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Dedicated to Professor Kazuo Kishimoto on his 60th birthday
Kaoru MOTOSE

We here consider a proper basis B of the radical J(KU) of the modular
group algebra KU of an elementary abelian group U over a field X (see [16]).
The purpose of this paper is to show some examples such that this basis is useful
for computing the nilpotency indices of the radicals of some group algebras. We
may assume that a field K contains a finite field F of order »” = |U| and an
elementary abelian group U is the permutation group on F defined by

U={us: x> x+a| a € F).

We usually use {#a—1| @ € F} as a basis of the radical J(KU) of KU but it
is not so useful for the products of basis elements and actions on J(XU). The
basis B is defined as in the following. Let A be an element of the character group
F* — Hom(F*, F*) of the multiplicative group F* of F. Then we set

0 ifA=+1

Ry = 2oer Mla)ua where A(0) = {1 fi=1

It is easy to see {R:| A € F*} is a basis of the radical J(KU) of the group
algebra KU. The reason for the usefullness of this basis is the following
equations.

1. RiR.= J(A u)Riw where J(A, 1) = Daer Aa)p{1—a).
2. R{= R~ for an automorphism ¢ of F.

We can find a much better basis B of J(KU) as in the following. Let # be
a generator of F*. Then ¢: 7— 7' is a generator of F*. We set @ = R0+
It is evident @f = 0. We obtain from [16, Proposition 3.2] the next assertion

OF@of e e @2 £ 0.
We can identify an element
Pt e 07t (0 < dn < p)

a natural number
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bt ip+ oo +irap"

For two natural numbers a = i+ap+ ¢+ +irmp™! and b = jo+/1p
+ +ov +7r1p" 7! where 0 < ix, 7 < p, We define

a+b if ix+j. < pforall &
0 otherwise.

a#bz{

It follows from our observations that the set
B={1,2-- p"—1}

is a basis of J(KU).

Moreover we shall use some notations. We set a* = 2528 ix for a = 7o
+ap+ o+ +irm1p"7! where 0 < i < p. Let t(G) be the nilpotency index of
the radical of the group algebra KG of a finite group G. Let F be a finite field
of order p** and let S be a subgroup of F*. Then we consider the next
permutation group Mp,.s on F

Mp,es = {x—*ax””’—kbl aeES,bEF, k=01, p—1}.

If the order of S is ko = (p** —1)/(p* —1), we set simply Mp,: = Mp.¢.s.

Using the basis B, we already cobtained the next assertions. The set {# €
B| b* = k} is a basis of J(KU)*[J(KU)**' (see [16]). If the order of S is
multiple of 4o, then we have ¢(Mp,+.s) = t(Mp,e) = (pt+1)(p—1)+1 (see [9])
since Mp,: is a normal subgroup of Mp,.,s whose index is not divisible by p and
we have the formula to compute Loewy series of the group algebra of Mj,.,s over
a field K (see [15,16]). '

In this paper, using B we shall give an altenative proof of the essential part
of H. Fukushima's result (see [1]), the minimal order group with some conditions
about the nilpotency index, and some examples of computations of #(Mp...s) in
case the order % of S is a proper divisor of #.

1. Let WV be a p-nilpotent group with a p-group W and a normal abelian
p’-component V, and let G be a semidirect product of a subgroup WV and a
normal elementary abelian p-subgroup U. But we should remark that the
assumption U is elementary is superfluous in our discussion. Recently, in case
WYV is a Frobenius, H. Fukushima characterized the groups with ¢(G) = s(p
—1)+1 where p° is the order of a p-Sylow subgroup WU of G (see [1]).

The most difficult part in his proof is to prove that Cs(x) contains a p-Sylow
subgroup of G for every x € U. However, if we use our basis B, then we can
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easily prove this part. It is easy to see that the radical of KG contains
J(KW): V+J(KU) where V = Jver v.

The next lemma was proved in [10]. However we shall here restate for the
completeness.

Lemma 1.1. If #(G) =s(p—1)+1 and let Us be a minimal normal
subgroup of UV contained in U. Then U, is normal in G.

