SIGNATURES ON A RING

TERUO KANZAKI

Introduction. The purpose of this paper is to define and to investigate a generalization of signatures. As is well known, an ordering of a field K is given by a signature $\sigma: K^* \to \{\pm 1\}$, or a ring homomorphism $\sigma: W(K) \to \mathbb{Z}$. More generally, an ordering of higher level of K is given by a character $\chi: K^* \to S^1$ which is called a signature of K in [4]. We give a generalization of such signatures, and a general theory of signatures of a ring. Let R be any ring with identity 1, and F a field-like semigroup (simply called f-semigroup) with zero element 0, unit element 1 and a unique element -1 of order 2, which is defined in §1. A signature of R over F is defined as a map $\sigma: R \to F$ satisfying conditions $\sigma(-1) = -1$, $\sigma(ab) = \sigma(a)\sigma(b)$, and $\sigma(a+b) = \sigma(b)$ providing $\sigma(a)$ = 0 or $\sigma(a) = \sigma(b)$, which includes notions of orderings or higher level orderings of a field. Indeed, for a field R, if one takes $F = GF(3) := \{0, 1, -1\}$, the signature σ gives an ordering of the field R. If one takes $F = \{0\} \cup S^1$, the signature σ coincides with one in [4]. This definition is motivated by the results of Craven [5], [6], [7], and Becker [2], [3]. In §1, we introduce a topology on the set X(R, F) of all signatures of R over F, which is a generalization of the space of "real spectrum" in [8] and "space of orderings" in [16]. In §3, under the assumption that R is a commutative ring and F is a finite-f-semigroup, it is proved that for the quotient ring $S^{-1}R$ by a multiplicatively closed set S or R. the topological space $X(S^{-1}R, F)$ is homeomorphic to a subspace $X^{s}(R, F)$ of X(R, F), and for a semilocal commutative ring R, that there is a one to one correspondence between the set of infinite primes of level 1 and the set of ring homomorphism of the Witt ring W(R) onto the integers. Throughout this paper, we assume that every ring has identity 1, every ring homomorphism maps 1 to 1, and the unit group of the ring R is denoted by R^* . Furthermore, the number of elements of a finite set F is denoted by |F|, and for sets A and B, $A \setminus B :=$ $\{a \in A \mid a \notin B\}.$

1. Signatures over any f-semigroup. Let R be any (non-commutative) ring with identity 1.

Definition. A multiplicative abelian semigroup F with unit element 1 and zero element 0, i.e. x1 = 1x = x, x0 = 0x = 0 for $\forall x \in F$, is called an f-semigroup (field-like semigroup), if the subset $F^* = F \setminus \{0\}$ is a group with a

unique element -1 of order 2.

Any field with characteristic not 2 is an f-semigroup.

Definition. Let F be an f-semigroup. A map $\sigma: R \to F$ is called a signature of R over F, if it satisfies the following conditions;

- 1) $\sigma(-1) = -1$,
- 2) $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a, b \in R$,
- 3) either $\sigma(a) = 0$ or $\sigma(a) = \sigma(b)$ implies $\sigma(a+b) = \sigma(b)$.

By [10], a subset P of R which is closed under the addition and multiplication of R, and which does not contain -1, is called a preprime, and a maximal preprime is called a prime of R. A preprime containing 1 will be called an infinite preprime, and a maximal infinite preprime of R. Furthermore, an infinite preprime P will be called an infinite quasiprime, if $P \cap -P$ is a two sided ideal of R such that $R/(P \cap -P)$ is an integral domain.

Notation. For a signature $\sigma: R \to F$ of R over F and $\alpha \in F$, we denote by F^* , $G(\sigma)$, $\mathscr{C}_{\alpha}(\sigma)$ and $P(\sigma)$ the following sets; $F^* = F \setminus \{0\}$, $G(\sigma) = \text{Im } \sigma \cap F^*$, $\mathscr{C}_{\alpha}(\sigma) = \{r \in R \mid \sigma(r) = \alpha\}$ and $P(\sigma) = \mathscr{C}_0(\sigma) \cup \mathscr{C}_1(\sigma)$.

Proposition 1.1. Let $\{\mathscr{C}_{\alpha} \mid \alpha \in F\}$ be a family of subsets of R. There exists a signature $\sigma \colon R \to F$ of R over F with $\mathscr{C}_{\alpha}(\sigma) = \mathscr{C}_{\alpha}$ for all $\alpha \in F$, if and only if the following conditions hold;

- (1) $R = \bigcup_{\alpha \in F} \mathscr{C}_{\alpha}$, and $\mathscr{C}_{\alpha} \cap \mathscr{C}_{\beta} = \phi$ for $\alpha \neq \beta$ in F,
- $(2) \quad -1 \in \mathcal{C}_{-1},$
- (3) $\mathscr{C}_{\alpha}\mathscr{C}_{\beta} \subseteq \mathscr{C}_{\alpha\beta}$, if $\mathscr{C}_{\alpha} \neq \phi$ and $\mathscr{C}_{\beta} \neq \phi$,
- (4) $\mathcal{C}_{\alpha} + \mathcal{C}_{\alpha} \subseteq \mathcal{C}_{\alpha}$ and $\mathcal{C}_{0} + \mathcal{C}_{\alpha} \subseteq \mathcal{C}_{\alpha}$ for $\mathcal{C}_{\alpha} \neq \phi$.

The proof is immediately from the definition of signature.

Corollary 1.2. Let $\sigma: R \to F$ be a signature.

- (1) $\mathcal{C}_0(\sigma) = P(\sigma) \cap -P(\sigma)$ is a prime ideal, and $P(\sigma)$ is an infinite quasiprime of R. $G(\sigma)$ is a subsemigroup of F^* containing -1.
- (2) If $G(\sigma)$ is a finite set, then it is a group with even order.

Lemma 1.3. Let σ and τ be signatures of R over F, and assume that $G(\sigma)$ is a subgroup of F^* .

- (1) If $\mathcal{C}_0(\sigma) \subseteq \mathcal{C}_0(\tau)$, then the following conditions are equivalent:
 - 1) $\mathscr{C}_0(\sigma) = \mathscr{C}_0(\tau)$,

- 2) $\mathcal{P}_{\alpha}(\sigma) \cap \mathcal{P}_{0}(\tau) = \phi$ for some $\alpha \in G(\sigma)$,
- 3) $\mathcal{C}_{\alpha}(\sigma) \cap \mathcal{C}_{0}(\tau) = \phi$ for all $\alpha \in G(\sigma)$.
- (2) Suppose $P(\sigma) \subseteq P(\tau)$. Then $\mathcal{C}_0(\sigma) = \mathcal{C}_0(\tau)$ if and only if $\mathcal{C}_1(\sigma) \subseteq \mathcal{C}_1(\tau)$.

Proof. (1): 1) \Longrightarrow 3) and 3) \Longrightarrow 2) are easy.

- 2) \Longrightarrow 1): Suppose $\mathcal{C}_0(\sigma) \neq \mathcal{C}_0(\tau)$, then $H = \{\alpha \in G(\sigma) \mid \mathcal{C}_\alpha(\sigma) \cap \mathcal{C}_0(\tau) \neq \phi\}$ is a non-empty subset of $G(\sigma)$. By (3) in (1.1), it follows that $\alpha \in H$ and $\beta \in G(\sigma)$ imply $\alpha\beta \in H$. Since $G(\sigma)$ is a group we get $H = G(\sigma)$.
 - (2) is easy from (1).

Definition. By X(R, F), we denote the set of all signatures of R over F. On the f-semigroup F, we can define a topology such that $\{0\}$ is a closed subsets and $\{a\}$ is an open subset of F for every $a \in F^*$. For the discrete space R, the power space F^R has an open base consisting of $\{f \in F^R \mid f(a_i) \in U_i ; i = 1, 2, \dots, n\}$ for every finite subset $\{a_1, a_2, \dots, a_n\}$ of R and any open subsets U_1, U_2, \dots, U_n of F. We introduce a topology on X(R, F) as a subspace of F^R .

