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PRIME IDEALS IN STRONGLY GRADED RINGS
BY POLYCYCLIC-BY-FINITE GROUPS II

Hiperosu1 MARUBAYASHI and Haruo MIYAMOTO

1. Introduction. Let G be any group with identity e and let R =
S'@®x=c Rx be a strongly G-graded ring. In the case G is a finite group and R
is a crossed product of G over its base ring R., G-prime, Lorenz and Passman
proved that the number of the minimal prime ideals of R and the nilpotency of
the prime radical of R are both less than or equal to |G|, the order of G. These
results were extended to the case of graded rings by Cohen and Montgomery (cf.
[P], Theorems 16.2 and 17.7). They also obtained the relationship between the
prime ideals of R and of R. which are the classical properties known as Lying
over, Going up, Going down and Incomparability.

It is a natural question to see how these results are carried over to the case
G is a polycyclic-by-finite group. In this paper, we will give the affirmative
answer to the question above under an additional with R. right Noetherian.
More precisely ; if R. is G-prime, then the number of minimal prime ideals of R
and the nilpotency of the prime radical is less than or equal to |4'(G)|, where
A4'(G) is the unique maximal finite normal subgroup of G (cf. Theorem 3.6).

Let P and € be prime ideals of R and R., respectively. Then we say that
P lies over ® if Nxec®* = PN R, and € is minimal over Nxec®*. If G is a
finite group, then the second condition is superfluous, and this condition is
equivalent to “Jfying over” in [P]. In Theorems 3.8 and 3.10, we will give the
classical properties known as Lying over, Going down, Going up and Incompar-
ability. These theorems will be proved in §3 after giving, in §2, some properties
of the prime radicals and minimal prime ideals. If G is a finite group, then
Passman and Lorenz proved two different types of Going up theorem and Going
down theorem, respectively. But if G is infinite, then one of them does not hold,
respectively, in general. An easy example will be offered immediately after
Theorem 3.10.

2. Preliminaries. Let G be a group and let R = 2@xec R« be a strongly
G-graded ring. Then we defined an action of G on a subset of S of R via §* =
R+ SRx. A subset S is called G-stable if S* < S for any x € . The subgroup
{x € G| S* = S} is called the stabilizer of S in G. An ideal I of R. is called
G-prime if I is G-stable and if AB € I implies that either A € [ or B € ] for
any G-stable ideals A and B of R.. R.is called G-prime if 0 is a G-prime ideal.
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For example, if P € R is a prime ideal, then PN R, is G-prime. Note that if R.
is right Noetherian, then any G-stable ideal A of R. is G-invariant, i.e, A* = A
for all x € G.

If R, is a semi-prime right Goldie ring, then the set C. = Cg,(0) is a regular
right Ore set of R by Proposition 1.4 of [N.N.V], where Cr.(A4) = {c € R.| ¢
is regular mod A} for any ideal of A of R.. The right quotient ring Q¢ = Q°(R)
with respect to C. is also a strongly G-graded ring and we can write @7 =
2DPrec RxQe, where Qe is a right quotient ring of R. with respect to Ce, and Q.
is a semi-simple Artinian ring. In this section, we shall give, more or less known,
some relations between R and ¢, which are needed to prove the main theorems
in §3.

Lemma 2.1. Let R be a strongly G-graded rving, and let R, be a G-prime
right Goldie ring. Then

(1) Re is semi-prime.

(2)  There exists a minimal prime ideal € of Re (unique up to G-conjugation)
with Nxec®* = 0, and {P* | x € G} is the set of minimal primes of Re. In
particular, the stabilizer {x € G| * = €} of € in G has a finite index in G.

(3) Qe the quotient ring of R, is G-simple, i.e., Qe has no proper G-stable
tdeals.

Proof (1) By Theorem 1.35 of [C.H], the prime radical N. of R. is
nilpontet. Since N. is G-stable, it must be zero and so K. is semi-prime.

