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SIGNATURES ON A RING

Terto KANZAKI

Introduction. The purpose of this paper is to define and to investigate a
generalization of signatures. As is well known, an ordering of a field X is given
by a signature ¢: K*— {+1}, or a ring homomorphism ¢: W(X)— Z. More
generally, an ordering of higher level of K is given by a character y: K*— §'
which is called a signature of K in [4]. We give a generalization of such
signatures, and a general theory of signatures of a ring. Let R be any ring with
identity 1, and F' a field-like semigroup (simply called f-semigroup) with zero
element 0, unit element 1 and a unique element —1 of order 2, which is defined
in §1. A signature of R over F is defined as a map ¢0: R — F satisfying
conditions o(—1) = —1, 6(ab) = o(a)o(b), and o(a+ b) = o(b) providing o(a)
= 0 or 6(a) = o(b), which includes notions of orderings or higher level orderings
of a field. Indeed, for a field R, if one takes F = GF(3): ={0, 1, —1}, the
signature ¢ gives an ordering of the field R. If one takes F = {0}US', the
signature ¢ coincides with one in [4]. This definition is motivated by the results
of Craven [5], [6], [7], and Becker [2], [3]. In §1, we introduce a topology on
the set X(R, F) of all signatures of R over F, which is a generalization of the
space of “real spectrum” in [8] and “space of orderings” in [16]. In §3, under
the assumption that R is a commutative ring and F is a finite-f-semigroup, it is
proved that for the quotient ring S™'R by a multiplicatively closed set S or R,
the topological space X(S™'R, F) is homeomorphic to a subspace X*(R, F) of
X(R, F), and for a semilocal commutative ring R, that there is a one to one
correspondence between the set of infinite primes of level 1 and the set of ring
homomorphism of the Witt ring W(R) onto the integers. Throughout this paper,
we assume that every ring has identity 1, every ring homomorphism maps 1 to
1, and the unit group of the ring R is denoted by R*. Furthermore, the number
of elements of a finite set F is denoted by |F|, and for sets A and B, A\B: =
{ee Al a & B}.

1. Signatures over any f-semigroup. Let R be any (non-commutative)
ring with identity 1.

Definition. A muiltiplicative abelian semigroup F with unit element 1 and
zero element 0, ie. x1 =1lx =x, x0=0x =0 for Vx € F, is called an £
semigroup (field-like semigroup), if the subset F* = F\{0} is a group with a
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unique element —1 of order 2.

Any field with characteristic not 2 is an f-semigroup.

Definition. Let F' be an f-semigroup. A map o0: R— F is called a

signature of R over F, if it satisfies the following conditions ;

1) o(—-1)= -1,

2) o(ab) = o(a)a(b) for all @, b € R,

3) either o(a) = 0 or o(a) = o(b) implies o(a+ b) = a(b).
By [10], a subset P of R which is closed under the addition and multiplication
of R, and which does not contain —1, is called a preprime, and a maximal
preprime is called a prime of R. A preprime containing 1 will be called an infinite
preprime, and a maximal infinite preprime of K. Furthermore, an infinite
preprime P will be called an infinite quasiprime, if PN — P is a two sided ideal
of R such that R/(PN — P) is an integral domain.

Notation. For a signature 6: R — F of R over F and a € F, we denote
by F* G(a), .(0) and P(o) the following sets; F* = F\{0}, G(¢) = ImoN
F* ¢0)={r € R| o(r) = a} and P(c) = £o(a) UL (o).

Proposition 1.1.  Let {€.| a € F)} be a family of subsets of R. There exists -
a signature 6. R— F of R over F with®.(0) = €. for all @« € F, if and only
if the following conditions hold ;
(1) R =UuwerPs and $oN®e= ¢ for a+ B in F,
2 —-le¢,,
B) LulsSCRus if Ca+ ¢ and €5+ ¢,
4) BPat+PaS Lo and Lo+Pe S 8, for Pa+ ¢.

The proof is immediately from the definition of signature.

Corollary 1.2. Let 0: R— F be a signature.

(1) ®o(0) = P(o)N —P(0) is a prime ideal, and P(0) is an infinite quasiprime
of R. G(o) is a subsemigroup of F* containing —1.

(2 If G(o) is a finite set, then it is a group with even order.

Lemma 1.3. Let ¢ and t be signatures of R over F, and assume that G(0)
s a subgroup of F*.
(1) I €olo) S @u(7), then the following conditions are equivalent ;
1) Qolo) = $o(z),
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2) LAo)N®(7) = ¢ for some a € G(o),
3) Luo)NCP(7) = ¢ for all a € G(o).
(2) Suppose P(0) S P(7). Then €o(0) = €o(7) if and only if €.(c) S €.(7).

Proof. (1): 1)== 3) and 3)== 2) are easy.