Proposition 1.4. The topological space X(R, F) has the following properties;

- (1) If F is a finite set, then X(R, F) is a compact space.
- (2) For any $a \in R$ and $a \in F^*$, $H_a(a) = \{ \sigma \in X(R, F) \mid \sigma(a) = a \}$ is an open subset of X(R, F). The finite intersections of $H_a(a)$'s for $a \in R$ and $a \in F^*$ form an open basis of X(R, F), so X(R, F) is a T_0 -space.
- (3) For any $a \in R$ and $\alpha \in F$, $H_0(a) = \{ \sigma \in X(R, F) \mid \sigma(a) = 0 \}$ and $H_{\sigma}^*(a) = H_0(a) \cup H_{\sigma}(a)$ are closed subset of X(R, F).
- *Proof.* (1): Suppose $|F| < \infty$. By F_d , we denote the discrete space on the set F in order to distinguish from the above topology on F. It is easy to see that X(R, F) is a closed subset of $(F_d)^R$. Since X(R, F) is a compact subspace of $(F_d)^R$ which is compact by Tychonoff's theorem, so is the subspace X(R, F) of F_d^R which is the image of the continuous identity map $I: (F_d)^R \to F^R$.
- (2): From the definitions of the topology on F and F^R , it follows that the subsets $H_a(a)$ for $a \in R$ and $\alpha \in F^*$ form a subbasis of open sets in X(R, F). Suppose $\sigma \neq \tau$ in X(R, F). There is an $\alpha \in F^*$ with $\mathscr{C}_a(\sigma) \neq \mathscr{C}_a(\tau)$, and there exists an element a in R such that either $a \in \mathscr{C}_a(\sigma)$ with $a \notin \mathscr{C}_a(\tau)$ or $a \in \mathscr{C}_a(\tau)$ with $a \notin \mathscr{C}_a(\sigma)$, that is, $H_a(a)$ is an open subset of X(R, F) such that either $\sigma \in H_a(a)$ with $\tau \notin H_a(a)$ or $\tau \in H_a(a)$ with $\sigma \notin H_a(a)$. Hence, X(R, F) is T_0 -space.
 - (3): Since $X(R, F) = \bigcup_{\alpha \in F} H_{\alpha}(\alpha)$ for any $\alpha \in R$, it follows that $H_0(\alpha)$ and

 $H_a^*(a)$ are closed subsets in X(R, F).

Notation. By F, we denote the category of f-semigroups in which morphism $f: F_1 \to F_2$ satisfies f(-1) = -1, f(0) = 0 and f(xy) = f(x)f(y) for any $x, y \in F_1$. By R and T, we denote the category of rings with identity 1, and the category of topological spaces, respectively.

Proposition 1.5. For any morphisms $f: F_1 \to F_2$ in F and $g: R_2 \to R_1$ in R, map $X(g, f): X(R_1, F_1) \to X(R_2, F_2): \sigma \sim f \cdot \sigma \cdot g$ is continuous, so $X(-, -): R^{\circ} \times F \to T$ is a functor.

Proof. Let $f: F_1 \to F_2$ and $g: R_2 \to R_1$ be morphisms in categories F and R, respectively. To show that X(g, f) is continuous, it is sufficient to show that for any $\sigma \in X(R_1, F_1)$ and an open subset $H_{\alpha'}(a')$ containing $X(g, f)(\sigma)$ (= $f \cdot \sigma \cdot g$) of $X(R_2, F_2)$, $X(g, f)^{-1}(H_{\alpha'}(a'))$ is an open subset of $X(R_1, F_1)$. Since $f \cdot \sigma \cdot g(a') = a' \neq 0$ and $f^{-1}(a') \subseteq F_1^*$, $X(g, f)^{-1}(H_{\alpha'}(a')) = \bigcup_{\beta \in f^{-1}(\alpha')} H_{\beta}g((a'))$ is an open subset of $X(R_1, F_1)$.

Theorem 1.6. Let α be a two sided ideal of R and $\psi_{\alpha}: R \to R/\alpha$; $r \sim T$ $\{r\} = r + \alpha$ the canonical ring homomorphism. Then, $X_{\alpha}(R, F) := \{\tau \in X(R, F) \mid \alpha \subset \mathcal{C}_0(\tau)\}$ is a closed subset of X(R, F), and the map $X(\psi_{\alpha}, I)$ induces a homeomorphism $X(R/\alpha, F) \rightarrow X_{\alpha}(R, F)$.

Proof. For any $\sigma \in X(R, F) \setminus X_{\mathfrak{a}}(R, F)$, $\mathfrak{a} \nsubseteq \mathscr{C}_{\mathfrak{d}}(\sigma)$ and there is an $a \in \mathfrak{a}$ with $a \notin \mathscr{C}_{\mathfrak{d}}(\sigma)$, hence $\sigma \in H_{\sigma(a)}(a)$ and $H_{\sigma(a)}(a) \cap X_{\mathfrak{a}}(R, F) = \emptyset$, so $X_{\mathfrak{a}}(R, F)$ is a closed subset of X(R, F). For any $\sigma \in X_{\mathfrak{a}}(R, F)$, a signature $[\sigma] \colon R/\mathfrak{a} \to F$ is naturally defined by $[\sigma]([r]) = \sigma(r)$ for $[r] \in R/\mathfrak{a}$, because of $\sigma(a+r) = \sigma(r)$ for all $a \in \mathfrak{a} \ (\subseteq \mathscr{C}_{\mathfrak{d}}(\sigma))$. Hence, $X(\psi_{\mathfrak{a}}, I) \colon X/(R/\mathfrak{a}, F) \to X_{\mathfrak{a}}(R, F)$ is a bijection, and is a homeomorphism, because of $X(\psi_{\mathfrak{a}}, I)(H_{\mathfrak{a}}([r])) = X_{\mathfrak{a}}(R, F) \cap H_{\mathfrak{a}}(r)$ for any $r \in R$ and $a \in F^*$.

Notation. For any $\sigma \in X(R, F)$, we use notations ψ_{σ} and $X_{\sigma}(R, F)$ instead of $\psi_{\ell,(\sigma)}$ and $X_{\ell,(\sigma)}(R, F)$, i.e. $\psi_{\sigma} \colon R \to R/\ell_0(\sigma) \colon r \sim \to [r] = r + \ell_0(\sigma)$ and $X_{\sigma}(R, F) \colon = \{\tau \in X(R, F) \mid \ell_0(\sigma) \subseteq \ell_0(\tau)\}$, respectively.

Corollary 1.7. For any $\sigma \in X(R, F)$, $X_{\sigma}(R, F)$ is a closed subset of X(R, F), and $X(\psi_{\sigma}, I) : X(R/\mathcal{C}_{0}(\sigma), F) \to X_{\sigma}(R, F)$ is a homeomorphism.

Remark 1.8. (1) For $\sigma \in X(R, F)$, $\sigma(R^*)$ is a subgroup of F^* , and $\sigma(R^*)$

- $\subseteq G(\sigma)$. If $u \in R^*$ and $\sigma(u) = \alpha$, then $u^{-1} \in \mathcal{C}_{\alpha^{-1}}(\sigma)$ and $\mathcal{C}_{\alpha}(\sigma) = u\mathcal{C}_1(\sigma) = \mathcal{C}_1(\sigma)u$,
- (2) For any $u \in R^*$, $H_0(u) = \phi$ and $H_a^*(u) = H_a(u)$ is a open subset of X(R, F) for all $\alpha \in F^*$. If R is a division ring, then X(R, F) is Hausdorff and totally disconnected. Furthermore, if $|F| < \infty$, then X(R, F) is a Boolean space, i.e. a totally disconnected, compact and Hausdorff space.
- (3) For any $a, b \in R$ and $\alpha, \beta \in F$, the following equalities and inequalities hold:
 - 1) $H_a(a) = H_{-a}(-a)$ and $H_a^*(a) \cap H_a^*(-a) = H_0(a)$,
 - 2) $H_a^*(a) \cap H_b^*(b) \subseteq H_{a\beta}^*(ab)$ and $H_a^*(a) \cap H_a^*(b) \subseteq H_a^*(a+b)$,
 - 3) $H_0(a) \cup H_0(b) = H_0(ab)$, $H_0(0) = H_1(1) = X(R, F)$ and $H_0(1) = H_{\alpha}^*(1) = \phi$ for all $\alpha \in F^*$ with $\alpha \neq 1$.

