FINITE POSETS P AND P-GALOIS EXTENSIONS OF RINGS

Dedicated to Professor Takasi Nagahara on his 60th birthday

KAZUO KISHIMOTO

0. Introduction. Let B be a ring with an identity 1. A a subring of B with common identity 1 of B and G a finite group of A-automorphisms of B. B/A is called a separable extension if the epimorphism $\mu: B \otimes_A B \Longrightarrow B$; $\mu(b \otimes c) = bc$ splits as a B-B-homomorphism (see [5]). B/A is called a G-Galois extension if (1) $B^c = \{b \in B : \Lambda(b) = b \text{ for all } \Lambda \in G\} = A$ and (2) B_A is a finitely generated projective module and $End(B_A)$ is ring isomorphic to a trivial crossed product, $D(B, G) = \sum_{A \in G} \oplus Bu_A$, of G over B (see [2]).

A separable extension is closely related to a G-Galois extension. Indeed if B/A is a G-Galois extension then B/A is a separable extension, and if B is a commutative separable extension of A such that $B^c = A$ and G is strongly distinct, then B/A is a G-Galois extension. For this reason, for a finite group G of automorphisms, we call a G-Galois extension is a Galois extension of separable type in this paper. On the other hand, there are various kind of works about constant subrings which correspond to (purely) inseparable cases of fields. For a subset P of $\operatorname{End}(B_A)$, $B^P = \{b \in B; \Omega(b) = 0 \text{ for all } \Omega \in P \text{ such that } \Omega \text{ is not a ring automorphism}\} \cap \{b \in B; \Lambda(b) = b \text{ for all } \Lambda \in P \text{ such that } \Lambda \text{ is a ring automorphism}\}$ is called a constant subring of B if B^P forms a subring. For example, if $P = \{d_0 = 1, d_1, \dots, d_m, \dots\}$ is a higher derivation of B (see [4]), then B^P is a subring which contains 1. We say B/A is a P-Galois extension if

- (1) $B^P = A$ is a constant subring,
- (2) B_A is a finitely generated projective module and $End(B_A)$ is ring isomorphic to a trivial crossed product, D(B, P), of P over B which is defined in §2.

In this paper, we consider a finite partially ordered set (= poset) P of End (B_A) which is called a relative sequence of homomorphisms. As will be seen in §1, P is able to contain a finite group of automorphisms, a set of derivations and a set of higher derivations etc. In §2, we shall construct a ring D(B, P) which is a free left (as well as right) B-module with a B-basis $\{u_a : \Omega \in P\}$. This ring corresponds to the trivial crossed product D(B, G) in the case of a G-Galois extension B/A and plays an important role in the theory of P-Galois extension. In §3, we shall define a P-Galois extension and study some properties of P-Galois

extensions. As is remarked above, one can choose a finite group of automorphisms and a set of derivations (resp. higher derivations) as P. Thus the notion of a P-Galois extension is a generalized notion of a Galois extension of separable type and inseparable type. In §4, we shall study P-Galois extensions B/A when a relative sequence of homomorphisms P satisfies some additional conditions. In §5, we shall study a P-Galois extension B/A such that $B_A \oplus > A_A$, that is, A_A is a direct summand of B_A . Finally in §6, we shall treat of the case of P-Galois extensions of algebras over a commutative ring A.

General constructive studies of *G*-Galois extensions of inseparable types will be seen in forthcoming paper of the author.

1. A finite poset of $\operatorname{End}(B_A)$. Let a subset $P = \{\Omega_1, \Omega_2, \dots, \Omega_n\}$ of $\operatorname{End}(B_A)$ be a poset with the order \leq . A minimal (resp. maximal) element of P means a minimal (resp. maximal) element of P with respect to the order. By P(min) (resp. P(max)), we do note the set of all minimal (resp. maximal) elements of P. $\Lambda \subseteq P(min)$ (resp. $\Lambda \subseteq P(max)$) is said to be a minimal (resp. maximal) element of Ω_i if $\Lambda < \Omega_i$ (resp. $\Lambda > \Omega_i$). Ω_i is said to be a cover of Ω_i if $\Omega_i > \Omega_i$ and there is no Ω_k such that $\Omega_i > \Omega_k > \Omega_i$. If Ω_i is a cover of Ω_i , we denote it by $\Omega_i \gg \Omega_i$. For Ω_i , a chain of Ω_i means a descending chain

$$Q_i = Q_{i_0} \gg Q_{i_1} \gg \cdots \gg Q_{i_m}$$

where Ω_{im} is a minimal element of Ω_i , and in this case, m+1 is said to be the length of this chain. The reader can find relevent notations of the poset in [1].

For a finite poset P of $End(B_A)$, we shall give the notion of a relative sequence of homomorphisms (abbreviate a r.s.h).

We state following conditions (A.1)-(A.6) and (B.1)-(B.4).

