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In the representation theory of algebras, the notion of a tilting module of
finite projective dimension (cf. [7]) is well known, and there are many papers
concerning this. On the other hand, we know that Matlis [6] and Facchini [2]
treat some divisible modules over a commutative integral domain, and present
theorems which are analogous to the tilting theorems. However, in the latter
theories, “tilting modules” are infinitely generated and are not projective, in
contrast with the fact that usual tilting modules of finite projective dimensional,
over a commutative ring are necessarily projective. In view of this and others,
we aim to extend tilting theorems in [7] to more general ones which contain
theorems of Matlis [6] and Facchini [2] as special cases. As a result, we obtain
two tilting theorems which are dual to each other. One theorem holds under
some conditions concerning projective modules, and the other theorem holds
under some conditions concerning injective modules.

We now state definitions, notations, and main theorems. As to some
definitions and notations we follow [7].

Let A and B be rings with 1. By A-Mod (resp. A-mod) we denote the
category of left A-modules (resp. finitely generated left A-modules). Similarly,
for right A-modules, we use Mod-A and mod-A. Let 475 be a bimodule, and e
= 0 be an integer. We put

KT(sT) = {Ni| Ni€ Mod-A, TordA(N’, T) =0 (i = 0)},
KE(T) = {aN| 4N € A-Mod, Exts(7,N) =0 (i = 0)},

where Tord(N', T) = N'®4T and Exti( 7T, N) = Hom(T, N). Furthermore
we put
kTGLT)
= {X4| if f: Ni— Xiand Ni€ KT(4T) then Cok f € KT(,T)},
kE(.T)
={uX | if g: aX— 4N and 4N € KE(4T) then Ker g € KE(LT)}.

Similarly we define KT(7%), KE(T3s), kT(73), and KE(T5s).
For any projective B-module P we denote by %- the canonical map

75
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8P — sHom(4 T5, s T®sP), p— (t — t @ p),

and we put sP* = sHom(4 T3, s T®3P).
For any injective A-module 4/, we denote by %; the canonical map

AT®BH0m(A To,al)— 4l t®f— (t)f,

and we put /' = 4T ®szHom(s T, 47).
Our main theorems hold under the following conditions.

Condition sP. (1) For any projective B-module 2P, there hold Ker %»p,
Cok hp € KT(T5), and sExt'(4 Ts, s TQ®sP) € kT(T5) (i 2 1).

(2) There is an integer # = 0 such that sExt’(4 Ts, 4X) € KT(T5) for any
1 > r and any 4 X € A-Mod.

Condition 4I. (1) For any injective A-module I, there hold Ker 4,
Cok kl S5 KE(A T), and ATOT;‘(A TB, BHOII’I(A TB, AI)) S kE(A T) (Z = 1).

(2) Thereis an integer » = 0 such that sTor{(a 75, sY) € KE(4T) for any
> 7 and any Y € B-Mod.

Then our main theorms are the following

Theorem 1.12. Assume that 4Ty satisfies Condition sP, and e 2 0 be an
integer. Let sY be a B-module such that Tor{Ts 3Y)=0 (0 i< e).
ATorid(aTs, sY) € KE(T) (i > e) and such that Ext’'(eN’, 5Y) =0(G =0, 1)
for any sN' € KT(Ts). Put X = sTore(uaTs, 8Y). Then Ext'(xT, 4 X) =0
(0=i<e), sExt(s T, a X)EKT(T3) (i >e), and Eth(AX, AN)=0
(j =0,1) for any aN € KE(.T). Furthermore there is an isomorphism

BEXte(A Ta, AX) = BK

Theorem 1.14. Assume that 1 Ts satisfies Condition al, and let e = 0 be an
integer. Let 4 X be an A-module such that Exti(T,X)=0 (0 i< e),
sExti(Ts, X) € KT(T3) (i > e), and such that Exti(X, N) =0 =0,1) for
any sN € KEGLT). Put Y = sExt®(4 Ts, 4X). Ther Tori( Ts, BY) =90
(0 i<e) aTordaTs sY)E KELT) (i>e), and Ext/(sN',zY) =0
(7 =0,1) for any N’ € KT(Ts). Furthermore there is an isomorphism

ATOI'e(A Ts, BY) 54X

To compare the above theorems with [7; Theorems 1.14 and 1.15] we recall
definitions of a tilting module of finite projective dimension, and Conditions (P)-,
(E)r, (G)r (for some integer » = 0). (We refer to [4] for classical tilting modules
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of projective dimension < 1.)
For a left A-module 4T and an integer » = 0, we say that 4 7 satisfies (P)
if there is a projective resolution of 4T

0 P>+ —=P->PFP—-T—-0

such that each 4P; is finitely generated.
We say that 4T satisfies (E), if Exti(T, T)=0(i=1,---, 7).
We say that 4T satisfies (G) if there is an exact sequence

0—-A-Th—-Ti— > T,—0

such that each 47 is a direct summand of a finite direct sum of copies of 4 7.

If 4T is satisfies (P)r, (E)r, and (G), for some integer » = 0, then we call
AT a tilting module of finite projection dimension. In this case. if we put
End(4T) = B then T} is also a tilting module of finite projective dimension, and
A End( TB).

If 4T satisfies (P)r, (E)», and End(.T) = B, then T satisfies Conditions
sP and I, by [7; Lemma 1.7]. Note that, in this case, KE(7s) and KT(7%) are
trivial, by [7; Proposition 1.17].

Hence the above theorems yield more detailed presentation of [7; Theo-
rems 1.14 and 1.15].

Let 47 be a tilting module of pdima7’ < 7 < o0, BT = 4T (infinite
direct sum of copies of 4T"), and End(47) = B. Then 4T satisfies Conditions
8P, Pa,and 4{ (cf. Proposition 3.1 and its proof).

If we assume that A and B are finite dimensional algebras over a field, and
restrict modules within finitely generated modules we obtain similar results
(Theorem 2.1). In this case, Theorems 1.12 and 1.14 are unified into one theorem,
by virtue of the existence of duality.

There are two applications of main theorems in the case when » = 1.
Firstly, we can extend Theorem of [2]. In fact, we can see that the bimodule 0»
in [2] satisfies Conditions P and £I. Therefore we get two equivalences between
full subcategories of E-Mod and R-Mod, induced by s Ext& e, —) and its inverse
£Torf(ed, —) (e = 0,1). On the other hand, Theorem of [2] corresponds to the
fact that £0; satisfies Conditions I» and Pr.