2)==1): Suppose ¥¢(0) * Po(z), then H = {a € G(0) | R(c)NC(7) =
¢} is a non-empty subset of G(s). By (3) in (1.1), it follows that « € H and 8
€ G(o) imply a3 € H. Since G(o) is a group we get H = G(o).

(2) is easy from (1).

Definition. By X(R, F), we denote the set of all signatures of R over F.
On the f-semigroup F, we can define a topology such that {0} is a closed subsets
and {a} is an open subset of F for every @ € F*. For the discrete space R, the
power space F'* has an open base consisting of {f € F?| fla)) € U:; i =1,
2, +++, n} for every finite subset {ai, az, ***, a»} of R and any open subsets U,,
U, «++, U. of F. We introduce a topology on X(R, F) as a subspace of F*.

Proposition 1.4. The topological space X(R, F) has the following prop-
erties ;

(1) If F is a finite set, then X(R, F) is a compact space.

(2 Forany a< R and a € F*, Ho(a) ={c € X(R, F)| o(a) = a} is an
open subset of X(R, F). The finite intersections of He(a)'s for a € R and
a € F* form an open basis of X(R, F), so X(R, F) is a To-space.

3 For any a€ R and a € F, Ho(a) ={c € X(R, F)| o(a) =0} and
H(a) = Ho(a)UHd(a) are closed subset of X(R, F).

Proof. (1): Suppose |F| < co. By F.. we denote the discrete space on the
set F in order to distinguish from the above topology on F. It is easy to see that
X(R, F) is a closed subset of (Fx)*. Since X(R, F) is a compact subspace of
(F4)® which is compact by Tychonoff's theorem, so is the subspace X(R, F) of
F¥ which is the image of the continuous identity map 1: (Fa)f — F¥.

(2): From the definitions of the topology on F and F¥, it follows that the
subsets Ho(a) for 2 € R and @ € F* form a subbasis of open sets in X(R, F).
Suppose ¢ # r in X(R, F). Thereis an @ € F* with £4(0) == ©.(r), and there
exists an element ¢ in R such that either a € £.(¢) with ¢ & L.(7) or 2 €
®.(7) with a & P.(0), that is, Hs(a) is an open subset of X(R, F) such that
either ¢ € Hu(a) with 7 & Ha(a) or r € Hu(a) with 0 & H.(a). Hence, X(R,
F) is To-space.

(3): Since X(R, F) = UzerHJ(a) for any @ € R, it follows that He(a) and
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Hi(a) are closed subsets in X(R, F).

Notation. By F', we denote the category of f-semigroups in which mor-
phism f: Fi— F; satisfies /(—1) = —1, f(0) = 0 and f(xy) = f(x)f(y) for
any x, ¥y € Fi. By R and T, we denote the category of rings with identity 1, and
the category of topological spaces, respectively.

Proposition 1.5. For any morphisms f: Fi— F,in F and g: R.— Ry in
R, map X(g.f): X(R1, F.)— X(Ry, F3); 0 ~— f+0+g is continuous, so X(—,
—): R°xXF — T is a functor.

Proof Letf: Fi— Fyand g: R:— R be morphisms in categories ¥ and
R, respectively. To show that X(g, f) is continuous, it is sufficient to show that
for any ¢ € X(R,, F1) and an open subset He(a’) containing X(g, /)(0) (=
fro+9) of X(R., F3), X(g, f)'(He(a')) is an open subset of X(R;, F1). Since
frarg(a)=a +0and f (') € F* X(g. /) '(He(a") = Uses-1anHsg((a'))
is an open subset of X(R,, F1).

Theorem 1.6. Let a be a two sided ideal of R and ¢o: R— Rla; v ~—
(#) = r+a the canonical ring homomorphism. Then, Xo(R, F): = {r € X(R,
F)| a C®o(1)} is a closed subset of X(R, F), and the map X(¢o, I) induces a
homeomorphism X(R/a, F) = X«R, F).

Proof. For any 6 € X(R, F)\Xu(R, F), a ¢ (o) and there is an ¢ € a
with @ & (o), hence 0 € Hga)(a) and Hoa)(@) N Xa(R, F) = ¢, 50 Xo(R, F)
is a closed subset of X(R, F). For any ¢ € Xu(R, F), a signature (¢): R/a—
F is naturally defined by (6)((#])) = o(#) for (#) € R/a, because of o(a+7) =
o(#) for all a € a (S ®o(0)). Hence, X(¢a, I): X/(Rfa, F)—= Xuo(R, F) is a
bijection, and is a homeomorphism, because of X(¢a, I)(Ha((#7))) = Xuo(R, F)N
H.(#) for any » € R and @ € F*.

Notation. For any ¢ € X(R, F), we use notations ¢s and Xs(R, F)
instead of ¢ese) and Xeqa(R, F), ie. ¢o: R— R/®o(0); » ~— () = v +8(0)
and Xo(R, F): = {r € X(R, F)| ®4(0) < €o(7)}, respectively.