(2) By Lemma 1.16 of [C.H], there are a finite number of minimal prime
ideals €1, 2, + <+, £ of Re with MN71€; = 0. It is clear that £¥ is also minimal
prime for any x € G. Put ¥ = Nx®¥ Then ¥¥ are G-stable and £¥-£F ---
£¥ = 0. So we have #¥ = 0 for some i. Hence for any €, there exists x € G
with #7 € ©; and so €7 = €. Thus {€7] x € G} is the full set of minimal prime
ideals of R.. Further, the mapping x— ¥ = (g% g; gz) induces a

homomorphism from G into the symmetric group on z# symbols and so the
stabilizer of £ in G is of finite index in G.

(3) Let A’ be a G-stable ideal of Q.. Then the left annihilator B’ = £.(A")
of A" in Q. is also G-stable such that ) = B’A’ 2 BA, where B = B'N R, and
A = A'"NR.. Since B and A are also G-stable, either B = (0 of A = 0. Hence
either B = BQ.=0or A" = AQ. = 0 and so &, is G-simple.

In the following, we suppose that R, is a G-prime vight Goldie ring and that
G is a polycyclic-by-finite group. Then, by Theorem 3.7 of [P] and Lemma 2.1, Q¢
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is Noetherian. Moreover, R has an Artinian classical right quotient ring by
Corollary 1.8 of [N.N.V]. Let N be the prime radical of . Then there exist a
finite number of minimal prime ideals P, ¢, Pn of R with N = PN+ NP,
(cf. Lemma 1.16 of [C.H]).

Lemma 2.2, (1) If P, -+-, P: are the minimal prime ideals of R, then
PQ?, PQ%, « -, PaQ° are the minimal prime ideals of Q°.
(2) Let N be the prime radical of R. Then NQ? is the prime radical of Q7.

Proof. (1) First we shall prove that P; = P:Q°N R. Let » be any element
in P.Q°NR. Then rc € P; for some ¢ € C. S Cr(0). Hence » € P;, because
of Cr(0) = Cr(N) = N7 Cz(P:) by Small’s theorem. Hence P: = P.Q°NR
and so P:Q)? is also prime. Further, if P;Q° 2 P’, a minimal prime ideal of Q°,
then P: 2 P'N R, a prime ideal of R, hence P = PN R and so P:Q° = (P'N
R)Q? = P'. Finally, if P’ is a minimal prime ideal of ¢, then P'N R is a prime
ideal of R so that it contains a P: for some 7, and so, P’ = (P'NR)Q°® 2 P:°,
hence P’ = P:Q.

{2) Let N’ be the prime radical of @°. Then

NNR=NkPQ’NR={PQRQNR}=NP.=N
shows that N' = N@?.

3. Prime ideals of strongly G-graded rings with G-prime base rings.
Throughout this section, R = 2®xec Rx be a strongly G-graded ving whose base
ring Re is a G-prime vight Goldie ving and let G be a polycyclic-by-finite group.
Following [P], 4'(G) = {x € G| |G: C¢(x)| < oo and x is finite order}, is a
finite normal subgroup of G (cf. Lemma 5.1 of [P]). Set S = R(4'(G)) =
2®yes ey Ry. Then S is a G-stable subring of R. We denote by 4 the prime
radical of S. Since S is also a right Goldie ring, .+ is a finite intersection of
minimal prime ideals 2,,2,, ---,2, of S and is G-stable. Hence 4= N, 2,
where ¥ = Nxec2¥ are G-stable ideals of S. Renumbering these & ¥'s, if
necessary, we write the distinct #¥s as #¥, #¥, -+, ¥

Lemma 3.1. &¥, + -, 2% are the minimal G-prime ideals of S and P*N R.
= 0.