Secondly, let R S @ be rings with common identity, and suppose that
Tor{(Qr, Q) =0 ( 2 1) and that Q®:Q = @, x®y+— xy. Then an R-
R-bimodule Q/R satisfies Conditions 2P, Pr, &/ and Iz (Proposition 3.4).
Furthermore, if we put 2Kz = Q/R, End(zK) = H, and End(Kz) = H’, then we
get a bimodule 4Ky which satisfies Conditions #P, Py, w1, and Iy (Proposition
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3.5).
1. Main Theorems. We begin with the following

Lemma 1.1. Left s 2 0 be an integer, s Y’ € B-Mod, and «N € A-Mod.
I Tori(TssY)=0(1<i<5) and Ext!(WT,.N)=0(0<j<s+1) then
Eth(A T®sY', 4N) =0 (0=<j<s+1).

Proof. Take a projective resolution of Y :
v+ =P sl P 3Y > 0,
and an integer 7 2 0. Then Tor{ 75, 2Y’) = 0 if and only if
aTQsPin1— aT®sP:— aTQsPi-y

is exact where we put P_, = 0, and the latter is equivalent to the fact that, for
any injective module 4 € A-Mod, Ext(sY", sHom(4 T5, 4I)) = 0 holds. From
an injective coresolution

0= aN— Dy—o s> s> 45—+
it follows an exact sequence

0— sHom(a Ts, alo) = Hom(uT, 451) = Hom(, T, alz) —
e —» HOm(A T, A1s+2)-

Then, by assumption, we have an exact sequence

0— Hom(zY’, sHom(4 T, alo)) » Hom(zY’, sHom(. T, 411)) —
e — Hom(g Y’, BHOm(A T, A1s+2))

and this yields the desired result by virtue of the canonical isomorphism

Hom(a Y, aHom(A Ts, 4 Y')) = Hom(A TRsY’, 4 Y”) (A Ve A-Mod).

Lemma 1.2. Let ¢, s be non-negative integers, and assume that

Tori(Ts sY)=0(0<i<e+sand i+ e)and Ext/(uT, .N) =0
(0<j<et+s+1)

Then Ext (4 Tore(aTs, sY"), aN) =00 t < s+1).

Proof. If e = 0 then the result follows from Lemma 1.1. Therefore we may
assume that ¢ = 1. Take a projective resolution of Y :
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--0—)Pe—) Pe—-]_""'_’P] - P(]—’BY/_’O,

N/ N
RY” o RY’
where each \—*7 denotes the standard factorization of X. Then,

Tor( 75, sR?Y)=0 (1 <i<s) implies that Ext’(47T®sR°Y’, 4N) =0
(0 <7< s+1), by Lemma 1.1. By assumption we have an exact sequence
0— aTori(aTs sR'Y') > TQsRY — TQpPe1—
N

/
We
s T®3P1—’ T®BPO—" 0,
N/
W
where s Tori(aTs, sR*7'Y") = aTore(aTs, sY’). Then Ext’(s W, 4aN) =0 (0 <
i < s+e), and hence Ext(4Ws, uaN) =0 (0 £ { £ s+e—1), and so on. Thus
Ext(4Tore(aTs sY ), AN)=00<t £ s+1).
Dualizing Lemma 1.2, we have the following

Lemma 1.3. Let e,s 20 be non-negative integers, and asswme that
Ext(uT,.Y)=00<i<e+sand i + e) and Tor(Ts :N)=00<; <
e+s+1). Then Ext'(sN', sExte(aT5,4Y)) =0 (0 < ¢t < s+1).

By using the usual long exact sequences the following lemma is easily seen.

Lemma 1.4. (1) Let 0— aN"— 4N — aN"— 0 be an exact sequence. If

two modules of the above three modules belong to KE(4T) then so does the
third.

(2) Let 0— Mi— Ma— M4 — 0 be an exact sequence. If two modules of the
above three modules belong to KT(uT) then so does the third.

Now we define KE(.7T") and kT(, 7") as follows :

KE(.T)

={aX|if g: aX— 4N and N € KE(4T) then Ker ¢ € KELT)}.
kT(4T)

={X4| if f: N\— Xisand N' € KT(4T) then Cok f € KT(T)).
Then the following hold.

Lemma 1.5. Let 0— W' L AVV‘g’ AW’ — 0 be an exact sequence.

(1) I two of the above three modules belong to KE(.T) then so does the third.
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2) Let AW EKE(T). In this case, W' € KE(uT), aW' € KE(LT), aW”
€ KE(47T), and aW" € KE(.T) are equivalent conditions.

(3) Let sWh, aWo EKE(T), and h: aWi— s Wa. Then Ker k, Im 4, Cok 4
= kE(A T).

(4) Every divect summand of a module of KE(uT) belongs to KE(.T).

Proof. (1) and (2). Assume that W € kE(L7T) and W’ € KE(,T). Let
k" aW"— 4N”, and 4N" € KE(,T). Then Cok #” = Cok gk” € KE(4T).
Hence W” € KE(4T'). On the other hand, let £ : sW' — 4N’, and 4N’ €
KE(T). Then we have a commutative diagram with exact rows :

o wLwdw o

k| s Il
0> N - X - W -0
where X € KE(,T). Thus Cok # =3 Coks € KE(47). Hence W' &
KE(.T). Therefore W € kE(4T) and W” € KE(uT) mean W’ € kE(.T).
Next, let W, W’ € kE(.T), and let £: 4W — 4N, where 1N € KE(4T).
Then we have a commutative diagram.

0 wLwdw oo
el k] |
0= N=N—- 0 -0

Therefore we have an exact sequence
0— Ker fk— Ker k — W" — Cok fk— Cok & — 0.
N A
X/

Then, as Ker 7k, Cok fe € KE(4T'), we have X' € KE(4,T'), and so Ker £ €
KE(T). Thus W € KE(LT).

(3) is evident.

(4) Every direct summand of a member of KE(47") belongs to KE(.T).

Therefore this follows from (2) above.
The dual version of the above is the following

Lemma 1.6. Let 0— Ga— Ga— Gi— 0 be an exact sequence.

(1) If two of the above three modules belong to kK T(4T), then so does the
thivd, 7

(2 Let Ga € KTUT). In this case, G € KT(LT), G €kTUT), G’
KT(T), and G € kT(.T) are equivalent conditions.