From (1.8), the following proposition immediately follows:

Proposition 1.9. For any $\sigma \in X(R, F)$, the conditions (1) and (2) are equivalent, and (1) \Longrightarrow (3). If R is commutative, then the converse (3) \Longrightarrow (1) holds.

- (1) $\sigma(R^*) = G(\sigma)$,
- (2) For any $\alpha \in G(\sigma)$, there is a $u \in R^*$ with $\mathcal{C}_{\alpha}(\sigma) = u\mathcal{C}_1(\sigma) = \mathcal{C}_1(\sigma)u$.
- (3) $R^*/(R^* \cap \mathcal{C}_1(\sigma)) \cong G(\sigma)$ and $\mathcal{C}_a(\sigma)\mathcal{C}_\beta(\sigma) = \mathcal{C}_{\alpha\beta}(\sigma)$ for every $\alpha, \beta \in G(\sigma)$.
- **2.** Signature over a finite f-semigroup. In this section, we assume that F is a finite set, and deal with signatures $\sigma: R \to F$ of R over a finite f-semigroup F so that $G(\sigma)$ is a finite group with an even order.
- **Lemma 2.1.** For any $\sigma \in X(R, F)$ and a prime ideal $\mathscr C$ of R with an integral residue domain $R/\mathscr C$, it follows that
 - (1) $G_{\mathfrak{r}}(\sigma) := \{ \alpha \in G(\sigma) \mid \mathscr{C}_{\mathfrak{a}}(\sigma) \not\subseteq \mathscr{C} \} \text{ is a subgroup of } G(\sigma), \text{ so is } G_{\tau}(\sigma) := \{ \alpha \in G(\sigma) \mid \mathscr{C}_{\mathfrak{a}}(\sigma) \not\subseteq \mathscr{C}_{\mathfrak{d}}(\tau) \} \text{ for any } \tau \in X(R, F), \text{ and}$
 - (2) $\mathscr{C}_0(\sigma) \nsubseteq \mathscr{C}$ (resp. $\mathscr{C}_0(\sigma) \nsubseteq \mathscr{C}_0(\tau)$) implies $G_{\mathscr{C}}(\sigma) = G(\sigma)$ (resp. $G_{\tau}(\sigma) = G(\sigma)$).

Proof. (1) follows from that $|F| < \infty$ and R/\mathscr{C} is an integral domain. (2): For any $\alpha \in G(\sigma)$, $\mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}$ implies that $\mathscr{C}_{0}(\sigma) + \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}$ and $\mathscr{C}_{0}(\sigma) \subseteq \mathscr{C}$, so (2) follows.

Proposition 2.2. For $\sigma, \tau \in X(R, F)$ with $P(\sigma) \subseteq P(\tau)$, there is a group

epimorphism $f: G_{\tau}(\sigma) \to G(\sigma)$ such that

$$\mathscr{C}_{\beta}(\tau) \subseteq \bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_{0}(\tau) \cup \mathscr{C}_{\beta}(\tau)$$

for all $\beta \in G(\tau)$.

Proof. A map $f: G_{\tau}(\sigma) \to G(\sigma)$ can be defined by making the value $f(\alpha) = \tau(a)$ with $a \in \mathscr{C}_{\alpha}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ for $\alpha \in G_{\tau}(\sigma)$. Because, for $\alpha \in G_{\tau}(\sigma)$ and any $a, a' \in \mathscr{C}_{\alpha}(\sigma) \setminus \mathscr{C}_{0}(\tau)$, we have $1 = \tau(ba) = \tau(b)\tau(a)$ and $1 = \tau(ba') = \tau(b)\tau(a')$ for any $b \in \mathscr{C}_{\alpha^{-1}}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ ($\neq \phi$), since $a^{-1} \in G_{\tau}(\sigma)$ and $ba, ba' \in \mathscr{C}_{1}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ ($\subseteq P(\sigma) \setminus \mathscr{C}_{0}(\tau) \subseteq P(\tau) \setminus \mathscr{C}_{0}(\tau) = \mathscr{C}_{1}(\tau)$). Since for $a, a' \in G_{\tau}(\sigma)$, $a \in \mathscr{C}_{\alpha}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ and $a' \in \mathscr{C}_{\alpha'}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ imply $aa' \in \mathscr{C}_{\alpha\alpha'}(\sigma) \setminus \mathscr{C}_{0}(\tau)$, we get $f(a, \alpha') = \tau(aa') = \tau(a)\tau(a') = f(\alpha)f(a')$, so f is a homomorphism. For any $\beta \in G(\tau)$, there is an $\alpha \in G(\sigma)$ with $\mathscr{C}_{\alpha}(\sigma) \cap \mathscr{C}_{\beta}(\tau) \neq \phi$, because of $\mathscr{C}_{0}(\sigma) \cap \mathscr{C}_{\beta}(\tau) \subseteq \mathscr{C}_{0}(\tau) \cap \mathscr{C}_{\beta}(\tau) = \phi$. Hence, there is a $b \in \mathscr{C}_{\alpha}(\sigma) \setminus \mathscr{C}_{0}(\tau)$ with $f(a) = \tau(b) = \beta$, so f is surjective. Suppose $\beta \in G(\tau)$ and $\alpha \in \mathscr{C}_{\beta}(\tau)$. Since $\mathscr{C}_{0}(\sigma) \cap \mathscr{C}_{\beta}(\tau) = \phi$, there exists an $\alpha \in G(\sigma)$ with $\alpha \in \mathscr{C}_{\alpha}(\sigma)$, so we get $\alpha \in G_{\alpha}(\sigma) \cap \mathscr{C}_{\beta}(\tau) \subseteq \mathscr{C}_{\alpha}(\sigma)$. It is easy to see that $\mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_{0}(\tau) \cup \mathscr{C}_{\beta}(\tau)$ for all $\alpha \in G_{\tau}(\sigma)$ with $\alpha \in G_{\tau}(\sigma)$. It is easy to see that $\alpha \in \mathscr{C}_{\alpha}(\sigma) \cap \mathscr{C}_{\beta}(\tau) \cup \mathscr{C}_{\beta}(\tau)$ for all $\alpha \in G_{\tau}(\sigma)$ with $\alpha \in G_{\alpha}(\sigma) \cap G_{\alpha}(\sigma)$.

Definition. Let G and H be groups. A partial map $f: G \to H$ which is a homomorphism of a subgroup G_1 onto H, will be called a *partial epimorphism*, and for $b \in H$, $f^{-1}(H)$ and $f^{-1}(b)$ denote subsets $f^{-1}(H):=G_1$ and $f^{-1}(b):=\{x \in G_1 \mid f(x)=b\}$ of G.

Theorem 2.3. Let σ and τ be elements of X(R, F). $P(\sigma) \subseteq P(\tau)$ holds if and only if there is a partial epimorphism $f: G(\sigma) \to G(\tau)$ with $\mathcal{C}_{\beta}(\tau) \subseteq \bigcup_{\alpha \in f^{-1}(\beta)} \mathcal{C}_{\alpha}(\sigma) \subseteq \mathcal{C}_{0}(\tau) \cup \mathcal{C}_{\beta}(\tau)$ for every $\beta \in G(\tau)$.

Proof. By (2.2), the "only if" part is proved. Suppose that $f: G(\sigma) \to G(\tau)$ is a partial epimorphism and $\mathscr{C}_{\beta}(\tau) \subseteq \bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_{0}(\tau) \cup \mathscr{C}_{\beta}(\tau)$ for every $\beta \in G(\tau)$. Then we have $\bigcup_{\beta \in G(\tau)} \mathscr{C}_{\beta}(\tau) \subseteq \bigcup_{\beta \in G(\tau)} (\bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma)) \subseteq \bigcup_{\alpha \in G(\sigma)} \mathscr{C}_{\alpha}(\sigma)$. and so $\mathscr{C}_{0}(\sigma) \subseteq \mathscr{C}_{0}(\tau)$. Since $\mathscr{C}_{1}(\sigma) \subseteq \bigcup_{\alpha \in f^{-1}(1)} \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_{0}(\tau) \cup \mathscr{C}_{1}(\tau)$, we get $P(\sigma) = \mathscr{C}_{0}(\sigma) \cup \mathscr{C}_{1}(\sigma) \subseteq P(\tau)$.

