq}(i), y_{pq}(j) \mid 1 \le p, q \le 2, 1 \le i \le m, 1 \le j \le n\}$ are algebraically independent variables over K. Then the generic matrix algebra $S = K\{X_1, ..., X_m, Y_1, ..., Y_n\}$ generated by X_i and Y_j is a graded algebra with X_i -degree (1, 0) and Y_j -degree (0, 1) for all i, j $(1 \le i \le m, 1 \le j \le n)$. For the case when m+n=2, there are some examples of nonscalar group G acting linearly on S such that the invariant subalgebras S^c are finitely generated. But for the case of $m+n \ge 3$, no example of nonscalar group G acting on S where

160 C. HUH

 S^{c} is finitely generated have been given as yet.

In this section, we give a nonscalar group G acting linearly on S such that the invariant subalgebra S^c is finitely generated for arbitary positive integers m and n. In the finite generation problem of invariant subalgebras of groups acting on generic matrix algebras, it is well-known that the base field K can be replaced by its algebraic closure so that we may assume that K is algebraically closed. Now suppose that char $K \neq 3$. Let $\omega \ (\subseteq K)$ be a primitive 3rd root of unity and let

$$g = \begin{pmatrix} \omega I_m & 0 \\ 0 & \omega^2 I_m \end{pmatrix} = \begin{pmatrix} \omega & \ddots & 0 \\ & \omega & \\ & 0 & \ddots \\ & & \omega^2 \end{pmatrix}$$

be the diagonal matrix of size m+n, where I_m and I_n are $m \times m$ and $n \times n$ identity matrices, respectively. Then g acts linearly on S as an K-automorphism with the action defined by $X_i^g = \omega X_i$ and $Y_j^g = \omega^2 Y_j$ (i = 1, 2, ..., m, j = 1, 2, ..., n).

From now on, we will show that the invariant subalgebra $S^G = \{s \in S \mid s^g = s\}$ is finitely generated over K, where $G = \langle g \rangle$. To do this we need some preliminaries.

Lemma 5. For any 2×2 matrices A and B with entries in a commutative K-algebra, the following identities hold:

- $(1) A^2 tr(A)A + det(A)I = 0$
- (2) AB + BA = [tr(AB) tr(A)tr(B)]I + tr(A)B + tr(B)A.
- (3) tr(A)(AB BA) = A(AB BA) + (AB BA)A

$$tr(B)(AB-BA) = B(AB-BA)+(AB-BA)B.$$

(Here tr() and det() denote the trace and the determinant respectively and I is the 2×2 identity matrix.)

Proof. These identities are from the Cayley-Hamilton theorem and its multilinearization.

Corollary. If A and B are trace zero 2×2 matrices, then $A^2 = -\det(A)I$ is a diagonal matrix and tr(AB) = AB + BA.

Proof. The first identity is from Lemma 5(1) and the second is from Lemma 5(2).

For each pair $i, j \ (1 \le i \le m, 1 \le j \le n)$, let $W_{ij} = X_i Y_j - Y_j X_i$. Then by Corollary to Lemma 5, W_{ij}^2 is a scalar matrix and $tr(W_{ij}W_{kl}) = W_{ij}W_{kl} + W_{kl}W_{ij}$. Note that since there are exactly $mn \ W_{ij}$'s, we will relabel them with the indexed set $\{1, 2, ..., mn\}$ for notational simplicity so that $W_1, W_2, ..., W_{mn}$ stand for all the W_{ij} 's.