() Let G, G EXTUT), and k: Gia— Gea. Then Ker b, Im b, Cok k €
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KE(.T).
(4)  Every direct summand of a member of KT(aT) is a member of KT(.T).

For any projective module sP, we consider the canonical map
he: 8P — sHom(a T3, aT®sP), p— (t = t® p).
We put sP* = sHom(4Ts, 4 T®3sP). Then we have an exact sequence
(*) 0— Ker hp— P— P*— Cok hr— 0.

Note that if P is finitely generated and End(,7) =3 B then kp is an
isomorphism.

Lemma 1.7. Assume that, for any projective module 5P, Ker he, Cok hp €
KT(Ts). and let sY be a left B-module such that Ext'(sN,3Y) =0 (i =0, 1)
Jor any sN' € KT(Ts). Then the following hold.

(1) There is an exact sequence

cre = P > P — g P — gPF— Y — 0,

where each sP; is projective.

(2) For any projective module 5P, there hold TQsP = T®sP* canonically,
TOI‘:( TB, BP*) =90 (l = 1), cmd kP* . P* = Hom(A T, AT®BP*). Fm’ther-
more, Hom(sP*, 5Y) = Hom(sP, 5Y) canonically.

() IfExt'(aN’.5Y) =0(i 2 0) for any sN' € KT(T3s) then Ext'(sP*, zY)
=0 (i 2 1) for any projective module P,

Proof. (1) ltis easily seen that Hom(sP*, 3Y) = Hom(sP, sY) canonical-
ly. Therefore every diagram
P —-Y—-0
he |
P*
can be embeded in a commutative diagram
P —-Y >\
hol 7
P*
Let 0— 5Y" — sP*— 3Y — 0 be an exact sequence. Then Y’ satisfies the
same conditions as Y does. Therefore we can complete the proof by induction.
(2) From the exact sequence (%), it follows that

Tor{ Ts, sP) = Tor{ Ts, sIm hp) = Tord Ts, sP*)
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for all # 2 0. In particular T®sP = T®sP*. Then it is easily seen that &p.
is an isomorphism. The remainder may be omitted.
For any injective module 4/, we consider the canonical map

ki: aTQ@sHom(sTs, al) = al, t® f 1 (2)f.
We put 4" = 4T®sHoma( T, I). Then we have an exact sequence
) 0—Kerk—I'—> 71— Cok k—0.
Then we have the dual version of Lemma 1.7.

Lemma 1.8. Assume that, for any injective A-module aI, sKer k;, Cok &;
€ KET), and let 41X be a left A-module such that Ext'(,1 X, aN) =0 =0,
1) for any 4N € KE(.1T). Then the following hold.

(1)  There is an exact sequence

0_’AX_"4101_’.4]1*_’/1121_’/{[3'_' v

where each 4l; is injective.

(2) For any injective module al, there hold Hom(a T, 4I') = Hom(a T, al)
canonically, Ext'(aT,aI") =0 (i 2 1), and T®sHom(uTs, al') 31",
t®g (t)g. Furthermore Hom(aX, al') = Hom(a X, 4I) canonically.

(3) IfExti(sX,aN)=0(i 2 0) for any aN € KE(u1T), then Ext' (41X, 4aI")
=0(7 = 1) for any injective module 4l.

The next is used in the proof of Lemma 1.13.

Lemma 1.9. Assume that the following diagram

WS VL F o sCokf— 0
hl s
X
has an exact row, and that sW, sCok f € KE(T3s), and Ext’(aN’, s X) =0(j =
0,1) for any eN' € KT(Ts). Then theve exists a unique homomorphism s :
8FF — X such that fs = h. If h is an epimordhism, and Ker h, Cok f €

kT(T:) then Ker s € kT(T3).
v L. F
Proof. Take the standard factorization \W’/ . Then it is easily seen

that Homs(F, X) = Homs( W', X) = Homs(V, X) canonically. This implies
the first assertion. To see the remainder, we consider the exact sequence
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0— Ker f— Ker z— Kers— Cok f — Cok #— Cok s — 0.

Then, as Ker # € kT(Ts), we have Ker f (= Im g), Ker #/Im g € kT(T3),
and the latter is isomorphic to (Ker 4)f. Then, from the exact sequence

0— (Ker %)f — Ker s — Cok f — 0,

it follows that Ker s € kT(T%), by Lemma 186.
Dualizing the above we have the following

Lemma 1.10. Assume that the following diagram

S"'f/ la g
0—’,4Kerf—’,qF—’AV—>AW
has an exact row, and that Ker f, W € KE(4T),and Ext'(s X, sN) =0(; = 0,
1) for any aN € KEGT). Then there exists a unique homomorphism s :
aX = AF such that sf = h. If h is a monomorphism, and Cok h,Ker f €
KE(aT) then Cok s € KE(.T).

The following lemma follows from the usual exact sequence
0— Ker f — Ker fg— Ker g— Cok f — Cok fg— Cok g— 0,
where f: 2 X' — X and g: . X — 2 X".

Lemma 1.11. (1) Let f: aX = 4X, and g: 4 X — 4X". If Cokf e
KE(aT) and Cok fg € KE(4T) (resp. Cok fg € KE(.T)) then Cok g &
KE(T) (resp. Cok g € kKE(4T)).

2) Let h: sY' =Y and k: Y — 3Y". If Ker k € kT(Ts) and Ker hk
€ KT(Ts) (resp. Ker hk € KT(T5)) then Ker h € KT(T5) (resp. Ker b €
kT(Ts)).

We now explain two conditions under which our main theorems hold.

Condition sP. (1) For any projective module zP, Ker 4, and Cok %p
belong to KT(75s), and sExt (4 Ts, 4 T®sP) € kT(Ts) (i 2 1).

(2) There is an integer » = 0 such that sExt(a 7%, 4X) € KT(T3) for any
i > r and any +.X € A-Mod.

If 4T satisfies (P), (E),, and End(4 7)) = B then . T satisfies Condition zP
above (cf. [7]).

Dualizing the above we consider another condition for 4 7.
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Condition 4. (1) For any injective module 4/, Ker %4; and Cok %; belong
to KE(A T), and aTor:a Ts, BHOIH(A Ts, A1) € kE(A T) for any { = 1.

(2) Thereis an integer » = 0 such that aTor:(a 75, 3Y) € KE(.T) for any
i > r and any Y € B-Mod.

If T satisfies (P),, (E)-, and End(7s) = A then 1 7T satisfies Condition 4/
above (cf. [7]).
The following theorem holds under the Condition zP.