Corollary 1.7. For any 0 € X(R, F), Xo(R, F) is a closed subset of X(R,
F), and X(¢s,1): X(R/€o(0), F)— Xs(R, F) is a homeomorphism.

Remark 1.8. (1) For ¢ € X(R, F), 6(R*) is a subgroup of F*, and o(R*)



SIGNATURES ON A RING 103

C G(o). If u € R* and o(u) = a, then u™! € €,-1(6) and R.(0) = u®.(0)
= 331(0')34,

(2) For any u € R* Ho(u) = ¢ and H%(u«) = Ha(u) is a open subset of
X(R, F) for all « € F*. If R is a division ring, then X(R, F) is Hausdorff
and totally disconnnected. Furthermore, if |F| < oo, then X(R, F) is a
Boolean space, i.e. a totally disconnected, compact and Hausdorff space.

(3) Forany a, b € R and @, 8 € F, the following equalities and inequalities
hold :

1) Hdla) = H-o{ —a) and Hi(e)NHE(—a) = Ho(a),
2) H¥a)NHE(b) € Hi(ab) and Hi(a)NHE(b) S Hi(a+b),
3) Ho(e)UHo(b) = Ho(abd), He(0) = Hi(1) = X(R, F) and Ho(l) =
H¥(1) = ¢ for all e € F* with @ + 1.
From (1.8), the following proposition immediately follows:

Proposition 1.9. For any o € X(R, F), the conditions (1) and ) are
equivalent, and (1)== Q). If R is commutative, then the converse (3)=—= (1)
holds.

1) o(R*) = Glo),

(2) For any a € G(0), there is a u € R* with €.(0) = uf (o) = (0)u.

(B) R*(R*N¥:(0) = G(o) and €.(0)s(0) = €os(0) for every a, B E
G(o).

2. Signature over a finite f-semigroup. In this section, we assume that F
is a finite set, and deal with signatures ¢ : R — F of R over a finite f-semigroup
F so that G(o) is a finite group with an even order.

Lemma 2.1. For any 6 € X(R. F) and a prime ideal ¥ of R with an
integral residue domain R[¥. it follows that
(1) Ge(o):={as Glo)| €.(0) & €} is a subgroup of G(6), so is G:(0): =
{a € G(o)| €ul0) & Col7)} for any r € X(R, F), and
(2) Qo) &€ (resp. Col0) & Col7)) implies Ge(o) = G(o) (resp. G.(0) =
G(a)).

Proof. (1) follows from that |F| < oo and R/# is an integral domain.
(2): For any @ € G(0), £.(c) S ¢ implies that £o(0)+8.(0) S L.(0) S ¥
and €o(0) S €, so (2) follows.

Proposition 2.2. For o, r € X(R, F) with P(0) S P(1), there is a group
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epimorphism f . G:(0) — G(0) such that
£a1) € Uner-afa(0) € Ro(r)UR(7)
for all € G(1).

Proof A map f: G:(0)— G(0) can be defined by making the value f(a)
= r(a) with @ € £(0)\Po(7) for @ € G:(c). Because, for @ € G.(¢) and any
a,a’ € P0)\Po(z), we have 1= r(ba)= r(b)r(a) and 1= r(ba’) =
t(b)r(a’) for any b € €4-1(c)\Po(7) (# @), since a~' € G:(0) and ba, ba’ €
£1(o)\o(7) (€ P(6)\Po(7) € P(r)\o(7) = €:(7)). Since for a, &’ € G:(0). a
€ L(o)\Po(7) and @’ € Pu(0)\Po(7) imply aa’ € Poa(0)\Po(7), we get f(a,
@) = r(aa’) = t(a)t(a’) = f(a)f(a’), so f is a homomorphism. For any 8 €
G(r), there is an « € G(o) with .(c)N¥s(7) + @, because of Lo(a)NEs(7) S
©o(r)NEs(7) = ¢. Hence, thereis a b € L(o)\Co(7) with f(a) = (b) = B,s0
f is surjective. Suppose 8 € G(zr) and x € £s(z). Since Lo(0)NEs(z) = &,
there exists an @ € G(o) with x € £.(5), so we get f(a) = 8 and Ps(7) S
cer1mPa(0). It is easy to see that £.(c) S Po(r) UL s(7) for all @ € G:(0) with
fla) = 8.

Definition. Let G and H be groups. A partial map f/: G — H which is
a homomorphism of a subgroup G, onto H, will be called a partial epimorphism,
and for b € H, f-(H) and #~'(b) denote subsets f~'(H): = Giand f7(b): =
{x € G| f(x) = b} of G.

Theorem 2.3. Let ¢ and t be elements of X(R, F). P(o) € P(r) holds if
and only if there is a partial epimorphism f: G(o)— G(t) with ®s(r) S
User-1a®a(0) € Ro(r)UL(7) for every 8 € G(7).