Now we return to the invariant subalgebra S^c where $G = \langle g \rangle$. Since

$$g = \begin{pmatrix} \omega I_m & 0 \\ 0 & \omega^2 I_n \end{pmatrix}$$

is a diagonal matrix, S^c is generated by monomials in X_i and Y_j . In fact, it is easy to prove that S^c is generated by the set Ω of monomials:

$$X_{i_1}(X_{k_1}Y_{l_1}) \dots (X_{k_{\rho}}Y_{l_{\rho}})X_{i_2}X_{i_3}, \qquad X_i(X_{k_1}Y_{l_1}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_j, Y_j(Y_{l_1}X_{k_1}) \dots (X_{l_{\rho}}X_{k_{\rho}})X_i, \text{ and } Y_j(Y_{l_1}X_{k_1}) \dots (Y_{l_{\rho}}X_{k_{\rho}})Y_j, Y_{i_2},$$

for $i, k \in \{1, 2, ..., m\}$ and $j, l \in \{1, 2, ..., n\}$ and $\rho \ge 0$.

Remark 6. (1) Since S is a domain, if $0 \neq u$, v in S such that $uv \in S^c$ and $u \in S^c$ then $v \in S^c$.

(2) By definition of g, each W_i lies in S^c , hence for any $\rho \geq 0$, $W_{l_1}W_{l_2}...W_{l_p} \in S^c$.

Lemma 7. Let S_1 be the subalgebra of S generated by the set Ω_1 of elements:

$$X_{i_1} W_{l_1} \dots W_{l_{\rho}} X_{i_2} X_{i_3}, \qquad X_i W_{l_1} \dots W_{l_{\rho}} Y_j$$

 $Y_j W_{l_1} \dots W_{l_{\rho}} X_i, \text{ and } Y_{j_1} W_{l_1} \dots W_{l_{\rho}} Y_{j_2} Y_{j_3},$

for $1 \le i \le m$, $1 \le j \le n$, $1 \le l \le mn$ and $\rho \ge 0$. Then $S_1 = S^c$.

Proof. By Remark 6(2) above, Ω_1 is a subset of S^c , so $S_1 \subset S^c$, For the opposite inclusion, it is enough to show that each element of Ω is contained in S_1 . By definition of Ω_1 , clearly X_iY_j , Y_jX_i , $X_{i_1}X_{i_2}X_{i_3}$, $Y_{j_1}Y_{j_2}Y_{j_3}$ (when $\rho=0$) and W_i are contained in S_1 . Consider any monomial u in Ω . Suppose that $u=X_i(X_{k_1}Y_{l_1})(X_{k_2}Y_{l_2})$... $(X_{k_\rho}Y_{l_\rho})Y_j$. We will show that $u \in S_1$ by induction on $\rho \geq 0$. The case when $\rho=0$ is trivial. Now assume that $\rho>0$ and every element of Ω involving λ number of factors X_kY_i is contained in S_1 for each λ , where $0 \leq \lambda < \rho$.

For any λ ($0 \le \lambda < \rho$), substituting $X_i Y_j$ with $W_{ij} + Y_j X_i$, we have

$$X_i W_{l_1} \dots W_{l_i} (X_{k_{i+1}} Y_{l_{i+1}}) \dots (X_{k_n} Y_{l_n}) Y_i$$

162 C. HUH

$$= X_{i}W_{l_{1}} \dots W_{l_{k}}W_{k_{\lambda+1}l_{\lambda+1}}(X_{k_{\lambda+2}}Y_{l_{\lambda+2}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j} + X_{i}W_{l_{1}} \dots W_{l_{k}}(Y_{l_{\lambda+1}}X_{k_{\lambda+1}})(X_{k_{\lambda+2}}Y_{l_{\lambda+2}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j}.$$

Here the last term in the previous equation is an element of S_1 . That is so because the $X_iW_{l_1}$... $W_{l_k}Y_{l_{k+1}} \in \Omega_1 \subset S_1$ by definition and $X_{k_{k+1}}(X_{k_{k+2}}Y_{l_{k+2}})$... $(X_{k_{\ell}}Y_{l_{\ell}})Y_{\ell} \in S_1$ by induction hypothesis. Therefore,

$$X_{i}W_{l} \dots W_{l_{\lambda}}(X_{k_{\lambda+1}}Y_{l_{\lambda+1}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j}$$

$$\equiv X_{i}W_{l_{1}} \dots W_{l_{\lambda}}W_{k_{\lambda+1}l_{\lambda+1}}(X_{k_{\lambda+2}}Y_{l_{\lambda+2}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j} \pmod{S_{1}} \text{ for any } (0 \leq \lambda < \rho).$$