Corollary 2.4. Let σ and τ be elements of X(R, F).

- (1) $P(\sigma) \subseteq P(\tau)$ and $\mathscr{C}_0(\sigma) = \mathscr{C}_0(\tau)$ hold, if and only if there is an epimorphism $f: G(\sigma) \to G(\tau)$ with $\mathscr{C}_{\beta}(\tau) = \bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma)$ for every $\beta \in G(\tau)$.
- (2) $P(\sigma) \subseteq P(\tau)$ and $|G(\sigma)| = |G(\tau)|$ hold, if and only if there is an isomorphism $f: G(\sigma) \longrightarrow G(\tau)$ with $\mathscr{C}_{f(a)}(\tau) \subseteq \mathscr{C}_{a}(\sigma) \subseteq \mathscr{C}_{0}(\tau) \cup \mathscr{C}_{f(a)}(\tau)$ for every

 $\alpha \in G(\sigma)$.

- (3) $P(\sigma) = P(\tau)$ holds, if and only if there is an isomorphism $f: G(\sigma) \rightarrow G(\tau)$ with $\tau = f \cdot \sigma$ (i.e. $\mathcal{C}_{\sigma}(\sigma) = \mathcal{C}_{f(\sigma)}(\tau)$ for every $\sigma \in G(\sigma)$).
- *Proof.* (1): Suppose $P(\sigma) \subseteq P(\tau)$ and $\mathscr{C}_0(\sigma) = \mathscr{C}_0(\tau)$. By (2.2), there is an epimorphism $f: G_{\tau}(\sigma) \to G(\tau)$ with $\mathscr{C}_{\beta}(\tau) \subseteq \bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma) \subseteq \mathscr{C}_0(\tau) \cup \mathscr{C}_{\beta}(\tau)$ for all $\beta \in G(\tau)$. The identity means that $\mathscr{C}_{\beta}(\tau) = \bigcup_{\alpha \in f^{-1}(\beta)} \mathscr{C}_{\alpha}(\sigma)$ and $G_{\tau}(\sigma) = G(\sigma)$. The converse is easy by (2.3).
- (2) follows from that a partial epimorphism $f: G(\sigma) \to G(\tau)$ with $|G(\sigma)| = |G(\tau)|$ is an isomorphism.
 - (3) is easy from (1) and (2).

Definition. On X(R, F), we can define an equivalent relation \sim as follows: For σ , $\tau \in X(R, F)$, $\sigma \sim \tau$ if and only if there is an isomorphism $f : G(\sigma) \rightarrow G(\tau)$ with $\tau = f \cdot \sigma$, i.e. $P(\sigma) = P(\tau)$. By $X^*(R, F)$, we denote the quotient set $X(R, F)/\sim$. Then, we can identify $X^*(R, F)$ with the sets $P(\sigma)$ for all $\sigma \in X(R, F)$, and introduce the Zarisky topology on $X^*(R, F)$, that is, the finite intersection of $D(a) := \{P(\sigma) \mid a \notin P(\sigma), \sigma \in X(R, F)\}$ for all $a \in R$.

Proposition 2.5. The map $P(-): X(R, F) \to X^*(R, F)$; $\sigma \sim P(\sigma)$ is a continuous map, so $X^*(R, F)$ is a compact space.

Proof. For any $a \in R$, $P^{-1}(D(a)) = \{ \sigma \in X(R, F) \mid \sigma(a) \neq 0, 1 \} = \bigcup_{\alpha \in G(\sigma)-\{1\}} H_{\alpha}(a)$, so $P^{-1}(D(a))$ is a open subset of X(R, F).

Definition. A subset Y of X(R, F) is said to be *irreducible*, if for any closed subset A and B of X(R, F), $Y \subseteq A \cup B$ implies either $Y \subseteq A$ or $Y \subseteq B$.

The following lemma is immediately obtained from the above definition:

Lemma 2.6. A subset Y of X(R, F) is irreducible, if and only if for any $H_{a_1}^*(a_1)$, $H_{a_2}^*(a_2)$, \cdots , $H_{a_n}^*(a_n)$, $Y \subseteq \bigcup_{i=1}^n H_{a_i}^*(a_i)$ implies $Y \subseteq H_{a_i}^*(a_i)$ for some i.

Theorem 2.7. If Y is a non-empty irreducible subset of X(R, F), there exists a $\sigma \in X(R, F)$ such that the closure $Cl(\{\sigma\})$ of $\{\sigma\}$ coincides with the closure Cl(Y) of Y, and the following identities hold: $P(\sigma) = \bigcap_{\tau \in Y} P(\tau)$ and $\mathscr{C}_{\sigma}(\sigma) = (\bigcap_{\tau \in Y} \mathscr{C}_{\sigma}(\tau) \cup \mathscr{C}_{\sigma}(\tau)) \setminus \mathscr{C}_{\sigma}(\sigma)$ for $\sigma \in F^*$.

Proof. Let Y be a non-empty irreducible subset of X(R,F). We set $\mathscr{C}_0(Y):=\bigcap_{\tau\in Y}\mathscr{C}_0(\tau)$ (= $\{a\in R\mid Y\subseteq H_0(a)\}$) and $\mathscr{C}_a(Y):=(\bigcap_{\tau\in Y}\mathscr{C}_0(\tau)\cup \mathscr{C}_a(\tau))\setminus \mathscr{C}_0(Y)$ (= $\{a\in R\mid Y\subseteq H_a^*(a), Y\not\subseteq H_0(a)\}$) for $\alpha\in F^*$. Then, we have $\mathscr{C}_0(Y)\cup \mathscr{C}_a(Y)=\{a\in R\mid Y\subseteq H_a^*(a)\}$ for every $\alpha\in F^*$. It is easy to check the conditions of (1.1) for the set $\{\mathscr{C}_a(Y)\mid \alpha\in F\}$. But, we try only to check for conditions 1) and 3).

- 1): To show $R = \bigcup_{\alpha \in F} \mathscr{C}_{\alpha}(Y)$, suppose $a \in R \setminus \mathscr{C}_{0}(Y)$. Put $\{\alpha_{1}, \alpha_{2}, \dots, \alpha_{r}\}$ = $\{\tau(a) \mid \tau \in Y\} \cap F^{*} \ (\neq \phi)$, then it means $Y \subseteq H^{*}_{\alpha_{1}}(a) \cup H^{*}_{\alpha_{2}}(a) \cup \dots \cup H^{*}_{\alpha_{r}}(a)$, so $Y \subseteq H^{*}_{\alpha_{t}}(a)$ for some α_{i} , since Y is irreducible. Hence, we get $a \in \mathscr{C}_{\alpha_{t}}(Y)$.
- 3): To show $\mathcal{C}_{\alpha}(Y)\mathcal{C}_{\beta}(Y) \subseteq \mathcal{C}_{\alpha\beta}(Y)$, suppose $\mathcal{C}_{\alpha}(Y) \neq \phi$ and $\mathcal{C}_{\beta}(Y) \neq \phi$. If $\alpha\beta = 0$, either $\alpha = 0$ or $\beta = 0$, so $\mathcal{C}_{\alpha}(Y)\mathcal{C}_{\beta}(Y) \subseteq \mathcal{C}_{0}(Y)$ (= $\mathcal{C}_{\alpha\beta}(Y)$) holds. Suppose $\alpha\beta \neq 0$. If $\alpha \in \mathcal{C}_{\alpha}(Y)$ and $b \in \mathcal{C}_{\beta}(Y)$, $\tau(ab) = \tau(a)\tau(b)$ is either $\alpha\beta$ or 0 for every $\tau \in Y$, that is, $ab \in \mathcal{C}_{0}(Y) \cup \mathcal{C}_{\alpha\beta}(Y)$. If $ab \in \mathcal{C}_{0}(Y)$, i.e. $\tau(ab) = 0$ for all $\tau \in Y$, then $Y \subseteq H_{0}(ab) = H_{0}(a) \cup H_{0}(b)$, so we get either $Y \subseteq H_{0}(a)$ or $Y \subseteq H_{0}(b)$, i.e. either $a \in \mathcal{C}_{0}(Y)$ or $b \in \mathcal{C}_{0}(Y)$, which contradicts to $\mathcal{C}_{0}(Y) \cap \mathcal{C}_{\alpha}(Y) = \mathcal{C}_{0}(Y) \cap \mathcal{C}_{\beta}(Y) = \phi$. Hence, we get $ab \notin \mathcal{C}_{0}(Y)$ and $ab \in \mathcal{C}_{\alpha\beta}(Y)$. Thus, by (1.1) there is a signature $\sigma \in X(R, F)$ which satisfies $\mathcal{C}_{\alpha}(\sigma) = \mathcal{C}_{\alpha}(Y)$ for all $\alpha \in F$. Since $\{a \in R \mid \sigma \in H_{\alpha}(a)\} = \{a \in R \mid Y \subseteq H_{\alpha}(a)\}$ holds for all $\alpha \in F$, we get $\mathrm{Cl}(\{\sigma\}) = \mathrm{Cl}(Y)$ and $\mathrm{P}(\sigma) = \cap_{\tau \in Y} \mathrm{P}(\tau)$.