Proof. By (2.2), the “only if” part is proved. Suppose that f: G(¢) — G(7)
is a partial epimorphism and €5(7) € Uses-1@afe(0) S Lo(r) UFs(7) for every
B € G(1). Then we have Useco®s(7) S Usec(Ueesr-1a®a(0)) S
UaeG(o‘)?a(O'). and so 90(0') o pa(l’). Since g’l(O’) = Uaej-l(ng"a(d) < K‘)Q(T)U
©.(7), we get P(o) = Co(o)U®(0) S P(1).

Corollary 2.4. Let o and t be eleiments of X(R, F).

(1) P(o) € P(r) and €o(0) = (1) hold, if and only if there is an epimor-
phism f: G(o) — G(z) with € (1) = Uases-vaf a(0) for every B € G(7).
(2) P(o) € P(1) and |G(0)| = |G(1)| hold, if and only if there is an isomor-

phism f: G(0) = G(1) with Rs.a7) S £a(0) S Co(r) UL 1) for every
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e € G(o).
(3) P(o) = P(zr) holds, if and only if there is an isomorphism f: G(o) —~>
G(r) with t = f+0 (i.e. a(0) = € 17) for every a € G(0)).

Proof. (1): Suppose P(0) € P(7) and €4(0) = €o(7). By (2.2), there is an
epimorphism f : G:(0) — G(z) with £5(7) S Uses-1af(0) S Lo(r)UL4(7) for
all 3 € G(r). The identity means that £4(7) = User-1afe(0) and G.(o) =
G(o0). The converse is easy by (2.3).

(2) follows from that a partial epimorphism f : G(o) — G(r) with |G(¢)| =
|G(7)| is an isomorphism.

(3) is easy from (1) and (2).

Definition. On X(R, F), we can define an equivalent relation ~ as fol-
lows: For 0, r € X(R, F), 6 ~ r if and only if there is an isomorphism f : G(o)
—» G(r) with ¢ = f-0, ie. P(o) = P(zr). By X*(R, F), we denote the quotient
set X(R, F)/~ . Then, we can identify X*(R, F) with the sets P(¢) for all ¢ €
X(R, F). and introduce the Zarisky topology on X*(R, F), that is, the finite
intersection of D(a): = {P(¢) | a & P(¢), 6 € X(R, F)} for all « € R.

Proposition 2.5. The map P(—): X(R, F)— X*(R,F); ¢ ~— P(o) is
a continuous map, so X*(R, F) is a compact space.

Proof. For any a€ R, P'(D(a)) ={c= X(R, F)| o(a) 0,1} =
Useco-mHe{a), so P7Y(D(a)) is a open subset of X(R, F).

Definition. A subset Y of X(R, F) is said to be irreducible, if for any
closed subset A and B of X(R, F), Y € AUB implies either Y €S Aor Y
B.

The following lemma is immediately obtained from the above definition :

Lemma 2.6. A subset Y of X(R, F) is irveducible, if and only if for any
Hi(a1), Hi(a2), -+ . Hi(an). Y S ULHE(a:) implies Y < Hi(a:) for some
A

Theorem 2.7. If Y is a non-empty irveducible subset of X(R. F), there
exists a 0 € X(R, F) such that the closure CI({c}) of {0} coincides with the
closure C Y) of Y, and the following identities hold : P(6) = NeeyP(7) and
o(0) = (NeerPo(T)ULA())\Po(0) for a € F*,
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Proof. Let Y be a non-empty irreducible subset of X(R, F). We set
Co(Y): = NrerPol(r) (={a € R| Y S Ho(a)}) and Ru(Y): = (Nrer®o(r)U
PAI\NC(Y) (={a€E R| Y S H¥a), Y & Hi(a)}) for « € F*. Then, we
have @o(Y)U¥Y) ={a € R| Y < Hi(a)} for every « € F*. It is easy to
check the conditions of (1.1) for the set {#.(Y)| ¢ € F}. But, we try only to
check for conditions 1) and 3).

1): Toshow R = Ueer®o(Y), suppose a € R\Co(Y). Put{e, a2, ***. ar}
={r(a)| r€ YINF* (+ ¢), then it means ¥ < H% (a)UH%(a)U -+ UH
¥(a). so Y < H¥(a) for some a;, since Y is irreducible. Hence, we get a €
PalY).

3): To show £.(Y)P(Y) S €.(Y), suppose £o(Y) += ¢ and P(Y) =
¢. IfaB =0, either a=0o0r =0, 50 Lo Y)F(Y) S (YY) (= Las(Y))
holds. Suppose @8 # 0. If a € .(Y) and b € €(Y), t(ab) = t(a)z(b) is
either @B or 0 for every 7 € Y, that is, ab € Lo( Y)UR(Y). If ab € £o( Y),
ie. r(ab) =0forallr € Y, then Y < Hy(ab) = Ho(a)UH(d), so we get either
Y € Ho(a) or ¥ S Ho(d), ie. either a € $o(Y) or & € £o(Y), which contra-
dicts to Lo Y)NL(Y) = Po(Y)NP(Y) = ¢. Hence, we get ab & £,(Y) and
ab € €(Y). Thus, by (1.1) there is a signature ¢ € X(R, F) which satisfies
P0) =Ro(Y)forall e € F. Since{aE R| cEHe*a)) ={aER| Y S
H#(a)} holds for all @ € F, we get Cl({¢}) = CI(Y) and P(6) = N:erP(z).