If we begin this process from the case of $\lambda = 0$, then

$$u = X_{i}(X_{k_{1}}Y_{l_{1}})(X_{k_{2}}Y_{l_{2}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j}$$

$$\equiv X_{i}W_{k_{1}l_{1}}(X_{k_{2}}Y_{l_{2}}) \dots (X_{k_{\rho}}Y_{l_{\rho}})Y_{j}$$

$$\equiv \dots$$

$$\equiv X_{i}W_{k_{1}l_{1}}W_{k_{2}l_{2}} \dots W_{k_{\rho}l_{\rho}}Y_{j} \equiv 0 \text{ (mod } S_{1}).$$

Thus $u \in S_1$. A similar argument shows that the other types of elements of Ω are contained in S_1 . This completes the proof.

Theorem 8. Let S and G be defined as before. Then S^G is finitely generated.

Proof. Let Ω_2 be the set of elements:

$$X_{i_1}W_{l_1} \dots W_{l_{\rho}}X_{i_2}X_{i_3}, \qquad X_{i_1}W_{l_1} \dots W_{l_{\rho}}Y_{j_1}, Y_{i_1}W_{l_1} \dots W_{l_{\rho}}X_{i_2}X_{i_3}, \qquad Y_{i_1}W_{l_1} \dots W_{l_{\rho}}Y_{i_2}Y_{i_3},$$

for i=1, 2, ..., m, j=1, 2, ..., n, l=1, 2, ..., mn and $0 \le \rho \le mn$, and let S_2 be the subalgebra of S generated by Ω_2 . Then clearly S_2 is a finitely generated subalgebra of S^c . Now we need to show that $S^c \subseteq S_2$. It also suffices to prove that $\Omega_1 \subseteq S_2$ because Ω_1 generaters S^c . Note that for each i and each j, X_iY_j , Y_jX_i (when $\rho=0$) are contained in S_2 hence $W_l \in S_2$ for l=1, 2, ..., mn. For an element $u=X_iW_{l_1}$... $W_{l_p}Y_j \in \Omega_1$, we will show that $u \in S_2$ by induction on $\rho \ge 0$. If $\rho \le mn$, then $u \in \Omega_2 \subseteq S_2$ by definition of Ω_2 . If $\rho > mn$, then since there are precisely mn W_l 's, there exist integers λ , μ $(1 \le \lambda < \mu \le \rho)$ such that $W_{l_\lambda} = W_{l_\mu}$. Now we consider two cases.

Case 1: If $\mu = \lambda + 1$, then since $W_{l_{\lambda}}W_{l_{\mu}} = W_{l_{\lambda}}^2$ is a scalar matrix and $W_{l_{\lambda}}^2 \subseteq S_2$, $u = W_{l_{\lambda}}^2X_iW_{l_1} \dots W_{l_{\lambda-1}}W_{l_{\lambda+2}} \dots W_{l_{\mu}}Y_j$ is contained in S_2 by induction hypothesis and by virtue of the fact that $W_l \subseteq S_2$ as stated previously.

Case 2: If
$$\lambda+1 < \mu$$
, then since $W_{l_{\lambda}}W_{l_{\lambda+1}} = tr(W_{l_{\lambda}}W_{l_{\lambda+1}})I - W_{l_{\lambda+1}}W_{l_{\lambda}}$, $u = X_iW_{l_1} \dots W_{l_{\lambda}}W_{l_{\lambda+1}} \dots W_{l_{\mu}} \dots W_{l_{\mu}}Y_j$

$$= X_{i}W_{l_{1}} \dots \{tr(W_{l_{1}}W_{l_{\lambda+1}})I - W_{l_{\lambda+1}}W_{l_{\lambda}}\} \dots W_{l_{\mu}} \dots W_{l_{\rho}}Y_{j}$$