Theorem 1.12. Assume that 4 Ts satisfies Condition sP. Let ¢ =0 be an
integer, and let 3Y be a B-module such that TordTs sY)=0 (i < e),
aTori(aTs YY) € KET) (¢ > e) and such that Ext’(eN’, 3Y)=0( =0,1)
Jor any eN' € KT(T3). Put X = Tore(aTs, 8Y). Then Ext’ (T, aX) =0(z
< e), sExt(aTs 4aX)E KT(Ts) (i >e), sExt(aTs 4X)33sY, and
Ext/(aX,aN) =0 (j = 0,1) for any aN € KE(LT).

Proof.  The last assertion follows from Lemma 1.2. By Lemma 1.7, there is
an exact sequence

e Pf—— PEy—— — P —— Pf —— Pf—aY -0,
N NS N AN/
Ye Yoor o Y, Yi

where each sP; is projective, and P¥ = sHoma( 75, T®sP:). We put ¥ = Y.
Then, for each 7 = 1, we have an exact sequence of left A-modules

0— Torl( T3, BYi—l) i T®BK’ — TQRePE1— TQRsY:-1— 0,
and isomorphisms
aTor{aTs, 8Y:) =3 aTor;e(aTs Y1) (4,7 = 1).

First we assume that e = 0. In this case, each Y satisfies the same condition as
(Yo =) Y does. Then we have a long exact sequence of left B-modules:

0— BHOm(A T34 T@B Yz)—’ BHOHI(A TB, T@BPi*—l)—' BHOI’H(A Ts,4 T®B Yi—l)
SExtHaT, aT®:Y:) —Ext' (4T, T®BP1‘*—1) — Eth(A T, 4.TRs Y1)
i Extz(,q T, A T@B Yx) i EXtZ(A T, A T@sztl) I Eth(A T, A T®B Yi—l)

Since P¥ 1 sHom(a 75, 4 T ®5sP% 1) canonically, we see that if 7 = 1 then
0—Y — Hom(A T, A T®B Yz)

is exact. Therefore, if 7 = 2 then
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Y: 5 Hom(a T, 4T ®sY),
and hence, for each 7 = 3,
0— Exta(T, T®:Y:) = Exti(T, T®sP¥1)
is exact. Therefore, if 7 = 4 then
Exti(T, T®:Y:) = Ker(Exti( T, T®sPx) — Exty(T, TQsPE,)),
and the latter lies in KT(73%). Then

Cok(Exti( T, T®sP¥,)— Exti(T, T®sY:-1))
2 Ker(Exti( 7T, T®:Y:) = Exti(T, TQRsPE))),

and the former lies in kT(73) when 7 = 5. Thus, if i 2 6 then sExt*(4 Ts,
4T®sY:) € KT(Ts). Similarly we can show that sExt*(47s, 4T®:Y:) €
kT(T%) (i = 8), and so on. Using (2) of Condition 5P, we see that sExt’(4 Ts,
aT®sY:) € KT(Ts) forall j = 1, if 7 is large. Then, for any 7,/ = 1, we have
sExti(Ts, T®sY:i-1) € KT(75). In particular, for any j =1, sExti(75,
T®5Yo) € KT(Ts). Using two commutative diagram with exact rows

0— Yl — Py — Yo —0
! I%; !
0— HOITXA( T_, T@B }f]) i HOITlA(T, T®3Po*) - HOITIA( T, T®Bl/0) -

— Exti(T, T®R:Y1) — Exti( T, TRsF)

and

0— Y, - bP¥ — Y -0
12 L !
0— Homa( T, T®3Y2) = Homa( T, T®sP¥) — Homa( T, T®:Y:) -

- Exti T, T®s Y2)— Exti( T, TQRPH),

we see that sKer %, sCok & € KT(Ts), where k: Yo— Homa(T, T®:Y2) is
the canonical map. Then, by assumption, Ker 2 = 0, and the exact sequence

0— Yo— Homa(T, T®zYs) — Cok £ — 0

split. Therefore Cok % = 0 by Lemma 1.3. Hence %: Yo = Homa(7', T®;:Y5).
Next we assume that e = 1. Then we have an exact sequence of A-modules

0— ToraTs, 8Ye-1) = TQRsYe— TRePr,— -+ — TRsFPsF— 0,

where 4Tori(aTs, 8Ye-1) = aTore(aTs, 2Y0), and 3Y. satisfies the condition of
the case when e = 0. Furthermore we have a commutative diagram with exact
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Trows:
0— Y. — Py — e
1% Ik
0— HOI’HA( T, T®B Ye) — HOITIA( T, T®BP:—1) > e
- Po* — Y —0
N

i BHomA(A TB, T®BP0*).

Note that T®sP: = T®sP¥ (i =0, ¢+, e—1). Thus we can complete the
proof by using the following lemma.

Lemma 1.13. Assume that 4 Ts satisfies Condition sP, and let e =2 1 be an

integer. Let the sequence of left A-modules
0= X—>Ve— Veoi—> o> Vo — Vi— Vo—0
NN/ N
We_1 W

be an exact sequence such that sBExt’(aTs, aV) EKT(Te) G2 1) (1 =0,+, e
—1), sExt(4Ts, aVe) EKT(T3) (G 2 1), and Ext’(4 Vi, aN)=0(G =0,1) (7
=0,--,e) for any AN € KE(.T). Furthermore, assume that the sequence

0— sHom(u T, aVe)— ++» — gHom(4 T, a Vo) = 2 Y — 0

is exact, and that Ext/(ecN’,5Y) =0 =0,1) for any sN' € KT(Ts). Then
Ext/(u T, 4 X) =0 (F < &), sExt/(aTs, 4X) € KT(T3) (j > e), and

8Y 25 sExt®(4 T, 4 X).
Proof. If e =1 then the exact sequence
0= X—aVi—=aVi— 0
yields a long exact sequence

0— Homa( T, X)— Homa(T, V1) — Homa(T, Vo)
- Exti(T, X) - Exti(T, Vi) —Exti(T, )
— Exti(T, X) - ExtiT, Vi) = Exti7T, Vo)
Then, for the exact sequence
0— 5V 5 Exti(T, X) — Exti(T, )
N o Ve

there exists a unique homomorphism £: sExti(7, X) — Y such that a8 =
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idy. By assumption, Homa(7", X) = 0, and hence Lemma 1.13 implies G = 0,
because G € KT(7:). Thus @ is an isomorphism. It is easily seen that
sExti(Ts, X) € KT(Ts) (7 = 2). Assume that e = 2. Then it is easily seen
that, foreach i =1, *++, e—1,