Definition. By X:R, F), or simply X:(R), we denote a subspace {¢ €
X(R, F)| IG(o)| = 2} of X(R, F), and by XxR) a subspace {P(o)| c €
XA R)} of X¥R, F).

Proposition 2.8. (1) X:(R) is a closed subset of X(R, F), so it is compact.
(2)  The map P(=): Xo(R)— XH(R): o ~— P(0) is homeomorphism, so we
may regard as X(R) = X3(R).
(3)  The finite intersections of Hi(a)NX2(R) for a € R form an open basis of
XAR).

Proof If 0 € X(R, F)\Xo(R), there is an ¢ € R with o(a) & {1, —1},
which means ¢ € H.(a) and Ho(@)NXAR) = ¢. Thus, we get (1).

(2): It is easy to see that P(—): Xz(R)— X#(R) is a bijection. By (2.5),
P(—) is continuous and the image of Hi(a) N X(R) by P(—) is {P(¢) € X¥(R)
| 6(a) =1, 0 € Xo{R)} = (P(o) € X$(R)| —a & P(o)} = D(—a)NXF(R)
which is an open subset of X#(R), so P(—): X,(R)— X#(R) is a homeomor-
phism.
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(3) is obvious.

Remark 2.9. Let ¢ and r be elements in Xz(R).

() P(o) < P(r) if and only if €.(s) 2 €:(7).

(2) P(o) € P(r) and ¥o(0) = Po(7) imply ¢ = 7.

(3) Suppose P(¢) < P(z). Then, for any @ € R, we have that ¢ € Hf(a) =
r € H¥a), o0 Hoa)= r € Hi(a) and 7 € Hi(a)= ¢ € Hi(a).
Furthermore, if P(¢) #+ P(7), there exists an » € R with ¢ € Hi(#) and 7
¢ Hl(?’).

Definition. An infinite preprime P with PU — P = R will be said to be of
level 1. For an infinite preprime P, we denote by P' a subset P\(PN—P) (=
P\—P) of P. If P is an infinite preprime of level 1, then (PN — P) is a two sided
ideal of R.

The following lemma is easy :

Lemma 2.10. Let P be an infinite preprime of level 1. Then the following
conditions are equivalent :
(1) P s an nfinite quasiprime.
2 PepPtc P,
() For x €E R and y € P', either xy € P or yx € P implies x € P.

Proposition 2.11. (1) Let P be an infinite quasiprime of level 1. Then, P’
+P C P holds. Suppose x E R and y € P'. If xy € P' or yx € P!
(resp. xy € (PN —P) or yx (PN —P)), then x € P! (resp. x € (PN
—P)).

(2) XF(R) is the set of all infinite quasiprimes of level 1.

Proof. (1): Suppose that P is infinite quasiprime of level 1, y € P' (= R\
—P)andz€ P. —(y+2z) € Pimplies —(y+2)+z € P,but —y & P, hence
y+z& —P,ie. y+z€ P'. Weget PP+PS P'. If for xR, xy € P!
(resp. xy € PN — P), then by (2.10). x € P (resp. x € PN —P). Since x € PN
— P, implies xy € PN —P,ie.xy & P’ weget that xy € P' implesx € P\(P
N—P) = P,

(2): For any P(0) € X#(R), by (1.2), P(0) is an infinite quasiprime of level
1. Conversely, suppose that P is any infinite quasiprime of level 1. (2.10), (1) in
(2.11) and (1.1) mean that there is a ¢ € X2(R) such that o(c) = PN — P, €.(0)
= P" and #-.(c) = — P'. Hence, we get P = P(0) € X}(R).
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Proposition 2.12. Let Y be any totally orderved wnon-empty subset of
(X¥(R), <).

(1) Regarding as Y S X¥(R) = Xo(R) € X(R, F), Y is irveducible subset
of X(R, F), and there is a 0 € X2 R) such that Cl({c}) = CI(Y) and P(o)
= NeerP(r) = Inf(Y) in (X¥(R), S

(2)  There exists the Sup(Y) in (Xé"(R)

(3) For any o € XoR), there is a maxzmal element in {P(zr) € Xz(R)I
P(o) < P(1)}, and there is a minimal element in {P(o) € XF(R)| P(p) <
P(0)}.