$$= tr(W_{l_{\lambda}}W_{l_{\lambda+1}})X_{i}W_{l_{1}} \dots W_{l_{\lambda-1}}W_{l_{\lambda+2}} \dots W_{l_{\rho}}Y_{j}$$

$$-X_{i}W_{l_{1}} \dots W_{l_{\lambda+1}}W_{l_{\lambda}}W_{l_{\lambda+2}} \dots W_{l_{\mu}} \dots W_{l_{\rho}}Y_{j}.$$

But note that $tr(W_{l_{\lambda}}W_{l_{\lambda+1}})I = W_{l_{\lambda}}W_{l_{\lambda+1}} + W_{l_{\lambda+1}}W_{l_{\lambda}} \in S_2$ and $X_iW_{l_1}$... $W_{l_{\lambda-1}}W_{l_{\lambda+2}}$... $W_{l_{\rho}}Y_j \in S_2$ (by induction hypothesis). Then

$$u = X_i W_{l_1} \dots W_{l_{\lambda}} W_{l_{\lambda+1}} \dots W_{l_{\rho}} Y_j$$

 $\equiv -X_i W_{l_1} \dots W_{l_{\lambda+1}} W_{l_{\lambda}} \dots W_{l_{\rho}} W_j \pmod{S_2}.$

Continuing this process, we get the following:

$$u = X_{i}W_{l_{1}} \dots W_{l_{\lambda}}W_{l_{\lambda+1}} \dots W_{l_{\mu}} \dots W_{l_{\mu}}Y_{j}$$

$$\equiv -X_{i}W_{l_{1}} \dots W_{l_{\lambda-1}}W_{l_{\lambda}} \dots W_{l_{\mu}} \dots W_{l_{\mu}}Y_{j}$$

$$\equiv \dots$$

$$\equiv (-1)^{\mu-\lambda-1}X_{i}W_{l_{1}} \dots W_{l_{\lambda-1}}W_{l_{\lambda+1}} \dots W_{l_{\mu-1}}W_{l_{\lambda}}W_{l_{\mu}} \dots W_{l_{\mu}}Y_{j} \pmod{S_{2}}.$$

Since $W_{l_{\lambda}} = W_{l_{\mu}}$, it follows from Case 1 that $u \in S_2$. A similar argument proves for the other types of elements of Ω_1 . Thus $\Omega_1 \subset S_2$ and $S^c \subset S_2$. Therefore S^c (= S_2) is finitely generated.

REFERENCES

- [1] P. M. Cohn: Algebra, Vol. 2, John-Wiley, London, 1977.
- [2] E. Formanek, P. Halpin and W-C., Li: The Poincare series of the ring of 2×2 generic matrices, Journal of Algebra 69 (1981), 105—112.
- [3] P. Halpin: Some Poincare series related to identities of 2×2 matrices, Pacific Journal of Math, 102 (1983), 107—115.
- [4] J. C. McConnel and J. C. Robson: Noncommutative Noetherian rings, John Wiley and Sons, New York, 1988.
- [5] S. Montgomery: Progress on some problems about group action, Preprint (1987).
- [6] S. Montgomery: Trace functions and affine fixed rings in non-commutative rings, Seminar d'Algebre Paul Dubreil et Marie-Paule Malliavin, Springer Lecture Notes in Math. No. 924, 356—374, Springer-Verlag, Berlin and New York, 1982.
- [7] C. Procesi: Computing with 2×2 matrices, Journal of Algebra 87 (1984), 342-359.
- [8] L. W. SMALL and J. T. STAFFORD: Homological Properties of generic matrix rings, Israel J. of Math. 51 (1985), 27-32.

DEPARTMENT OF MATHEMATICS
PUSAN NATIONAL UNIVERSITY
PUSAN, KOREA

(Received December 7, 1991)