Homa(T, Vie) = Homa( T, W;)— 0
is exact. Then Homa(7T, X) = 0, and
0— Exta(T, X) = Exti(T, Ve)
is exact. By using Lemma 1.6, we see that, foreach i =1, ++-, e—1,
sExt!(aTs, s W) EKT(T) (2 i+1)
and

sExt’(4Ts 4X) € KT(Ts) (J

%

e+1).
Consider the exact sequence
0— 5Y -5 sExth(Ts, Wi) — Exti(T. V2)
N
G

Then, as sG € kT(T3), the assumption for ;Y implies that there is a unique
B-homomorphism £ : Exti(T, W) — Y such that a8 = idy (, and so Ker 8,
25 G). By assumption for Y, Im(Exti( 7T, V) — Exti(T, W) is contained in
Ker A1, and hence

Exti( 75, We) = Ker(Exti( T, V2) — Exti(T, WA)) € kT(Ts),

where e = 3. By using Lemma 1.9, there is a unique B-homomorphism 3, which
render the diagram

sExti(T, W) — sExti(T, Wa)

N2
B YBZ

commutative, so that sKer 8: € kT(7s). Then

Im(Ext4( 7T, Vs) — Exti(T, Ws)) € Ker B,
and hence

Ker(Exti( T, Vs) — Exti(T, Wa)) € kKT( Ts),

and so on. Repeating this argument, we see that, for each i = 2, *+-, e—1,"
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sExti(T, W) €EKT(Ts) (1<j=<i-1).

Furthermore, by using Lemma 13, Exti(7,X)=0 (j=1,--+,e—1), and
ExtiN', Exti(7, X)) = 0(j = 0, 1) for all sN' € KT(T5). Then the sequence

SExts (T, Vo) — sExts™(T, o) 25" 57 =0
is exact, and we have a short exact sequence
0— Y — sExt{(T, X)— sG'— 0,
where sG" € KT(T3). Then the above sequence splits, and so G’ = 0. Thus
3Y =5 sExti(T, X),

as desired.

Remark. Take a commutative diagram with exact rows:
02 slX—=>Veor Veoy—m o= Vo> > Vo —0
[ | l l |
0 X—-Ib— 5 » > Ly—l,—]X—>0
where each al; is injective. Then, as is seen from the proof, we have a com-
mutative diagram with exact rows:
Hom(4 T, 4 Vi) = Hom(4 T, 4 Vo) — Y il
Hom(AlT, I)— Hom(A%“, JeX)— ExtﬁihT,X) -0
Dualizing Theorem 1.12, we obtain another theorem which holds under
Condition 4/.

Theorem 1.14. Assume that 4T satisfies Condition al. Let e =0 be an
integer, and let 1 X be an A-module such that Exti(T,X) =0 (j < e),
sExti(Ts, X) € KT(T3) (G > e) and such that Exti( X, N)=0( =0,1) for
any N € KELT). Put Y = sExt(aTs 4X). Then Tor{Ts sY)=0
(< e), aToraTs sY)EKEGLT) (G >e), aTore(aTs 2Y) = aX, and
Ext'(aN’,5Y) =0 (i =0,1) for any N' € KT(T5s).

To prove the above, we use the following lemma which corresponds to
Lemma 1.13.

Lemma 1.15. Assume that 4 Ts satisfies Condition al, and let e 2 1 be an
integer. Let the sequence of left B-modules
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0= Vo Vi— Voo oo > Vg — Ve—o53Y—0
N N/
Wi o
be an exact sequence such that aTori(aTs sVi) EKEGLT) G =21 (=0, e
—1), aTori(aTs, sVe) € KE(LT) (j 2 1), and Ext/(aN", sV:) =0(j =0,1) (¢
=0,+-+,e) for any sN' € KT(T3s). Furthermore, assume that the sequence

0= X TQRsVo— TRV > - — T®5Ve—1—’AT®BVe—"0

is exact, and Ext’/(4X,aN) =0 (j=0,1) for any N € KEGLT). Then
Tor(Ts. 5Y) =0 (G < &), aTori(uTs YY) E KEGLT) (G > e), and

aTore(aTs 5Y) 5 4 X,

In the sequel we put End(4a7") = B* and End(T3) = A*.

Assume that 475 satisfies Condition sP. Then, for any projective 2P €
B-Mod, Ker % and Cok #p lie in KT(73). In particular, if we put sP = 5B then
we know that Tor;(7s B*) =0 (j 2 1), and T®sB*S T, t®b*— th*,
Take a projective resolution of 75 :

o o Q= = Q— T — 0.
Then this induces a projective resolution of T« :

M QS@BB* - Q2®BB* - QI®BB* hnd QG®BB* — T —0.

By using these we obtain the following

Proposition 1.16. (1) Assume that 4+ Ts satisfies Condition sP. Then 4 Ts-
satisfies Condition s«P. For any Y € B*-Mod, we have Tor;(Ts, sY) =
Tor( T, 5:Y) for all j=20. For any Ws € Mod-B*, we have
Ext/( Ts, Ws) = Ext’(Tss, Wa:) for all j 2 0. Therefore, KT(Ts) =
{(s:N'| sN' € KT(Ts)}, and KE(T3-) = {Ns-| Ns € KE(T5)).

(2) Assume that 4T satzsﬁes Conditions sP and P, 4. Then 4aTs- satzsﬁes
Conditions s-P and Pa. Therefore a«Te- satisfies Conditions s«P and Pa-.

(3)  If 4Ty satisfies Conditions sP and il then 4 Ts- satisfies Conditions s P and
Al

FProof. (1) We have to prove that 4 7. satisfies Condition 5-P. We take
any free B*-module s F* = 5. B*@sF, where sF is a free B-module. Then
TQ®sF =5 T®s-F* canonically, and we have an exact sequence

0= 5 F* 2 oHom(s Toe, s T®s5F*) — Cok / — 0.
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Then, by making use of the long exact sequence associated with this, we can see
that sCok 2 € KT(T3), or equivalently, s.Cok # € KT(Ts+). Furthermore, as
is easily seen, pExt (4 Ty«, s T Qs F*) € kT(Ts) for all 7 = 1. Thus we obtain
(1) of Condition zP. It is evident that (2) of Condition P holds.