Proof. Let Y be a totally ordered subset of (X3(R), ). Suppose Y S
Hf(a)U «+« UH¥(a,)UHo(b1)U -+ UHo(bs). If Y¢H¥ae) and Y
¢ Ho(b;) for every 7 and j, then there exist elements ¢: and z; of Y such that o:
& Hi(a:) and 7; & Ho(d;) for i =1,2,+--, v and j =1,2,+++,s. Since Y is
totally ordered, there is a unique minimal element P(p) in P(a1), ***, P(c-),
P(n), «++, P(zs). By (2.9), it follows that o & H¥(a:) and o & Ho(b;) for every
i=12+,7v and j=1,2, -+, s, which is a contradiction. Hence, Y is
included in some Hf(a:) or Ho(4;), so Y is irreducible.

(2): Since Y is totally ordered, it follows that P: UU.eyP(z) is an infinite
preprime of level 1, PN — P = Urer(P(r)N = P(1)) = Urer®o(r) and R/(PN
— P) is an integral domain. Hence, P is an infinite quasiprime of level 1 which
is contained in X#(R) by (2.11) and coincides with Sup(Y).

(3) is obtained by Zorn’s lemma.

Lemma 2.13. (¢f [8], (2.1)). Let 0 and t be elements in X2(R).

(1) P(o) ¢ P(r) and P(7) & P(o) imply €:1(c)N®_i(7) + 9.

(2) If there exists a 0 € Xo(R) with P(p) € P(6)NP(7), either P(c) < P(r)
or P(7) € P(0) holds.

(3) A set {P(p) € X¥(R)| P(o) S P(p)} has a unique maximal element with
respect to the ordering “S

Proof. (1) Suppose P(o) ¢ P(z) and P(z) & P(0), then there are a €
P(o)\P(7) and & € P(r)\P(o) which mean ¢ € £.(r)NP(0) and b € €.(o)N
P(r). Accordingly, we get that a—b € (P(o)+€.(c)N(®-i(r)—P(7)) S
?1(6)0(’—1(‘[), i{e] g"l(O’)ﬂK"_](z‘) + ¢,

(2): Suppose that P(p) € P(c)NP(r), P(¢) ¢ P(r) and P(r) ¢ P(o) hold
for some p, 0, r € X#(R). By (1), we get £.(0)N®-:(r) = ¢. However, it is
contrary to £1(6)NE-1(z) S L:1(p)NE_(p) = .

(3) is immediate from (2) and (2.12).



SIGNATURES ON A RING 109

Notation. By X#(R) and X7(R). we denote X3(R) : = {6 € XR) | P(o)
is maximal in {(X#(R), €)} and X#(R): = {0 € Xz(R)| P(¢) is minimal in
(XF(R), <)}

Remark 2.14. If R is commutative, then X#(R) coincides with the set of
infinite primes of level 1 in R.

Proposition 2.15. (1) X3(R) and X3(R) are Hausdorff spaces as subspaces
Of XZ(R)

(2) XF(R) is dense in Xo(R), ie. CUXF(R)) = XAR).

(3) For any o€ XoAR), a subset {r € X2(R)| P(o) € P(1)} is a closed
subset of Xo(R), so is a subset {t} for every element r € X¥(R).

Proof. (1): If ¢ and r are distinct elements in X#(R) (resp. X#(R)), then
P(o) ¢ P(r) and P(r) ¢ P(s). By (213), there is an a € £:(o)N¥_\(7) Wthh
satisfies 0 € Hi(a), r € H-i(a) and Hi(e¢)NH-1(a) = ¢.

(2): For any ¢ € X2(R), by (2.12) there is a p € X5(R) with P(c) € P(0).
(2.9) means that for any ¢ € R, ¢ € Hi(a) implies p € Hi(a), that is, XF(R) is
dense in Xa(R).

(3): Forao € Xz(R). weput Y = {P(r) € Xo(R)| P(o) S P(7)}). Ifp E
XA(R)\Y, then by (2.9) we have P(o) & P(p) and €.(0) € €:(0), so there is an
a € €.(p)\®.(0). Hi(a) is an open subset with 0 € Hi(e) and Hi(a)NY = ¢,
that is. Y is closed in Xz(R).

3. Signatures of a commutative ring. In this section, we assume that R is
a commutative ring with identity 1, and F is a finite f-semigroup.

Notation. Let S be a multiplicatively closed subset of R such that1 € S
and 0 ¢ S. By S™'R, we denote the quotient ring by S, and by ¢°: R — S™'R,
the canonical ring homomorphism. By X*(R, F). we denote a subset X3(R. F):
={c€X(R F)| ¢(6)NS = ¢}. A€ X(R, F) and S = R\¥(A) for the
prime ideal, we denote by X*(R, F), R* and ¢* instead of X*(R, F), S™'R and
¢° that is, X{(R, F) ={c € X(R, F)| fo(c) S £o(A)}, R™M = (R\Lo(A))'R
and ¢*: R— R%.