Proof. Assume that Us = U, for some r € W which implies Uh N Uf =
1. There exists a normal subgroup U, of UV containing Us such that U = Us
x U since V is a p’-group. The next equation follows from ¢(G) = s(p—1)+1.
0= WﬁUa(l — Z') 1701 = WV( Uo— Uar) ‘701
= |VIWV(Oo— OO, = |VIWVG, O, = |VIG.

This is a contradiction and we have the assertion.

Proposition 1.2. If #(G) = s(p—1)+1 then Cclu) contains a p-Sylow
subgroup of G for all u € U. Conversely, if |W| = p and Co(u) contains a
D-Sylow subgroup of G for all u € U, then ¢+(G) = s(p—1)+1.

Proof. Since t(G) = s(p—1)+1, W is elementary. Let Us be a minimal
normal subgroup of UV contained in UU. Then there exists a normal subgroup
Ur of UV such that U = Usx U, since V is a p'-group, and it follows from
lemma that Us and U: are normal subgroup of G. Thus Go = WVU, = G/U,
and so by virtue of the inequality #(G) > #(Go)+ t(Ui)—1, G, satisfies the same
condition as G. Hence, we may assume that U is a minimal normal subgroup
of UV (of G). Weset H = Co(U), Gy = G/H, Wi = WH/H and Vi = VH/H.
Then we may assume that W, and V; are nontrivial. W) and V; have the same
actions on U as W and V, respectively. Since WiV, and V; act faithfully and
irreducibly on U, respectively and V; is a normal abelian subgroup of W; Vi, by
(17, p.244 Proposition 19.8], we can see that F = GF(g”) where ¢ = p* and W,
and V) are regarded as a permutation group on F such that

Wi=<o: x—x and Vi={x—ax: a€ S}

where 61 = ¢ mod H for some ¢ € W and S is a subgroup of the multiplicative
group of GF(g®).

We may regard B = {1, 2, +++, g°—1} as a basis of the radical of KU. Let
a be an arbitrary element of {1,2,+++,¢?—2} and a+b = ¢°—1. Then it
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follows from the condition #(G) = s(p—1)+1 that for an arbitrary element r of
W,

Via—a") Vb = WVa(l—1) Vb = 0.
Thus we have
VaVb = Va*Vb.
We can set @’ = 6(v)a for v € V where 8(v) € K (see the definition of B). It
is easy to see that & is a linear character of V and
VaV = (vgvﬁ(v)> Va.
Assume first that 8 is trivial. Then
|V|Vattb= VaVb= Va'Vb=|V|Va #b
and so
ab=a"#b.

Since a’ is an element of B (see the definition of B) and a # 4 is not zero, we can
see that a* = a. Next we assume that 8 is nontrivial. Then 2l,ev 8(v) = 0 and
so VaV=0= Va'V.

Thus we have (VaV)= Va'V for all € B and r € W. Since B
together with the identity of U forms a basis of KU, we obtain that VaV =
Vu'V and 50 Dpev u? = Spevu@ forall u € UandrE€ W. L={v €V
| ¥ = u}isasubgroup of V and {v € V| «™ = u"} = L*. Thus we have

Dutt = u
k k

where {4} is representatives of right cosets of L in V. Hence % = «** for some
v in V which implies that G = VGe(u) and so the index (G: Ce¢(u)) is not
divisible by p.

Proof of the converse: For arbitrary elements u € U and r € W, it
follows from the assumption that z* € Ce(u) for some 2 € V. Hence u™" = u.
Let e and f be primitive idempotents of KV corresponing to character v and ¢
of V such that ¢’ = e and f* = f for all p € W, respectively. Then we have

euf = eu™"f = v(hulh)r ehub™ fr = (euf).
It follows from this equation that

(zr&mexc) =0,
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and on the other hand, Morita’s theorem [7] shows that
J(KG) = [(KU)KG+ ze}f(KW’)eKG

where e runs over primitive idempotents of K1 such that e’ = e forall p € W.
Thus we have #{G) = t(U)+ p—1 which implies our assertion.

The next corollary follows from our theorem.

Corollary 1.3 (H. Fukushima [1]). Assume that WV is a Frobenius group
with the kernel V and a complement W. Then t(G) = s(p—1)+1 if and only
if |W|=p and Cc(u) contains a p-Sylow subgrowp of G for all u € U.