Definition. By $X_2(R, F)$, or simply $X_2(R)$, we denote a subspace $\{\sigma \in X(R, F) \mid |G(\sigma)| = 2\}$ of X(R, F), and by $X_2(R)$ a subspace $\{P(\sigma) \mid \sigma \in X_2(R)\}$ of $X^*(R, F)$.

Proposition 2.8. (1) $X_2(R)$ is a closed subset of X(R, F), so it is compact.

- (2) The map $P(-): X_2(R) \to X_2^*(R); \ \sigma \sim \to P(\sigma)$ is homeomorphism, so we may regard as $X_2(R) = X_2^*(R)$.
- (3) The finite intersections of $H_1(a) \cap X_2(R)$ for $a \in R$ form an open basis of $X_2(R)$.

Proof. If $\sigma \in X(R, F) \setminus X_2(R)$, there is an $a \in R$ with $\sigma(a) \notin \{1, -1\}$, which means $\sigma \in H_{\sigma}(a)$ and $H_{\sigma}(a) \cap X_2(R) = \emptyset$. Thus, we get (1).

(2): It is easy to see that $P(-): X_2(R) \to X_2^*(R)$ is a bijection. By (2.5), P(-) is continuous and the image of $H_1(a) \cap X_2(R)$ by P(-) is $\{P(\sigma) \in X_2^*(R) \mid \sigma(a) = 1, \sigma \in X_2(R)\} = \{P(\sigma) \in X_2^*(R) \mid -a \notin P(\sigma)\} = D(-a) \cap X_2^*(R)$ which is an open subset of $X_2^*(R)$, so $P(-): X_2(R) \to X_2^*(R)$ is a homeomorphism.

(3) is obvious.

Remark 2.9. Let σ and τ be elements in $X_2(R)$.

- (1) $P(\sigma) \subseteq P(\tau)$ if and only if $\mathcal{C}_1(\sigma) \supseteq \mathcal{C}_1(\tau)$.
- (2) $P(\sigma) \subseteq P(\tau)$ and $\mathcal{C}_0(\sigma) = \mathcal{C}_0(\tau)$ imply $\sigma = \tau$.
- (3) Suppose $P(\sigma) \subseteq P(\tau)$. Then, for any $a \in R$, we have that $\sigma \in H_1^*(a) \Rightarrow \tau \in H_1^*(a)$, $\sigma \in H_0(a) \Rightarrow \tau \in H_0(a)$ and $\tau \in H_1(a) \Rightarrow \sigma \in H_1(a)$. Furthermore, if $P(\sigma) \neq P(\tau)$, there exists an $r \in R$ with $\sigma \in H_1(r)$ and $\tau \notin H_1(r)$.

Definition. An infinite preprime P with $P \cup -P = R$ will be said to be of *level* 1. For an infinite preprime P, we denote by P^{\dagger} a subset $P \setminus (P \cap -P)$ (= $P \setminus -P$) of P. If P is an infinite preprime of level 1, then $(P \cap -P)$ is a two sided ideal of R.

The following lemma is easy:

Lemma 2.10. Let P be an infinite preprime of level 1. Then the following conditions are equivalent:

- (1) P is an infinite quasiprime.
- $(2) \quad P^{\dagger} \cdot P^{\dagger} \subseteq P^{\dagger}.$
- (3) For $x \in R$ and $y \in P^{\dagger}$, either $xy \in P$ or $yx \in P$ implies $x \in P$.

Proposition 2.11. (1) Let P be an infinite quasiprime of level 1. Then, $P^{\dagger} + P \subseteq P^{\dagger}$ holds. Suppose $x \in R$ and $y \in P^{\dagger}$. If $xy \in P^{\dagger}$ or $yx \in P^{\dagger}$ (resp. $xy \in (P \cap -P)$), then $x \in P^{\dagger}$ (resp. $x \in (P \cap -P)$).

(2) $X_2^*(R)$ is the set of all infinite quasiprimes of level 1.

Proof. (1): Suppose that P is infinite quasiprime of level 1, $y \in P^+$ (= $R \setminus -P$) and $z \in P$. $-(y+z) \in P$ implies $-(y+z)+z \in P$, but $-y \notin P$, hence $y+z \notin -P$, i.e. $y+z \in P^+$. We get $P^++P \subseteq P^+$. If for $x \in R$, $xy \in P^+$ (resp. $xy \in P \cap -P$), then by (2.10), $x \in P$ (resp. $x \in P \cap -P$). Since $x \in P \cap -P$, implies $xy \in P \cap -P$, i.e. $xy \notin P^+$, we get that $xy \in P^+$ implies $x \in P \setminus (P \cap -P) = P^+$.

(2): For any $P(\sigma) \in X_2^*(R)$, by (1.2), $P(\sigma)$ is an infinite quasiprime of level 1. Conversely, suppose that P is any infinite quasiprime of level 1. (2.10), (1) in (2.11) and (1.1) mean that there is a $\sigma \in X_2(R)$ such that $\mathcal{C}_0(\sigma) = P \cap -P$, $\mathcal{C}_1(\sigma) = P^{\dagger}$ and $\mathcal{C}_{-1}(\sigma) = -P^{\dagger}$. Hence, we get $P = P(\sigma) \in X_2^*(R)$.

Proposition 2.12. Let Y be any totally ordered non-empty subset of $(X_2^*(R), \subseteq)$.

- (1) Regarding as $Y \subseteq X_2^*(R) = X_2(R) \subseteq X(R, F)$, Y is irreducible subset of X(R, F), and there is a $\sigma \in X_2(R)$ such that $Cl(\{\sigma\}) = Cl(Y)$ and $P(\sigma) = \bigcap_{\tau \in Y} P(\tau) = Inf(Y)$ in $(X_2^*(R), \subseteq)$.
- (2) There exists the Sup(Y) in $(X_2^*(R), \subseteq)$.
- (3) For any $\sigma \in X_2(R)$, there is a maximal element in $\{P(\tau) \in X_2^*(R) \mid P(\sigma) \subseteq P(\tau)\}$, and there is a minimal element in $\{P(\rho) \in X_2^*(R) \mid P(\rho) \subseteq P(\sigma)\}$.

Proof. Let Y be a totally ordered subset of $(X_2^*(R), \subseteq)$. Suppose $Y \subseteq H_1^*(a_1) \cup \cdots \cup H_1^*(a_r) \cup H_0(b_1) \cup \cdots \cup H_0(b_s)$. If $Y \not\subseteq H_1^*(a_i)$ and $Y \not\subseteq H_0(b_j)$ for every i and j, then there exist elements σ_i and τ_j of Y such that $\sigma_i \not\in H_1^*(a_i)$ and $\tau_j \not\in H_0(b_j)$ for $i = 1, 2, \cdots, r$ and $j = 1, 2, \cdots, s$. Since Y is totally ordered, there is a unique minimal element $P(\rho)$ in $P(\sigma_1), \cdots, P(\sigma_r), P(\tau_1), \cdots, P(\tau_s)$. By (2.9), it follows that $\rho \not\in H_1^*(a_i)$ and $\rho \not\in H_0(b_j)$ for every $i = 1, 2, \cdots, r$ and $j = 1, 2, \cdots, s$, which is a contradiction. Hence, Y is included in some $H_1^*(a_i)$ or $H_0(b_j)$, so Y is irreducible.