(2) For any Wz € Mod-B*, Ext(Ts-, W) 5 Ext’( Ts, W;) holds for all
integer ¢ = 0, by (1) above. Therefore 4 T« satisfies Condition Pa. Then, by (1),
a- T satisfies Condition g+ and Pi-.

(3) This is evident from (1).

Remark. Assume that 475 satisfies Condition sP. Then there is an exact
sequence

0— Ker 45— B4 B*— Cok hs— 0,

where sKer Zs, sCok sz € KT(T3s). Then, by Lemma 1.3, Ext’(sN’, 3B*) = 0
(j=0,1) for all ;N € KT(7Ts). These characterize the ring homomorphism
s: B— B* up to B-ring isomorphism.

We now assume that 47 satisfies Conditions Ps and 4/, and seek some
cases in which Condition 4~/ holds. In the following we put 24 = %, and so Ker
h,Cok h € KT(uT). Then it is easily seen that aHom(aKer ka4, aI),
aHom(4Cok %4, 4T) € KE(,T) for any injective 47 € A-Mod. For any in-
jective A*-module -/ we take a monomorphism from 4/ to an injective
A-module 4f. Then we obtain a splitting monomorphism a«f —
a-Hom(aA%., aI). Therefore it is sufficient to consider an injective A*-module
a«Hom(4A%-, 47) in place of 4./, by Lemmas 14 and 15. Then, from the
commutative diagram with exact rows

0— fl) — T®3Hom(m T, f,Hom(.qA*, AI))
k*
0— Hom(ACOk h, AI) i HOITI(AA*, A.[)
— T@aHOIJl:l(A T, A.[) - 0
k

!
— I — Hom(sKer 4, 4)— 0

it follows an exact sequenée

0— Ker £*— Ker £ — sHom(4Cok %4, af) — Cok £* — Cok &
— 4sHom(uKer %4, af) — 0.

By assumption, aKer £ and 4Cok £ lie in KE(47"). Then we have the following

Lemma 1.17. Assume that 4 Ts satisfies Conditions al and Pa. If one of the
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Joliowing conditions holds then s« Ty satisfies Condition a-1.
() Ts is finitely generated.
(i) KE(T)=KEuT).
(iii) The right A-module A% is flat.

Proof. By Proposition 1.16, it is evident that (2) of Condition 4+/ holds. For
any injective A*-module 4./ we have to prove that (1) of Condition 4+ holds. We
may assume that 4-/ = ~-Hom(4A%-, 47) for some injective A-module /. Then
it is evident that the latter half of (1) of Condition a+/ holds. To prove that the
first half of (1) of Condition 4+ holds, it is sufficient to show that sKer £* or 4Cok
£* lies in KE(4 7). If (i) holds then it is easily seen that Cok £2* = 0 (cf. [7;
Lemma 1.7]). If (ii) holds then it is evident. If (iii) holds then sHom(4A%, 47) is
injective, and so sKer &* € KE(,T).

Concerning the condition (ii) above we note the following

Lemma 1.18. (1) If sExt*(aTs, aX) € KT(T3s) for any X € A-Mod
then kE(A T) = KE(A T).

2 I ATOl‘z(A Te, YY) € KELT) Jor any sY € B-Mod then kT( Ts) =
KT(T7%).

Proof. (1) Let 4N, s\N' € KE(4T), and let
0— Ker f — +N —Lo sN'— Cok £ — 0
N A
W

be an exact sequence. Then Hom(4 T, sKer f) = Hom(. T, 4 W) = 0,
sEXt (aTs, aW) = sExt™* (uTs, aKer ) (i 2 0) and sExt’(4 T, 4aCok f) =
sExt 5 (Ts, W) (i 2 0). Then Ext'(uT, sKer /) = 0, and so
Hom(sN”, sExt*(a Ts. sKer f)) = 0 for any sN” € KT(T3), by Lemma 1.3. By
assumption, Ext*(4 7, sKer /) = 0. Then Hom(sN”, sExt*(4 T, 4Ker f)) = 0
for any N” € KT(7%), by Lemma 1.3. Then Exti(T, Ker f) = 0. Repeating

this argument, we see that Ker f € KE(4T'). Thus 4N € kE(4 7). Dualizing
(1) above, we obtain (2).

2. Modules over finite dimensional algebras over a field. In this section,
both A and B are finite dimensional algebras over a field K, and all modules are
finite dimensional over K. Under this restriction we use notations Kt(—),

Ke(—), kt(—), and ke(—) instead of KT(—), KE(—=), kT(—), and kE(—),
respectively.
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Condition sp. (1) For a left B-module 3B, there hold Ker /s, Cok 4 €
Kt(7s), and 3Ext(4Ts 4T)E kt(Ts) for all i =1 where hs: sB—
BHom(ATs, AT), b— (x—* xb) (b e B xe T)

(2) There is an integer » = 0 such that sExt* (4 75, 4 X) € Kt(T3) for any
1> » and any 4 X € A-mod.

Condition az. (1) For a left A-module sD(A), there hold Ker &u),
COk kD(A) e KE(A T), and ATOI’,‘(A TB, BHOITI(A TB, AD(A))) = ke(A T) f()l‘ any )
= 1, where D is the duality functor, and k) : 4 7®sHom(s Ts, 4D(A)) —
AD(A), x® f— (x)f.

(2) There is an integer » = 0 such that 4 Tori(4 T, 8Y) € Ke(4T) for any
> 7 and any sY € B-mod.

However, it is easily seen that Condition 47 for 4 75 is equivalent to Condi-
tion pa for a7Ts. Symmetrically, Condition 7z is equivalent to Condition sp.
Therefore we have the following

Theorem 2.1. Assume that 1Ts satisfies Condition sp. Let e 2 0 be an
integer.

(1) Let sY € B-mod be such that Tor{(Ts, sY) = 0(i < e), aTor{aTs, sY)
€ Ke(uT) (i > e) and such that Ext’(aN’, 3Y) =0 (j = 0, 1) for any 5N’
€ Kt(Ts). Put . X = ATore(aTs, 5Y). Then Ext'(u T, X)=0( < e),
BEXti(A TB, AX) e Kt( TB) (Z > e), BY =5 BEXte(A Ta, AX), and
Ext/(4 X, aN) =0 =0,1) for any aN € Ke(uT).