Theorem 3.1. Let S be a multiplicatively closed subset of R withl € S and
0& S. The.map X(¢°, 1) induces a homeomorphism of X(S™'R. F) onto the
subspace X3(R, F) of X(R, F), and G(x) = G(X(¢°, 1)(n)) holds for every 7 €



110 T. KANZAKI

X(S7'R, F).

Proof. First, we shall show that Im X(¢°, 1) = X%(R, F) and X(¢° 1) is a
bijection. For any 7 € X(S™'R, F), it is easy that ¢*(Ro(z-¢°)NS) S Lo(7)N
¢5(S) = ¢, 50 Co(m¢*)NS = ¢ and X(¢° I)N(7) = n+¢° = X(R, F). Con-
versely, for a 0 € X’(R, F), we can define a map n: S™'R— F as follows:
For any x € S7'R, there are s € S and » € R with ¢*(s)x = ¢°(»). Then, we
put 7(x) = o(s)"'o(r), so the map 7 is well defined because of Lo(a)NS = ¢.
It is easy to see that 7 is a unique signature satisfying X(¢°, [)(z) = n+¢° = o.
Hence, we get that X(¢°,1): X(S™'R, F)— X°(R, F) is a bijection. Since |F]|
< oo, it follows that G(x) = G(7+¢°) is a finite subgroup of F*. Let |G(7)| =
n. For any ¢ € S™'R and @ € G(r), there are s € S and » € R with ¢°(s)a
= ¢%(7), and Ha(a) = Ha(¢(s™)a) = Ha(¢(s""'7)) hold. We get that X(¢°,
D(Hu(a)) = {7-¢° € XS(R, F)| n(¢3(s* 7)) = a} = Ho(s" ' r)NX(R, F) is
an open subset of X5(R, F), hence X(¢°.I): X(S7'R, F)—» X(R,F) is a
homeomorphism. If X(¢°, )(x) = 7+¢° = o for # € X(S7'R, F), it is easy to
see that G(x) = G(o).

Corollary 3.2. (1) Let € be a prime ideal of R, and let S = R\®. The
map X(¢°, 1) induces a homeomorphism X(S™'R, F)— X*(R, F).

(2) For any A€ X(R, F), X(¢*,1): X(R®, F)— XXR, F) is a homeomor-
phism.

Notation 3.3. For any A € X(R. F), A belongs to X*(R, F). By A* we
denote the signature A*: R”’ — F with A = A*+¢* determined by A4 in (3.2).
Then, A*({(R*)*) = G(A*) = G(4) hold, (cf. (1.9)).

Remark 3.4. Let R be a semilocal ring with the maximal ideals mj, mg, = - -,
mr and 0 € X(R, F). If @ € N!=1Gi(0), then (o) N R* + ¢, that is, there is
a u € R* with £.(0) = u#.(s), where G:(0) = Gm(0) = {a € G(0)| €.(0)
¢ m;}). Hence, if Gi(o) = G(o) for every i = 1,2, ++-, r, then the conditions in
(1.9) hold.

Proof. Suppose @ € Ni-1G{0). Using the induction on the umber & of
maximal ideals my, mz, * + +, mx, we show that there is a u € ®4(0) with 2 & m;
for i =1,2,+++, k Put|G(o)| = n. If £.(6)Nm; = ¢, then we may exclude
such a maximal ideal m;. Hence we may suppose £.(a) \m; = ¢ for i =1,
2, +++, k. Using the assumption on induction for m, mz, ***, M-y, Mesr, = *°, Mg,
we can find u; € €o(o) with ur & myfor j =1,2, ¢+, =1, 7i+1, -+« k. If u:
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& m; for some ¢, then we can take # = u;. If #; = m; for all ¢, then we put v;
= wuz <+ ue)” and vi = w2z **+ Uiyt +* ux)" for i =2, +++, k. Since
v: € my\mn; for every 7 # j and v € £.(0) for all i, we get u = 1 +v2+ =+
+v: € Po(0) and u & m; for all i. Thus, there exists a ¥ € R* with £.(¢) =
uK’l(O').

In the last of this scetion, we note a relation between X:(R) and the set of
ring homomorphisms of the Witt ring W(R) on to the integers Z. Let W(R) be
the Witt ring of bilinear spaces over R (cf. [1], p. 19). By Sig(R), we denote the
set of ring-homomorphisms of W(R) on to Z. For ¢ € R*, [a] denotes the
element of W(R) with its representative {a>, where {a) denotes a bilinear space
of rank one with value ¢ modulo R*.

Lemma 3.5. For any A € Xo(R), the signature A*, defined in (3.3), deter-
mines a ring homomorphism A* : W(R™) — Z, which is denoted by A* using the
same notation. Therefore, a map 60 : Xo(R)— Sig(R); A ~— A*W(¢*) is
defined.