- (2): Since Y is totally ordered, it follows that $P: \bigcup_{\tau \in Y} P(\tau)$ is an infinite preprime of level $1, P \cap -P = \bigcup_{\tau \in Y} (P(\tau) \cap -P(\tau)) = \bigcup_{\tau \in Y} \mathscr{C}_0(\tau)$ and $R/(P \cap -P)$ is an integral domain. Hence, P is an infinite quasiprime of level 1 which is contained in $X_2^*(R)$ by (2.11) and coincides with Sup(Y).
 - (3) is obtained by Zorn's lemma.

Lemma 2.13. (cf. [8], (2.1)). Let σ and τ be elements in $X_2(R)$.

- (1) $P(\sigma) \nsubseteq P(\tau)$ and $P(\tau) \nsubseteq P(\sigma)$ imply $\mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau) \neq \phi$.
- (2) If there exists $a \ \rho \in X_2(R)$ with $P(\rho) \subseteq P(\sigma) \cap P(\tau)$, either $P(\sigma) \subseteq P(\tau)$ or $P(\tau) \subseteq P(\sigma)$ holds.
- (3) A set $\{P(\rho) \in X_2^*(R) \mid P(\sigma) \subseteq P(\rho)\}$ has a unique maximal element with respect to the ordering " \subseteq ".
- *Proof.* (1) Suppose $P(\sigma) \nsubseteq P(\tau)$ and $P(\tau) \nsubseteq P(\sigma)$, then there are $a \in P(\sigma) \setminus P(\tau)$ and $b \in P(\tau) \setminus P(\sigma)$ which mean $a \in \mathcal{C}_1(\tau) \cap P(\sigma)$ and $b \in \mathcal{C}_1(\sigma) \cap P(\tau)$. Accordingly, we get that $a-b \in (P(\sigma)+\mathcal{C}_1(\sigma)) \cap (\mathcal{C}_{-1}(\tau)-P(\tau)) \subseteq \mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau)$, so $\mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau) \neq \phi$.
- (2): Suppose that $P(\rho) \subseteq P(\sigma) \cap P(\tau)$, $P(\sigma) \nsubseteq P(\tau)$ and $P(\tau) \nsubseteq P(\sigma)$ hold for some ρ , σ , $\tau \in X_2^*(R)$. By (1), we get $\mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau) \neq \phi$. However, it is contrary to $\mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau) \subseteq \mathcal{C}_1(\rho) \cap \mathcal{C}_{-1}(\rho) = \phi$.
 - (3) is immediate from (2) and (2.12).

Notation. By $X_2^M(R)$ and $X_2^m(R)$, we denote $X_2^M(R) := \{ \sigma \in X_2(R) \mid P(\sigma) \}$ is maximal in $(X_2^*(R), \subseteq) \}$ and $X_2^m(R) := \{ \sigma \in X_2(R) \mid P(\sigma) \}$ is minimal in $(X_2^*(R), \subseteq) \}$.

Remark 2.14. If R is commutative, then $X_2^M(R)$ coincides with the set of infinite primes of level 1 in R.

Proposition 2.15. (1) $X_2^M(R)$ and $X_2^m(R)$ are Hausdorff spaces as subspaces of $X_2(R)$.

- (2) $X_2^m(R)$ is dense in $X_2(R)$, i.e. $Cl(X_2^m(R)) = X_2(R)$.
- (3) For any $\sigma \in X_2(R)$, a subset $\{\tau \in X_2(R) \mid P(\sigma) \subseteq P(\tau)\}$ is a closed subset of $X_2(R)$, so is a subset $\{\tau\}$ for every element $\tau \in X_2^M(R)$.
- *Proof.* (1): If σ and τ are distinct elements in $X_2^M(R)$ (resp. $X_2^m(R)$), then $P(\sigma) \nsubseteq P(\tau)$ and $P(\tau) \nsubseteq P(\sigma)$. By (2.13), there is an $a \in \mathcal{C}_1(\sigma) \cap \mathcal{C}_{-1}(\tau)$ which satisfies $\sigma \in H_1(a)$, $\tau \in H_{-1}(a)$ and $H_1(a) \cap H_{-1}(a) = \phi$.
- (2): For any $\sigma \in X_2(R)$, by (2.12) there is a $\rho \in X_2^m(R)$ with $P(\sigma) \subseteq P(\sigma)$. (2.9) means that for any $a \in R$, $\sigma \in H_1(a)$ implies $\rho \in H_1(a)$, that is, $X_2^m(R)$ is dense in $X_2(R)$.
- (3): For a $\sigma \in X_2(R)$, we put $Y = \{P(\tau) \in X_2(R) \mid P(\sigma) \subseteq P(\tau)\}$. If $\rho \in X_2(R) \setminus Y$, then by (2.9) we have $P(\sigma) \nsubseteq P(\rho)$ and $\mathcal{C}_1(\rho) \nsubseteq \mathcal{C}_1(\sigma)$, so there is an $a \in \mathcal{C}_1(\rho) \setminus \mathcal{C}_1(\sigma)$. $H_1(a)$ is an open subset with $\rho \in H_1(a)$ and $H_1(a) \cap Y = \emptyset$, that is, Y is closed in $X_2(R)$.
- 3. Signatures of a commutative ring. In this section, we assume that R is a commutative ring with identity 1, and F is a finite f-semigroup.

Notation. Let S be a multiplicatively closed subset of R such that $1 \in S$ and $0 \notin S$. By $S^{-1}R$, we denote the quotient ring by S, and by $\psi^s: R \to S^{-1}R$, the canonical ring homomorphism. By $X^s(R, F)$, we denote a subset $X^s(R, F)$: $= \{\sigma \in X(R, F) \mid \mathscr{C}_0(\sigma) \cap S = \phi\}$. If $\lambda \in X(R, F)$ and $S = R \setminus \mathscr{C}_0(\lambda)$ for the prime ideal, we denote by $X^{\lambda}(R, F)$, $R^{(\lambda)}$ and ℓ^{λ} instead of $X^s(R, F)$, $S^{-1}R$ and ℓ^s that is, $X^{\lambda}(R, F) = \{\sigma \in X(R, F) \mid \mathscr{C}_0(\sigma) \subseteq \mathscr{C}_0(\lambda)\}$, $R^{(\lambda)} = (R \setminus \mathscr{C}_0(\lambda))^{-1}R$ and ℓ^s : $R \to R^{(\lambda)}$.

Theorem 3.1. Let S be a multiplicatively closed subset of R with $1 \in S$ and $0 \notin S$. The map $X(\psi^s, I)$ induces a homeomorphism of $X(S^{-1}R, F)$ onto the subspace $X^s(R, F)$ of X(R, F), and $G(\pi) = G(X(\psi^s, I)(\pi))$ holds for every $\pi \in S$

 $X(S^{-1}R, F)$.