(2) Let Ys € mod-B be such that Ext'(Ts, Ys) = 0(i < e), Ext(uaTs, Y5)a
€ Kt(aT) (i > e) and such that Ext*(Ys, N5) = 0(j = 0, 1) for any Nz €
Ke(7s). Put Xi=Ext(aTs Yi)a. Then Tord X4 aT)=0 (i < e),
TOI','(X,;, ATB)B = Ke( TB) (2 > e), TOI‘e(X,;, aTs)s = Ys, and
Ext/(Na, X4) =0 (G = 0,1) for any Nie€ Kt(. T).

3. Examples. In this section, we shall consider some cases to which
Theorem 1.12 or Theorem 1.14 can be applied.

Proposition 3.1. (1) Assume that a faithful module Ts satisfies (P)r, (E),
(¢f [7]), and put End(Ts) = A. Furthermore, assume that pdimaT < 7,
and that Exti(T, ®T) =0 for any i = 1 and any direct sum DT of
copies of aT. Then oTs satisfies Condition sP,

(2) Let aT’ be a tilting module of pdimaT’ < v < oo, and put DT = 4T
(divect sum of copies of aT’) and End(uT) = B. Then Ts satisfies
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Condition sP.

Proof. (1) As T is faithful, Ker 4, = 0 for any projective module zP €
B-Mod. By assumption, Exti(7T, T®sP) = 0 for all i 2 1. Thererfore if we
put sHoma( 75, T®sP) = sP*, we have Tor(Ts, sP*) = 0 for all i = 1, and
TQsP* = T®3sP canonically, by [7: Lemma 1.8]. Then the latter implies that
TQsP = TQsP* t®p—tQ(t'— t'®p) (t, '€ T, p € P). Therefore we
have Cok #r € KT(75s). The remainder is evident.

(2) Evidently pdimaT £ r, and 4T satisfies (G)r (cf. [7]). Furthermore,
as 47T has a projective resolution of finitely generated projective modules, we see
that Exti(7,@®7T) = 0 for any { = 1 and any direct sum 4@ T of copies of 4 7.
Then T3 asatisfies (P), (E)- and End(7Ts) = A, by [7; Proposition 1.4]. Then
by (1) above, 4 T5 satisfies Condition sP.

The following is evident from [7; Lemma 1.8 and 1.9].

Proposition 3.2. Assume that + T satisfies (P)r, (E),, and that End(.T') =
B. Then 4Ts satisfies Condition Iy and Condition sP.

Therefore Theorems 1.12 and 1.14 yield more precise forms of [7: Theorems
1.14 and 1.15]. Since T satisfies (G) (cf. [7]), both KE(7%) and KT(7}) are
trivial in this case.

Another example comes from a divisible R-module over a commutative
integral domain K. Let 0z the Fuchs' divisible #-module over a commutative
integral domain R. We put End(éz) = E. Then the bimodule 9¢ has the
following properties (cf. [1, 2]).

0. 0k is a divisible R-module which generates every divisible R-module.
1. End(s0) = R.

2. 1= pdim dr = pdim 0.

3. There is an exact sequence of R-homomorphisms

0> Re— or— 95(5)1?—’0.

where ¢(0)r is an R-direct summand of 9.
4. Exti(d, Do) = 0 for any direct sum D of copies of ds.
5. g0 is finitely presented, and Ext{d, ) = 0.

Therefore, by Proposition 3.2, 0z satisfies Condition 7z and Condition 2P.
On the other hand, by Proposition 3.1(1), zdser satisfies Condition go»P, or
equivalently, £dr satisfies Condition P:. Furthermore we have the follwing
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Proposition 3.3. 0 satisfies Codition &l
Proof. There is an exact sequence
0— R — Qr— Q/R:— 0,

where @r is the quotient field of R. Let I be any injective module of £-Mod.
Then, as 0k is divisible, xkHom({z0#, £I) is R-torsion free, and hence we have an
exact sequence

0 — Home(0, I) — @®zHom:(2, I) — (Q/R)RzHom: (3, I) — 0.

Then, since the middle term is R-flat, we see that Torf(d, Homg(d, 1)) = 0.
Therefore, by [7; Theorem 1.15], Extid, 0®zHomz(3, I)) = 0 for all { = 1,
and Home(0, 0Q@rHome(2, 1)) = Home(9, I) as R-modules. This implies that
eKer k; € KE(g9), where &;: e0QrHom(z0r, £f) — &I is the canonical map.
Furthermore, as is easily seen, :Cok k& € KE(z3). As pdim dr = 1, this com-
pletes the proof.

Thus £0r satisfies Conditions Iz, P, Pe, and gf. Thus we get a complete set
of tilting type correspondences between R-modules and E-modules, by virtue of
Theorems 1.12 and 1.14. Note that KE(dz) and KT(dk) are trivial in this case.
Facchini’s Theorem ([1, 2]) corresponds to the fact that £0r satisfies Conditions
Iz and Ps.

Finally we state an example which comes from a certain ring extension. Let
R < @ be rings with common identity, and suppose that Tor:(Qk, Q) = 0
(i 21), and QR:Q > Q, (1 ® @2 Q1.

Then, for any ¢Xi, ¢Xz € @-Mod and Ye € Mod-@Q,

EXti(RXL, RXZ) = EXt"(QXL OXI.’) (l = 0)»
and TOI'.‘( Yo, QX]) = TOl’i( Yz, RXI) (2 = 0).

To see these, we take a projective resolution of Qe :
= P> P — FB— Qr— 0.
Then, by assumption, we get an exact sequence
vo = P®rQe— PQrQo— Pi®rQq — QR:rQe— 0.

However, as Q@®rQ¢ = @, the above sequence splits. Therefore, applying
®eX, to the above sequence, we get an exact sequence. Hence, Tor:{(Qz, zXi) =
0(i = 1) and ¢@®:X1 =5 o X1, ¢ ®x1— gxi. Therefore, from a projective resolu-
tion of X\, we obtain a projective resolution of ¢Xj, by applying @&r on the left
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side. From this fact we can easily see the preceding isomorphisms. We put K
= Q/R, which is an R-R-bimodule:

(%) 0> R—- Q> K—0.

Then we have the following

Proposition 3.4. Let K = Q/R be as above. Then zKp satisfies Conditions
#P and I, and @-Mod = KE(xK) = kE(zK) = KT(Kz) = kT(Xz).