The following corollary follows from the proof of our theorem and [10,
Theorem 12].

Corollary 14. If G is a group of the minimal order satisfying the next
conditions, then G is isomorphic to My,
1. G s a p-solvable group with a p-Sylow subgroup P of order p°.
P is not elementary abelian.
tH(G) = s(p—1)+1.
Ov(G/Ox(G)) is abelian.

o po

2. The purpose of this section is to compute the nilpotency index of Mp,¢.s
in case the order # of S is a proper divisor of . We set

W=<Kw:x—x% and V={x—ax; a€ S}

Moreover we set G = Mp,e.s and f = V. If the order % of Sis a proper divisor
of Ao, it is not so easy to compute (Mp,.,s) (see [14]). However, using a proper
basis of /(K U) which play an important role in [16], we can reduce this problem
to the computation of a certain number. This number can be computed by a
computer. Some of these are cited in the last of this section. We should note that
w shifts ¢ times components of elements in B. We can see easily J(KG) =
J(KW)f+J(KU)KG since WV is a Frobenius group. We use the notation @'~
= a—a” for ¢« € KG.

The next is a key lemma in this section.

Lemma 2.1. The set fJ(KU)'"“"fJ(KW) is contained in
KUY =" f L (KW A(KU)S 2" f Jor §s=>1 k>0, and the set
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A(KGY "1 is also contained in J(KG)***.

Proof The next equation follows from fw = wf and b(1—w) = b""*
+(1—w)d® for b € KG. For a € J(KU)*, we have

a1 —w) = fa " f+ FQ—w) fa

This equation shows the first assertion. Together wih induction on £, the second
assertion follows.

The next lemma follows from Lemma 2.1 and the equation J(KG) =
J(KW)f+J(KU)KG.

Lemma 2.2. We have
J(KGY = J(KUYKG+ 3 J(KUYJ(KW)fJ(KU)

+ZJ(KUYJ(EW)F - TI (KUY ) (KUY

where the last suwmmation is extended over X si+ 2 kit €+j+] =n,8: =1,
ki>1land ¢ > 1.

We can now prove our theorem in this section.

Theorem 2.3. We set
d= MaX{Zki ’ pI-wIk f pl-wiks g U= 0}

where by, by, +++, bm runs the set of multiples of h and nonmultiples of ho in B
and ka < p for all n. Then we have t(G) = d+(ip+1)(p—1)+1.

Proof. Tt follows from [16, Lemma 3.1(4)] that & is the maximum integer
in 2 k: with TT.(fJ(KU)*"~*™f) + 0 wheres; > 1l and 4 > 1. Weput n = d
+(tp+1)(p—1)+1. Assume that J(KG)" + 0. Then we can see that 2is:+J
+7 < tp(p—1), 2k: < d and £ < p—1 by using the same notations in lemma
22 where n = Xsi+k:+£+7+j. This yields a contradiction # = 2s;
+3ki+ 47+ < d+(tp+1)p—1) < n which implies /(KG)" = 0. On the
other hand there exists a nonzero element

2 = [ (ai="7)

such that d = 3™, £:. Since the nonzero element 2z’ is equal to zf where z = [I7
@™ (see [16, Lemma 3.1(4)]), there exists a nonzero term & of z with a
nonzero coefficient . We can find an element ¢ such that c#b = ¢g*—1=U
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and c # & = 0 for every nonzero term &° # b of z by noting '* = 2% ,af = b*
since & and & have the same form ¢*“” # -+ + # @™ with only differences of j,
o, ***. jm. Then we have ¢z = yU. Since J(KG)****" contains ¢z’ by using
Lemma 2.1 and ¢*+2™.af = ip(p—1), J(KG)"™* contains a nonzero element
cz'(1—w)*'f = czWV = yG. This completes the proof.

It is not so easy to calculate & and so using a computer, we can present some
examples for proper divisors of .