Proof. Let A and B be G-stable ideals of S whth AB € #¥. Then AB <
2;, and so, either A S 2: or B € 2;, hence either A S Nxec2F =P *or B S
Nxec2f = $¥. ThusP¥ are G-prime. If [ is a G-prime ideal of S with #¥ 2
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I, then I contains some #¥, because 0 = (V)! 2 (¥ -+ P¥)’, andso®¥ =1 =
P¥, showing ¥ = I. Hence &¥ is a minimal G-prime ideal of S. Conversely,
let 7 be a minimal G-prime ideal of S. Then, as above, I 2 0 = (¥ «-« P¥)".
Hence I 2 #¥ for some i and so I =&%. Further, let ] =#¥NR.. Then J is
a G-stable ideal of R.. Hence JQ. is also G-stable and we get either /. = 0 or
JQe = Qe since Q. is G-simple. If JQ. = Q., then J contains a regular element
c in R.. It is clear that c is a regular element in S and so it belongs to Cs(®
¥) by Small's Theorem, because 4 = N%,#¥, hence ¢ = ¢+1 € #¥ implies that
1 €#¥, a contradiction. Thus we get that / = 0.

Conversely,

Lemma 3.2. If & is a G-prime ideal of S with PNR. =0, then P is
minimal G-prime,

Proof. We will show that & = ¥ for some 7. On the contrary, we suppose
that # ¢ P¥ foralli,1 < i< k. Then PZ2; for all i. Infact, if P2, for
some i, then®* = P S 2% for all x € G, and so, S Nx2F = P¥, a contradic-
tion. Hence it follows Q%(4'(G)) ¢ 2.Q°(4'(G)) for all { by Lemma 2.2, and
2:Q°(4'(G)) are the maximal ideals of Q?(4'(G)) since Q?(4'(G)) is an
Artinian ring. Hence 2Q%(4'(G)) = Q*(4'(G)) and so & contains a regular
element, which implies that N R. + 0, a contradiction. Hence & € #¥ for
some 7 and so P =P},

Let H be a normal subgroup of G and let 7 be the canonical mapping from
G to G/H. Then R is considered as a strongly G/H -graded ring whose base ring
is R(H) = X®hnes Rn; R = R(H)G/H) = Z®rwecin R(H)mx, where
R(H)nx) = 2®hnen Rrx. Under this notation, if # is a G-stable ideal of R(H),
then R/#R = {R(H)/#}G/H), ie., a strongly G/H-graded ring whose base
ring is R(H)/ 2.

The following was obtained in [R] in the case of the group rings (cf.
Corollary 22 of [R]).

Proposition 3.3. Let P be an ideal of R. Then P is minimal prime if and

only if

(1) P=(PNS)R with PNS, G-prime,
and

2) PNR.=0.

Proof. Let P be a minimal prime ideal of R. Then = PN S isa G-prime
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ideal of S. HenceR/#R = (S/#)(G/4'(G)) is a prime ring by the Proposition
8.3 of [P]. Hence #R is a prime ideal € P, and so. #R = P. Further, if PN
Re #+ 0, then PN R, is a G-stable ideal of Re, and so (PN R.)Qc = Q.. Thus
PQ° = Q°, which contradicts to Lemma 2.2. Hence PN R, = 0. Conversely, if
P = PN S is G-prime, then by the above proof #R is a prime ideal of B. Hence
Pisprime. If P 2 @, a prime ideal, then QN S is G-prime with QN R. = 0. So
®&NS and PN S are both minimal G-prime by Lemma 3.2. Hence QNS =P
NS and so P = Q.

Lemma 3.4. Let N and AN be the prime radical of R and S respectively.
Then N = AR,

Proof. Since A is G-stable, AR is a nilpotent ideal of R. Further, since S/
A is semi-prime, R/ AR = (S/A){G/4'(G)} is also semi-prime by Proposition 8.3
of [P], and so, ¥R is a semi-prime ideal, hence AR = N.

The following Lemma is the graded-ring version of Passman’s Theorem 14.7
of [P]. The proof is quite similar to that of the Theorem.