Proof. First, we shall show that Im $X(\psi^s, I) = X^s(R, F)$ and $X(\psi^s, I)$ is a bijection. For any $\pi \in X(S^{-1}R, F)$, it is easy that $\psi^s(\mathcal{C}_0(\pi \cdot \psi^s) \cap S) \subseteq \mathcal{C}_0(\pi) \cap \psi^s(S) = \phi$, so $\mathcal{C}_0(\pi \cdot \psi^s) \cap S = \phi$ and $X(\psi^s, I)(\pi) = \pi \cdot \psi^s \in X^s(R, F)$. Conversely, for a $\sigma \in X^s(R, F)$, we can define a map $\pi : S^{-1}R \to F$ as follows: For any $x \in S^{-1}R$, there are $s \in S$ and $r \in R$ with $\psi^s(s)x = \psi^s(r)$. Then, we put $\pi(x) = \sigma(s)^{-1}\sigma(r)$, so the map π is well defined because of $\mathcal{C}_0(\sigma) \cap S = \phi$. It is easy to see that π is a unique signature satisfying $X(\psi^s, I)(\pi) = \pi \cdot \psi^s = \sigma$. Hence, we get that $X(\psi^s, I) : X(S^{-1}R, F) \to X^s(R, F)$ is a bijection. Since $|F| < \infty$, it follows that $G(\pi) = G(\pi \cdot \psi^s)$ is a finite subgroup of F^* . Let $|G(\pi)| = n$. For any $a \in S^{-1}R$ and $a \in G(\pi)$, there are $s \in S$ and $r \in R$ with $\psi^s(s)a = \psi^s(r)$, and $H_a(a) = H_a(\psi^s(s^n)a) = H_a(\psi^s(s^{n-1}r))$ hold. We get that $X(\psi^s, I)(H_a(a)) = \{\pi \cdot \psi^s \in X^s(R, F) \mid \pi(\psi^s(s^{n-1}r) = a\} = H_a(s^{n-1}r) \cap X^s(R, F)$ is a homeomorphism. If $X(\psi^s, I)(\pi) = \pi \cdot \psi^s = \sigma$ for $\pi \in X(S^{-1}R, F)$, it is easy to see that $G(\pi) = G(\sigma)$.

- **Corollary 3.2.** (1) Let \mathscr{C} be a prime ideal of R, and let $S = R \setminus \mathscr{C}$. The map $X(\psi^s, I)$ induces a homeomorphism $X(S^{-1}R, F) \to X^s(R, F)$.
- (2) For any $\lambda \in X(R, F)$, $X(\psi^{\lambda}, I) : X(R^{(\lambda)}, F) \to X^{\lambda}(R, F)$ is a homeomorphism.

Notation 3.3. For any $\lambda \in X(R, F)$, λ belongs to $X^{\lambda}(R, F)$. By λ^* , we denote the signature $\lambda^*: R^{(\lambda)} \to F$ with $\lambda = \lambda^* \cdot \psi^{\lambda}$ determined by λ in (3.2). Then, $\lambda^*((R^{(\lambda)})^*) = G(\lambda^*) = G(\lambda)$ hold, (cf. (1.9)).

Remark 3.4. Let R be a semilocal ring with the maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \cdots$, \mathfrak{m}_r and $\sigma \in X(R, F)$. If $\alpha \in \bigcap_{i=1}^r G_i(\sigma)$, then $\mathscr{C}_{\alpha}(\sigma) \cap R^* \neq \emptyset$, that is, there is a $u \in R^*$ with $\mathscr{C}_{\alpha}(\sigma) = u\mathscr{C}_1(\sigma)$, where $G_i(\sigma) = G_{\mathfrak{m}_i}(\sigma) = \{\alpha \in G(\sigma) \mid \mathscr{C}_{\alpha}(\sigma) \notin \mathfrak{m}_i\}$. Hence, if $G_i(\sigma) = G(\sigma)$ for every $i = 1, 2, \cdots, r$, then the conditions in (1.9) hold.

Proof. Suppose $\alpha \in \bigcap_{i=1}^r G_i(\sigma)$. Using the induction on the umber k of maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \cdots, \mathfrak{m}_k$, we show that there is a $u \in \mathscr{C}_{\alpha}(\sigma)$ with $u \notin \mathfrak{m}_i$ for $i=1,2,\cdots,k$. Put $|G(\sigma)|=n$. If $\mathscr{C}_{\alpha}(\sigma)\cap\mathfrak{m}_i=\phi$, then we may exclude such a maximal ideal \mathfrak{m}_i . Hence we may suppose $\mathscr{C}_{\alpha}(\sigma)\cap\mathfrak{m}_i\neq\phi$ for $i=1,2,\cdots,k$. Using the assumption on induction for $\mathfrak{m}_1,\mathfrak{m}_2,\cdots,\mathfrak{m}_{i-1},\mathfrak{m}_{i+1},\cdots,\mathfrak{m}_k$, we can find $u_i\in\mathscr{C}_{\alpha}(\sigma)$ with $u_i\notin\mathfrak{m}_j$ for $j=1,2,\cdots,i-1,i+1,\cdots,k$. If u_i

 $\notin m_i$ for some i, then we can take $u = u_i$. If $u_i = m_i$ for all i, then we put $v_i = u_2(u_3 \cdots u_k)^n$ and $v_i = u_1(u_2 \cdots u_{i-1}u_{i+1} \cdots u_k)^n$ for $i = 2, \cdots, k$. Since $v_i \in m_j \setminus m_i$ for every $i \neq j$ and $v_i \in \mathscr{C}_a(\sigma)$ for all i, we get $u = v_1 + v_2 + \cdots + v_k \in \mathscr{C}_a(\sigma)$ and $u \notin m_i$ for all i. Thus, there exists a $u \in R^*$ with $\mathscr{C}_a(\sigma) = u\mathscr{C}_1(\sigma)$.

In the last of this scetion, we note a relation between $X_2(R)$ and the set of ring homomorphisms of the Witt ring W(R) on to the integers Z. Let W(R) be the Witt ring of bilinear spaces over R (cf. [1], p. 19). By Sig(R), we denote the set of ring-homomorphisms of W(R) on to Z. For $a \in R^*$, [a] denotes the element of W(R) with its representative $\langle a \rangle$, where $\langle a \rangle$ denotes a bilinear space of rank one with value a modulo R^{*2} .

Lemma 3.5. For any $\lambda \in X_2(R)$, the signature λ^* , defined in (3.3), determines a ring homomorphism $\lambda^* : W(R^{(\lambda)}) \to \mathbb{Z}$, which is denoted by λ^* using the same notation. Therefore, a map $\theta : X_2(R) \to \operatorname{Sig}(R)$; $\lambda \sim \to \lambda^* \cdot W(\psi^{\lambda})$ is defined.

Proof. For $\lambda \in X_2(R)$, $\lambda^* : R^{(\lambda)} \to F$ is a signature with $\lambda^* \cdot \psi^{\lambda} = \lambda$ and $G(\lambda^*) = G(\lambda) = \{1, -1\}$. $\mathscr{C}_1(\lambda^*)$ satisfies the following conditions; $\mathscr{C}_1(\lambda^*) + \mathscr{C}_1(\lambda^*) \subseteq \mathscr{C}_1(\lambda^*)$, $\mathscr{C}_1(\lambda^*) \cdot \mathscr{C}_1(\lambda^*) \subseteq \mathscr{C}_1(\lambda^*)$, $\mathscr{C}_1(\lambda^*) \cap -\mathscr{C}_1(\lambda^*) = \phi$ and $\mathscr{C}_1(\lambda^*) \cup -\mathscr{C}_1(\lambda^*) = R^{(\lambda)}$. Hence, we can define an ordering on the local ring $R^{(\lambda)}$ which determines a ring homomorphism $\lambda^* : W(R^{(\lambda)}) \to Z$ with $\lambda^*([a]) = \lambda^*(a)$ ($\in G(\lambda^*) = \{1, -1\} \subseteq Z$) for every $a \in (R^{(\lambda)*})$ (cf. (2.2) and (2.5) in [12]).

Proposition 3.6. Let \mathscr{C} be a prime ideal of R, and let $S = R \setminus \mathscr{C}$.