P ¢ q° ho h tHG)
2 3 64 9 3 10
5 1024 33 3 16
11 14
6 4096 65 5 18
13 17
7 16384 129 43 18
3 2 729 91 7 22
13 20
5 1 3125 781 71 33

3. The purpose of this section is to prove that every p-solvable group with
a regular p-Sylow subgroup has almost p-length 1 (Theorem 3.1(b)} and some
results relating to this (Theorem 3.1(a) and (c)). It is well known from [4, p.456,
4.8 Theorem, b)] but we here give a much simpler proof and the useful form for
us.

Let G be a p-solvable group with a p-Sylow subgroup P and let F/Op{G)
be the Frattini subgroup of Op,»(G)/0p(G). A subgroup H of GL(2, p) acts
naturally on the elementary abelian group E of order p°. Let p*-H be a
semidirect product of £ by H with respect to this action.

The following theorem shall give generalizations and improvements of some
theorems :

Our assertion (a) in the next theorem contains [6, Lemma 7]. We can see
that [18, Theorem 1] (see [12]), [10, Corollary 13] and [13, Corollary] are easy
consequences of (b) and a ring theoretical condition in [12, Proposition] and [13,
Lemma] is superfluous by (b). Examples in (i) of (c) point out a mistake in the
proof of [18, Theorem 1] (see [12]). As a result of (c), we have [6, Lemmas 8 and
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9]. It follows from (c) that a ring theoretical condition in [8, Proposition 1], [5,
Theorem] and [11, Proposition] is superfluous.

Theorem 3.1. Assume that G has p-length at least 2. Then we oblain the
Jollowing assertions :

@ [Pl =p"

(b) If P is regular (see [3, p.321, Definition 10.1]), then p is a Fermat prime
and 2-Sylow subgroup of G/Op(G) is nonabelian.

(c) If every proper subgroup of P is melacyclic then one of the next holds.
i. p=23and G/F is either 3*-GL(2,3) or 3%-SL(2,3)
ii. p=2and GIF =2*-GL(2,3) = S..

Proof. In all cases, we may assume F° = 1 by [2, p.7, Corollary]. Thus U
= 0,(G) is elementary abelian and G/U is a subgroup of GL(U) = GL(n, p)
where U is regarded as a #-dimensional vector space over GF(p) (see [2,
Lemma 1.2.3]). Since G/U contains an element y of order p and v is conjugate
to a triangular matrix with 1's in the diagonal, we have an inequality p—1 < #»
in view of Hall Higman's theorem B [2, Theorem B]. By the Frattini argument,
we can see G = N¢(V)U where V is a p’-group such that Op.»(G) = UV.

(a) An inequality # > p—1 yields our assertion.

{b) Let x be an element of P and let # be an element of /. Then it follows
that (xu)? = x* since P is regular and <x, >’ S <x, U>’ € U. Soif ¥ is a
residue class of an element x in G, then we have

(B-1pmt o P4k B 4] '

u =u"" oo wu = xP(xu) =1

where #*° = ©* = x Sux® and (¥ —=1)*"' = £°7'+ +++ + £ +1 is the sum of
endomorphisms £°7', -++, ¥, 1 of U/, Hence Hall Higman’s theorem B yields
our results.

(¢) We can easily see that » = 2 since U is metacyclic, and so p < 3
follows from the inequality p—1 < » = 2. Assume G/U acts reducibly on U,
namely, G/U is a group consisting of triangular matrices of degree 2. Then P/U
is normal in G/U contrary to the assumption. Thus G acts irreducibly on U.
Since Ny(V) is normal in Ne( V)U = G and U is a minimal normal subgroup,
we have Nu(V) = 1 by F = 1 and so G is a semidirect product of U by Ne( V).
Thus we obtain G = 22-GL(2, 2) if p = 2. We may consider only the case p =
3. Since N¢(V) is a subgroup of GL(2, 3) and its order has a divisor 24 by (b),
we can see Ne( V) = SL(2, 3) or GL(2,3). This proves our result.
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Remark. For every Fermat prime p, there exists an example of a p-
solvable group G of p-length 2 with a regular p-Sylow subgroup of order p* such
that a 2-Sylow subgroup of G/O{(G) is nonabelian (see [2, Theorem 35.3]). It
seems to be the ultimate example of for our theorem.
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