Lemma 3.5. Let G be a polycyclic-by-finite group and let R = R(G) be a
strongly G-graded ring with Re a vight Noetherian G-prime ring. Suppose that €
is a minimal prime ideal of Re, N = Ann(®), and H is the stabilizer of € in
G. Then the mappings

P P[H
and
L— L¢

determine a one-to-one correspondence between prime ideals P of R with PN R,
= 0 and prime ideals L of R(H) with LNR. =¥. Here

Pu={re R(H)| Nr € P}
and

L' = Nxec{LR(G)}".

Theorem 3.6. Let R be a strongly G-graded ring whose base ring R is
G-prime vight Noetherian, G be a polycyclic-by-finite group and {P,, Ps, »++, P} be
the set of minimal prime ideals of R. Then

(1) E£<|4Y(G).
Further, let N be the prime radical of R, Then
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@) N =,

Proof. First, we assume that R. is prime. Then €. is simple Artinian. So
Q(4'(G)) = Q. » 4'(G), a crossed product of 4'(G) over Q. by Corollary
1.3.25 of [N.V]. Hence the number of minimal prime ideals of S is at most
|47 (G)| by Theorem 16.2 of [P] and Lemma 2.2. Hence %4 < |4'(G)| by Lemmas
3.1, 3.2 and Proposition 3.3. As in Lemma 3.4, let .# be the prime radical of S.
Then 4 Q?(4'(G)) is the prime radical of Q°(4'(G)) by Lemma 2.2. Hence (¥
Q°)“' = ( by Theorem 16.2 of [P] and so.4'¥"®' = (. Thus N"" = (),
because of N =.#R by Lemma 3.4.

Suppose that R. is G-prime but not prime. Then there exists a minimal
prime ideal ¥ of R. such that (xec®”* = 0 and the stabilizer H of  is a
subgroup of finite index by Lemma 2.1. Hence 4'(H) € 4'(G) and H is also
polycyclic-by-finite. We consider the ring R = R(H) = R(H)/®R(H). Since
¢ is H-stable, R is a strongly H-graded ring with R. = R./® prime right
Noetherian. Hence by the above, there exist m < |4'(H)| (< |4'(G)|) minimal
prime ideals L1, *++, L of R with L;N Re = 0. We write the ideals L; 2 € of
R(H) such that the canonical image of L;is L; for any 7,1 < i < m. Then L;
are prime ideals with L; N R. = €. Hence (L,)'°, < -+, (L#)'® are prime ideals of
R(G) with (L,)*NR. = 0 by Lemma 35. So it suffices to prove that they are
the minimal prime ideals of R. To prove that (L)' is minimal, let P be a prime
ideal of R with P < (L,)'°, then PNR. =0 and so, Py < ((L:)}w = L: by
Lemma 35. Hence Py € L.. Since Py is prime, Py = L, and so, Pu = L..
Again by Lemma 3.5, we have P = L'?. Conversely, let P be a minimal prime
ideal of R, then PN R. = 0 by Proposition 3.3. By Lemma 3.5, there exists a
prime ideal of R(H) with Py = L. It follows that L 2 L, for some ¢ and so
Pu 2 L:. Thus we have P 2 (L)' and so P = (L )‘G.

Finally, we show that N'"'"*" =0, Let J = LN ++* NLx Then J = the
prime radical of R and so, by first case, 7" = 0, i.e, J''*) € P R(H). Since
the prime radical N = N(L:)'¢=(N:L:)¢=]'°, we have N =
(Jiey bl c (parubnic c (@ R(H)'C = 0 (note that A'°NB'° = (ANB)'° and
A'°B'® < (AB)'® for any ideals A and B of R(H). Cf. Lemma 16.1 of [P]).

Corollary 3.7. Let A4'(G) be a pgroup and Re. be a G-prime ring of
characteristic p > 0. Then there exists a unique minimal prime ideal P of R
which is nilpotent.