Proof. For A € Xo(R), A*: R*P— F is a signature with A**¢* = A and
G(A*) = G(A) = {1, —1}. #.(A*) satisfies the following conditions; £i(A*)
+8.(A*) S ,(2%), £1(A*)-£1(A*) S ©.(A%), L1(A*)N —F1(A*) = ¢ and L.(A*)
U —€.(A*) = R, Hence, we can define an ordering on the local ring R*¥’ which
determines a ring homomorphism A*: W(RW) — Z with A*([a]) = A*(a) (€
G(A*) = {1, —1} € Z) for every a € (R™* (cf. (2.2) and (2.5) in [12]).

Proposition 3.6. Lef € be a prime ideal of R, and let S = R\§.

(1) If P is an infinite quasiprime of level 1 in S™'R, then so is the inverse
image (¢°)"(P) in R.

(20 Let A€ XoR) and p € Sig(R), and @ ={a € R| a € S. p([¢°(a)])
=1}. If Q S €.(A), then there is an R-algebra homomorphism f: ST'R —
R™ with pp = A*-W(¥).

Proof. (1): For any infinite quasiprime P in S7'R, it is easy to see that
(¢5Y"Y(P) is an infinite preprime and (¢°)" (PN —P) = (¢°)"(P)N —(¢°) Y P)
is a prime ideal of R.

(2): Since @ is multiplicatively closed and QU — @ = S, it follows that
Q'Q ={¢(a) - ¢°(b) € ST'R| a,b € Q} is a positive cone of an ordering
on S7'R defined by . Since @ S €.(1), there is a natural R-algebra homomor-
phism f: ST'R— £.(A)"'R = R™, Since f carries the positive cone Q'@ of
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ordering on S™!'R into the positive cone £:(A*) of ordering on R", so we get u
— 2 W,

Corollary 3.7. If A A € XoR) with P(A) S P(), then there is an
R-algebra homomorphism g: R“" — R™W with A'™* = A*-W(g).

Proof. Since P(A) € P(A") implies £:(1") S #€.(4), the proof is immediately
from (3.6).

Theorem 3.8. The map 6: Xo(R)— Sig(R) is surjective, and 6(X¥(R))
= Sig(R), that is, for any ring homomorphism p: W(R)— Z, there is an
infinite prime P of level 1 in R such that 1([a]) = 1 for all a € PN R*.

Proof. To show that 8: Xa(R)— Sig(R); A ~— A*-W(¢*) is surjective,
suppose # € Sig(R). By Lemma 1 and Proposition 1 in [9], there is a maximal
ideal m of R, and for S = R\m there is a ring homomorphism v : W(S™'R) —
Z with g = v W(¢°). Weput @ = {Z:a: € S'R| a: € (ST'R)*, v([a:]) =
1}. By Theorem 4.1 in [14], it follows that @ + Q' S @', Q*Q S Q.1 € @’
and P = (ST'RI\(Q'U Q) is a prime ideal of ST'R with ®+ Q" € @’. Hence,
P = ¢ U Q' is an infinite quasiprime of level 1 in S™' R, and so is also (¢°)"(P)
in R by (3.6). Hence, there is a A € X2(R) with P(A) = (¢°)"'(P). We shall
show 8(A) = . We put @ ={a € S| v([¢*(a)]) = 1}. From the fact that
¢5(Q) = Q and (¢°) Q") = ©,(A), it follows that & < €.(4), and using (3.6),
there in an R-algebra homomorphism f: S™'R — R making the following
diagram commute ;

2 7Z

WS) N /
W(S™'R)
A

W) /a*

W(R™)

Thus, we get x# = v-W(¢°) = A*W(¢°) = 6(A). In the second place, we shall
show @(X#(R)) = Sig(R). For any x« € Sig(R), we can find a 1 € X»(R) with
8(A) = p. By (2.13), we can also find a A’ € X$(R) with P(1) € P(X). By 3.7),
there is an R-algebra homomorphism g: R“’ — R% with A™* = A*-W(g).
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Therefore, we get # = 6(A’) by the following commutative diagram ;

W(R) £ Z
(S

W(¢*") A*

W(R™)

N\ =Y

W(g) /4™

W(¢*)
W(R™)

Corollary 3.9. If R is a semilocal ring, then the map 6 induces a bijection
X#(R)— Sig(R).

Proof. To show that 8 : X3(R)— Sig(R) is a bijection, we suppose that x
€ Sig(R) and 0, r € X¥(R) with 8(0) = 8(r) = p. By Appendix Bin [14], a
subset € = {2?:1(2;1);2 eER | ai az ', an € R*, b, b, + b ER; #([ai])
=1,2%,b:R =R} of Rsatisflesthat Q+Q S Q. QRS Q. 1 € Q, and ¥ =
R\(QU — Q) is a prime ideal of R with #+Q < @. Hence, P=¥UQ is an
infinite quasiprime of R, and there is a A € X»(R) with P() = P. We can easily
check that £,(A) = @, Q S ¥.(0) and @ S (7). Accordingly, by (2.9), we get
P(0) € P(A) and P(r) € P(4), so P(s) = P(7) = P(A), that is, 0 = r.
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