- (1) If P is an infinite quasiprime of level 1 in $S^{-1}R$, then so is the inverse image $(\psi^s)^{-1}(P)$ in R.
- (2) Let $\lambda \in X_2(R)$ and $\mu \in \text{Sig}(R)$, and $Q = \{a \in R \mid a \in S, \mu([\psi^s(a)]) = 1\}$. If $Q \subseteq \mathcal{C}_1(\lambda)$, then there is an R-algebra homomorphism $f: S^{-1}R \to R^{(\lambda)}$ with $\mu = \lambda^* \cdot W(f)$.
- *Proof.* (1): For any infinite quasiprime P in $S^{-1}R$, it is easy to see that $(\psi^s)^{-1}(P)$ is an infinite preprime and $(\psi^s)^{-1}(P\cap P)=(\psi^s)^{-1}(P)\cap -(\psi^s)^{-1}(P)$ is a prime ideal of R.
- (2): Since Q is multiplicatively closed and $Q \cup -Q = S$, it follows that $Q^{-1}Q = \{\psi^s(a)^{-1} \cdot \psi^s(b) \in S^{-1}R \mid a, b \in Q\}$ is a positive cone of an ordering on $S^{-1}R$ defined by μ . Since $Q \subseteq \mathcal{C}_1(\lambda)$, there is a natural R-algebra homomorphism $f: S^{-1}R \to \mathcal{C}_1(\lambda)^{-1}R = R^{(\lambda)}$. Since f carries the positive cone $Q^{-1}Q$ of

ordering on $S^{-1}R$ into the positive cone $\mathcal{C}_1(\lambda^*)$ of ordering on $R^{(\lambda)}$, so we get $\mu = \lambda^* \cdot W(f)$.

Corollary 3.7. If $\lambda, \lambda' \in X_2(R)$ with $P(\lambda) \subseteq P(\lambda')$, then there is an R-algebra homomorphism $g: R^{(\lambda')} \to R^{(\lambda)}$ with $\lambda'^* = \lambda^* \cdot W(g)$.

Proof. Since $P(\lambda) \subseteq P(\lambda')$ implies $\mathscr{C}_1(\lambda') \subseteq \mathscr{C}_1(\lambda)$, the proof is immediately from (3.6).

Theorem 3.8. The map $\theta: X_2(R) \to \operatorname{Sig}(R)$ is surjective, and $\theta(X_2^M(R)) = \operatorname{Sig}(R)$, that is, for any ring homomorphism $\mu: W(R) \to \mathbb{Z}$, there is an infinite prime P of level 1 in R such that $\mu([a]) = 1$ for all $a \in P \cap R^*$.

Proof. To show that $\theta: X_2(R) \to \operatorname{Sig}(R)$; $\lambda \sim \to \lambda^* \cdot \operatorname{W}(\psi^{\lambda})$ is surjective, suppose $\mu \in \operatorname{Sig}(R)$. By Lemma 1 and Proposition 1 in [9], there is a maximal ideal m of R, and for $S = R \setminus \mathbb{M}$ there is a ring homomorphism $\nu: \operatorname{W}(S^{-1}R) \to \mathbb{Z}$ with $\mu = \nu \cdot \operatorname{W}(\psi^s)$. We put $Q' = \{ \sum_i a_i \in S^{-1}R \mid a_i \in (S^{-1}R)^*, \nu([a_i]) = 1 \}$. By Theorem 4.1 in [14], it follows that $Q' + Q' \subseteq Q'$, $Q' \cdot Q' \subseteq Q'$, $1 \in Q'$ and $\mathcal{C} = (S^{-1}R) \setminus (Q' \cup Q')$ is a prime ideal of $S^{-1}R$ with $\mathcal{C} + Q' \subseteq Q'$. Hence, $P = \mathcal{C} \cup Q'$ is an infinite quasiprime of level 1 in $S^{-1}R$, and so is also $(\psi^s)^{-1}(P)$ in R by (3.6). Hence, there is a $\lambda \in X_2(R)$ with $P(\lambda) = (\psi^s)^{-1}(P)$. We shall show $\theta(\lambda) = \mu$. We put $Q = \{a \in S \mid \nu([\psi^s(a)]) = 1\}$. From the fact that $\psi^s(Q) = Q'$ and $(\psi^s)^{-1}(Q') = \mathcal{C}_1(\lambda)$, it follows that $Q \subseteq \mathcal{C}_1(\lambda)$, and using (3.6), there in an R-algebra homomorphism $f: S^{-1}R \to R^{(\lambda)}$ making the following diagram commute;

Thus, we get $\mu = \nu \cdot W(\psi^s) = \lambda^* \cdot W(\psi^s) = \theta(\lambda)$. In the second place, we shall show $\theta(X_2^M(R)) = \operatorname{Sig}(R)$. For any $\mu \in \operatorname{Sig}(R)$, we can find a $\lambda \in X_2(R)$ with $\theta(\lambda) = \mu$. By (2.13), we can also find a $\lambda' \in X_2^M(R)$ with $P(\lambda) \subseteq P(\lambda')$. By (3.7), there is an R-algebra homomorphism $g: R^{(\lambda')} \to R^{(\lambda)}$ with $\lambda'^* = \lambda^* \cdot W(g)$.

Therefore, we get $\mu = \theta(\lambda')$ by the following commutative diagram;

Corollary 3.9. If R is a semilocal ring, then the map θ induces a bijection $X_2^M(R) \to Sig(R)$.

Proof. To show that $\theta: X_2^M(R) \to Sig(R)$ is a bijection, we suppose that $\mu \in Sig(R)$ and $\sigma, \tau \in X_2^M(R)$ with $\theta(\sigma) = \theta(\tau) = \mu$. By Appendix B in [14], a subset $Q = \{\sum_{i=1}^n a_i b_i^2 \in R \mid a_1, a_2, \dots, a_n \in R^*, b_1, b_2, \dots, b_n \in R; \mu([a_i]) = 1, \sum_{i=1}^n b_i R = R\}$ of R satisfies that $Q + Q \subseteq Q$, $QQ \subseteq Q$, $QQ \subseteq Q$, and $QQ \subseteq Q$ and $QQ \subseteq Q$ is a prime ideal of $QQ \subseteq Q$ with $QQ \subseteq Q$. Hence, $QQ \subseteq Q$ is an infinite quasiprime of $QQ \subseteq Q$, and there is a $QQ \subseteq Q$ with $QQ \subseteq Q$. We can easily check that $QQ \subseteq Q$ and $QQ \subseteq Q$ we get $QQ \subseteq Q$ and $QQ \subseteq Q$

REFERENCES

- BAEZA: Quadratic Forms over Semilocal Rings, Lecture Notes Math. 655 Springer, Berlin, Heidelberg, New York, 1978.
- [2] E. Becker: Hereditary-Pythagorean Fields and Orderings of Higher Level, Monograficas de Math. 29, Rio de Janeiro, 1978.
- [3] E. Becker: Partial orders on a field and valuation rings, Comm. Algebra 7 (1979), 1933—1976.
- [4] E. Becker, J. Harman and A. Rosenberg: Signatures of fields and extension theory, J. reine angew. Math. 330 (1982), 53—75.
- [5] T. C. Craven: Orderings of higher level and semilocal rings, Math. Z. 176 (1981), 577-588.
- [6] T. C. Craven: On the prime ideal of an ordering of higher level, Math. Z. 180 (1982), 553-565.
- [7] T. C. Craven: Witt rings and orderings of skew fields, J. Algebra 77 (1982), 74-96.
- [8] M. Coste and M. F. Roy: La topologe du spectre reel, Contemporary Math. 8 (1982), 27-59.
- [9] A. Dress: The weak local and global principle in algebraic K-theory, Comm. Algebra 3 (1975), 615—661.
- [10] D. K. Harrison: Finite and infinite primes for rings and fields, Memoirs Amer. Soc. 68 (1966).
- [11] T. Kanzaki: A characterization of infinite primes of a commutative ring, unpublished.
- [12] T. Kanzaki and K. Kitamura: On Prime ideals of Witt ring over a local ring, Osaka J. Math. 9 (1972), 225—229.

- [13] T. Kanzaki and K. Kitamura: Notes on infinite primes of a commutative ring, Mathematica Japonica 28 (1983), 577—581.
- [14] M. Knebusch: Real closure of commutative rings, J. reine angew. Math. 274/275 (1975), 61-89.
- [15] M. Knebusch, A. Rosenberg and R. Ware: Structure of Witt rings and quotient of abelian group rings, Amer. J. Math. 94 (1972), 119—155.
- [16] M. Knebusch, A. Rosenberg and R. Ware: Signatures on semilocal rings, J. Algebra 26 (1973), 208 —250

DEPARTMENT OF MATHEMATICS AND PHYSICS
FACULTY OF SCIENCE AND TECHNOLOGY
KINKI UNIVERSITY
HIGASI-OSAKA, OSAKA 557, JAPAN

(Received November 10, 1991)