Proof. Suppose first that R is prime. Then Q°(4%(G)) = Q. * 4'(G) and
Q. is of characteristic . Hence by Proposition 16.4 of [P], there exists a unique
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minimal prime ideal @ of Q% 4'(G)) which is nilpotent. Then £ =%'N
R(4'(()) is a unique minimal prime ideal which is nilpotent and G-stable by
Lemma 2.2. Hence, by Lemma 3.4, R(G) is a unique minimal prime ideal of
R(G) which is nilpotent. Finally, we suppose that R. is G-prime but not prime.
Then there exists a minimal prime ideal # £ R. and K. = R/¢ is prime and the
stabilizer H of ¥ in G has a finite index in G and so 4"(H) € 4'(G) is a
p-group. Hence there exists a unique minimal prime ideal L of B which is
nilpotent. Then by the argument in the proof of Theorem 3.6 L'° is a unique
minimal prime ideal of R(G) which is nilpotent.

Next we will investigate the relationship between the prime ideals of R, and
R which are the classical properties known as Lying over, Going up, Going down
and Incoparability. In the case G is a finite group, these were obtained by Lorenz
and Passman (cf. Theorems 166, 16.9 and 17.9 of [P]). Let P and € be prime
ideals of R and R., respectively. Then we say that P lies over € if Nxec®* =
PN R, and R is a minimal prime ideal over MNxec®*. If G is a finite group, then
the second condition is superfluous. Note that if P lies over #, then P = #R,
where # = PN S, because PR is a prime ideal of R by Proposition 83 of [P].

Theorem 3.8. Let R be a strongly G-graded ring whose base ring R. is right
Noetherian and let G be a polycyclic-by-finite group. Then

() (Cutting down) Let P be a prime ideal of R. Then there exists a prime
ideal € of Re, unique up to G-conjugation, such that € is minimal over PN
Re and N®* = PNR..

(2) (Lying over) Let® be a prime ideal of R., then there exist prime ideals P,
Ps, co+, Py of R with n < |4%(G)| such that P: lies over ¢.

(3) (Incomparability) Let 1 S €2 be prime ideals of Re, and let P, S P, be
prime ideals lying over §, and €,, respectively. If P+ B, then €, + Q..

Proof. (1) Since PN R. is G-prime, R. = R./(PNR.) is a G-prime ring,
and so, R. has a minimal prime ideal £ with Nxec®* = 0, by Lemma 2.1. Then
€, the ideal of R. whose canonical image in . equals to @, is a prime ideal
which is minimal over PN R, and Nxec®* = PN Re.

(2) Since Nxec®* is a G-prime ideal of R,

ﬁ = R/(mxeﬁg"x)R

satisfies the condition in Theorem 3.6, hence there exist the minimal prime ideals
P, +++, P, with n < |4'(G)| and P.NR. =0 for all 7. Hence P, the ideal of
R whose canonical image in R equals P; clearly lies over € for each 7.
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Furthermore, P, «+*, P, ‘are incomparable since P,, +++, P,, are minimal
primes. Hence (3) follows immediately.

Lemma 3.9. Let G be a finite group and let R be a ring such that R is the
sum 2ixec Rx of (Re, Re)-bisubmodules Rx with R+ Ry = Ry for all x,y € G.
If Iis an essential ideal of Re., i.e., I intersects nontrivially all nonzero ideals of
R then there exists a nonzero ideal J of R with 0 = JNR. S I,

Proof. Let M be a maximal complement of R, in R so that R.DM is
essential in R, hence /@M is essential in R. Foreachx,y € G, weset Lx,y =
R{I®M)R,. Then L« is essential in R. In fact, let U be a nonzero (R.,
Re.)-bisubmodule of R, then Rx-1UR,+ # 0, and so, (I®&M)N Rx-1URy-+ *+ 0,
hence LxyNU # 0. We write / = (Nxyec Lxy. Then it is clear that J is an
ideal of R and that J is an essential as (Re, Re)-bimodule, because G is finite.
Hence JNR. # 0. Further, if r € JNR. S I®M theny = i+m, i€, me
M,but r—i=m& R.NM =0andso, JNR. S 1.