Progf. First'we prove the last assertion. Let xN' € R-Mod be such that
Tor:(Kr, #N') = 0(i = 0,1). Then zxN' =5 (zR®eN' 2 )QR:N’, x — 1®x, and
so N'€ Q-Mod. Conversely, if N’ @Mod then Tor{Qz, zN')=3
Tor{Qq, oN') = 0(i = 1), and QRN N’, g®x+— gx. Then N' = QR:N’,
x+— 1®x. Applying the functor ®zN" to the short exact sequence (% *), we see
that N’ € KT(Kz). Hence @-Mod = KT(Kz), and so KT(Kz) = kT(Kz).
Next we let Ext’(zK, »N) =0 (i =0,1). Then zHom(zQ, xN) =5 xHom(zR,
#N) > gN, and so N € Q-Mod. Conversely, if N € Q-Mod then Hom(zQ, »N)
= Hom(e@, oN) = N, and Ext'(2Q, :N) = Ext'(¢Q, oN) =0 ( = 1). Apply-
ing the functor Homz(—, N) to (%%), we can see that N € KE(:K). Hence
Q-Mod = KE(zK) = kE(xK). Now, for any X € R-Mod, we have an exact
sequence

Ext'(zR, 2 X) — Ext?(zK, 2 X) — Ext’(zQ, X) — Ext?(zR, 2 X).
Therefore Ext*(eK, 2X) =5 Ext*(xQ, 2X) € @-Mod. Let P € R-Mod be pro-
jective. Then the exact sequence

0— P— Q®rP — KQzP— 0
induces isomorphisms
Hom{zK, :KQ:rP) = Ext'(zK, rP), Ext'(zK, RK®P) =5 Ext2(:K, zP).

Then we have a commutative diagram with exact rows

OﬁHom(RQ,RP)—*Hom(RR,RP)ﬁ Eth(RK,RP) _’Eth(RQ,RP)_’O

| he dl
P - HOTI](RK, RK®RP)

and hence Ker %, Cok 2 € ©-Mod. Thus K satisfies Condition zP. Let I be
an injective K-module. Then

0— HOH’I(RK, RI)—' HOI’H(RQ, RI>_‘) I—0
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is exact. Since the middle term is a left @-module, we have K®grI = 0, and
TOI‘,'(KR, }e[) = TOT{—I(KR, RHOII’I(RKR, RI))

for all 7z = 1. On the other hand we have an exact sequence
0= Tori(Qz, #I) — Tori(Kz, »I) — I — QR — 0
a
where t(/) = Ker(/ — Q®¢I). Therefore, for any 7 = 1,

EXti(RK, RTOI‘](RKR, RI)) = Ext"(RK, R]) = (.
As QR € KE(xK), we have an exact sequence
0— L— K®3Hom(RKR, RI) - t([) — 0.

If we put M = xHom(zKk, #I) then, since zKr satisfies Condition »P, we have
a canonical isomorphism

RM = RHOIn(RKH. RK®RM),

and we can see that Ext’(zK, L) = 0 (i = 0, 1). Hence <L € KE(zX). Thus
#K satisfies Condition z/.

Proposition 3.5. Under the same assumption as in Proposition 3.4, if we
put End(zK) = H, End(Kz) = H’ then we obtain a bimodule u Ky which satisfies
Conditions HP, PH', H'I, and IH.

Proof. We have an isomorphism K®zH =5 K, x®h— (x)h, and so
End(Ku) = End(Kz). Similarly we have an isomorphism H'®zK =5 K, and so
End(x-K) = End(xK). Since KE(Kz) = Mod-Q = kE(Kk) and KE(GK) =
@-Mod = kE(gK), the remainder follows from Lemmas 1.16 and 1.17.

For this example we refer to [6] wholly, and further, to [5]. In particular,
Theorems 1.12 and 1.14 contain [6; Theorem 3.4 and 3.8], by Proposition 3.4.
The proof of Proposition 3.4 is related to the proof of [6; Proposition 5.2].

4. Supplement. (1) Assume that . T satisfies Condition P. Let sY €
B-Mod be such that Exti{(N’, Y)=0( = 0,1) for any N' = KT(T3). Put %
= kg and End(.T) = B*. Then, as sKer %, sCok # € KT(Ts), we see that
Hom(zB*, s Y) = (Hom(:B, :Y) 3 )Y, f— (1)f. Therefore zY is uniquely
extended to a left B*-module s+ Y. In particular, if we put ¥ = zB* then, by
Lemma 1.3, Hom(zB*, :B*) =5 Hom(sB, sB*), that is, B* = End(zB*) by right
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multiplication. On the other hand, let Xz € Mod-B be such that Exti{ X, N) =
0 (j=0,1) for any Ns & KE(T73s). Then, for any injective B-module 7,
Hom(zKer &g, I5)s and Hom(sCok ks, Iz)s belong to KE(Ts). Hence
Hom(Xs, Hom(sB#, 1)) = Hom(Xs, Hom(sBs, I5)s).  Therefore X =
X®:B* x+— x®1. Hence X5 is uniquely extended to a right B*-module Xz-.
(cf. [6; Proposition 5.1, 5.5, and 5.6])

(2) The following is also true, and its proof is similar to the one of Lemma
1.2.

Let e, s be non-negative integers, and assume that Tor:( 75, sY") = 0 (0 <
i< e+s, and i+ e), and Tor;(Ni4T)=0 (0<j< e+s+1). Then
Tor:(Na, aTore( T3, YY) =0 (0 < ¢t < s+1).

(3) Let A be a commutative ring, and assume that a left A-module 7'(=
0) satisfies (P), (E) for some » = 0. Then 47 is projective. To see this, by
localization, we may assume that A is a local ring. Then 47 has a minimal
projective resolution of finitely generated projective modules ;

0P Py——> B— T —0.

Assume that Pr =0 and » = 1. Then, by assumption, Pr — P,_; vields an
epimorphism Homa(Pr-,, T) - Homa(Ps, T'). Since the image of P, in Pr_, is
contained in rad(A)- Pr-1, PrHoma(P;, T) is contained in rad(A)- 7. But, as
P, 0, 4P, is free, and so T = rad(A)- T, a contradiction.

(4) Assume the situation of Theorem 1.12. Additionally, assume that;
Ext'(uT, 4aT®3:P) = 0 (i = 1) for any projective zP, and that pdima7T < » <
oo, Furthermore, we additionally assume that Y (in Theorem 1.12) satisfies
Tor{Ts, 5Y) =0 (i = e). Then Ext’(s T, aTore(sTs 5Y)) = 0 (i #+ ¢) holds.
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