Theorem 3.10. Let R be a strongly G-graded ving whose base ring R. is
right Noetherian and let G be a polycyclic-by-finite group. Then

(1) (Going up) Let 1 and § be prime ideals of Re with 1 2 € and let P be
a prime ideal of R lying over ¥. Then there exists a prime ideal P, of R
such that P, lies over ¥, and P, 2 P.

(2) (Going down) Let ®\ and © be prime ideals of R. with® 2 €, and let P
be a prime ideal of R lying over . Then there exists a prime ideal P, of
R such that P, lies over £, and P 2 P,.

Proof (1) Let = PNS, G-prime. Then PN Re = Nxec®”. Let P be
the maximal element of the set {A : idealof S| ANR. S €,and A 22}. Then
it is easily checked that 4, is a prime ideal of S since #, is prime. First, we will
prove that €, is a minimal prime ideal over #1NR.. Let S = S/#Prand 7: S
— § be the canonical mapping. Then the set {Rx = 7(Rx)| x € 4'(G))
satisfies the condition of Lemma 3.9 with R. = Re/(#1NRe). If I is an ideal of
S with TN R < @,, then INR. S €.+, where [ is inverse image of [ in S.
Let » = z+p be any element in I N K., where z € €, and p €%1. Then p =
yr—2&€ R.N&P S ¥1. Hence INR. € P, and so, by the choice of 1, { =%,
ie, I =0. Thus, by Lemma 3.9, &, is not essential. So there exists a nonzero
ideal J of R. with #:NJ = 0. Since R. is semi-prime, there exists a minimal
prime ideal #’ with €' 2 J. Thus ' 2 @, implies that #' = B;. Hence #, is a
minimal prime ideal over . N K. and 50 MNyear)®I =P 1NRKe. Put P =
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(Nxec®PY)R. Then P is a prime ideal of R by Proposition 8.3 of [P] and P, 2
P, because NPF 2 P and P = PR. Furthermore, PNS = NxecPT, G-prime
with P = (PNS)R and PNR. = NPINR. = N(#:1NR)* = N(NEN* =
MN®Y. Hence P, is a minimal prime ideal over (N®{)R by Proposition 3.3 and
therefore P lies over €, with P, 2 P,

(2) By Theorem 3.8 there exist a finite number of prime ideals P, P, ***,
Pr of R lying over €,. Then, it is clear from Proposition 3.3 that P;'s are the full
set of minimal prime ideals over (N®{)R. Therefore for some integer #,

(Plan ce ﬂPr)" = (nxecpf)R = (mxec&)x)R e P,

and so P: € P for some i.

Remark 3.11. Another types of Going up and Going down Theorems of
prime ideals do not hold ; for example, let K be a field, G be an infinite cyclic
group <x>, and R be the group ring K[G]. Then consider two prime ideals P
= (x—1) 2 0. Obviously 0 is a prime ideal over the ideal 0 of K = R, but P
does not lie over any ideal of R..

To give a counter example for another Going down theorem, let D be a
commutative unique factorization domain and let S = D[x], the polynomial ring
over D in an indeterminate x. For any prime element p of D, put £ = pS+xS,
a prime ideal of S. Let f(y) = xy+p € S[y], the polynomial ring over S in an
indeterminate y. Then by Eisenstein’s theorem, f(¥) is a prime element in S[y]
with 7/(¥)SNS = 0. Now let G be the infinite cyclic group generated by y and
let R be the group ring S[G] with R = S. Then P = ¢[G] and P, = f(y)R
are both prime ideals of R satisfying; P 2 P, PNR.=§ and PNR. = 0.
Hence P lies over € but P, does not lie over 0, because 0 is a prime ideal of R.
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