- (A.1) $\Omega \neq 0$ for all $\Omega \in P$ and P(min) coincides with all $\Lambda \in P$ such that Λ is a ring automorphism.
- (A.2) Any two chain of Ω have the same length. By $ht(\Omega)$ we denote the length of the chain of Ω .
- (A.3) For Ω , $\Gamma \in P$ if $\Omega\Gamma \neq 0$ then $\Omega\Gamma \in P$ and if $\Omega\Gamma = 0$ then $\Gamma\Omega = 0$.
- (A.4) For Ω , Γ_1 , $\Gamma_2 \in P$, assume $\Omega\Gamma_1 \in P$ and $\Omega\Gamma_2 \in P$.
 - (i) $\Omega\Gamma_1 \geq \Omega\Gamma_2$ (resp. $\Gamma_1\Omega \geq \Gamma_2\Omega$) if and only if $\Gamma_1 \geq \Gamma_2$.
 - (ii) $\Omega\Gamma \geq \Lambda$ if and only if $\Lambda = \Omega_0\Gamma_0$ for some $\Omega_0 \leq \Omega$ and $\Gamma_0 \leq \Gamma$ where Ω_0 , $\Gamma_0 \in P$.
- (A.5) |P(min)| = |P(max)|, where |*| means the cardinality of the set *.

If $\Omega = \Lambda \Gamma$, Λ (resp. Γ) is said to be a left (resp. right) factor of Ω and Γ (resp. Λ) is denoted by $(\Omega/\Lambda)_{\ell}$ (resp. $(\Omega/\Gamma)_{r}$). $(\Omega/\Lambda)_{\ell}$ (resp. $(\Omega/\Gamma)_{r}$) is determined uniquely by (A.4), (i).

(A.6) For any $\Delta \in P(max)$, if $\Omega \leq \Delta$ then Ω is a left (as well as right) factor of Δ .

Remark. If P satisfies conditions (A.1)-(A.4), then P(min) forms a group since it is a finite semigroup which is contained in the group of automorphisms of B.

- (B.1) $\Omega(1) = 0$ for all $\Omega \in P P(min)$.
- (B.2) For Ω , there exist $g(\Omega, \Gamma) \in \text{End}(B_A)$ for all Γ such that $g(\Omega, \Gamma) = 0$ if $\Gamma \not\leq \Omega$ and

$$Q(xy) = \sum_{\Gamma \in P} g(Q, \Gamma)(x)\Gamma(y)$$
 for x, y in B

Since $g(\Omega, \Gamma) = 0$ for $\Gamma \not \subseteq \Omega$, we have

(B.2') $\Omega(xy) = \sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(x)\Gamma(y)$

where $\sum_{\Gamma \leq \Omega}$ means the sum of all Γ such that $\Gamma \leq \Omega$.

The formulation of (B.2') is more essential than that of (B.2) and we use the formulation (B.2') in the rest of this paper when this causes no confusion.

(B.3) (i) $g(\Omega, \Lambda)(xy) = \sum_{\Lambda \leq \Gamma \leq \Omega} g(\Omega, \Gamma)(x)g(\Gamma, \Lambda)(y)$

for $x, y \in B$ where $\sum_{A \le \Gamma \le Q}$ means the sum of all Γ such that $\Lambda \le \Gamma \le Q$.

(ii) Let Ω , Λ , $\Gamma \in P$ and $\Omega \Lambda \geq \Gamma$. Then

$$g(\Omega\Lambda, \Gamma)(x) = \sum_{\Omega' \leq \Omega, \Lambda' \leq \Lambda, \Omega' \Lambda' = \Gamma} g(\Omega, \Omega') g(\Lambda, \Lambda')(x)$$

for $x \in B$, where $\sum_{\varrho' \leq \varrho, \Lambda' \leq \Lambda, \varrho' \Lambda' = \Gamma}$ means the sum of all $g(\varrho, \varrho')g(\Lambda, \Lambda')$ such that $\varrho' \leq \varrho$, $\Lambda' \leq \Lambda$ and $\varrho' \Lambda' = \Gamma$.

- (B.4) (i) $g(\Omega, \Omega)$ is a ring automorphism for each Ω .
 - (ii) $g(\Omega, \Lambda) = \Omega$ for all minimal element $\Lambda (\subseteq P(min))$ of Ω .
 - (iii) $g(\Omega, \Gamma)(1) = 0$ for $\Gamma < \Omega$.

P is said to be a r.s.h if it satisfies (A.1)-(A.4) and (B.1)-(B.4).

For the convenience of readers, we shall state an example of a r.s.h.

Let D be an A-derivation of B such that $D^n = 0$ and $D^i \neq 0$ for $0 \leq i \leq n-1$. Then $D = \{D^0 = 1, D, D^2, \dots, D^{n-1}\}$ becomes a poset whose order $D^i \geq D^j$ is defined by $i \geq j$.

We can easily see that D satisfies the conditions (A.1)-(A.4).

Since $P(min) = \{1\}$ and $P(max) = \{D^{n-1}\}$ in D, D satisfies (A.5)-(A.6). For $D^i \in D$ and $x, y \in B$

$$D^{i}(xy) = \sum_{j=0}^{i} {i \choose j} D^{i-j}(x) D^{j}(y).$$

Hence, if we put $g(D^i, D^j) := \binom{i}{j} D^{i-j}$ where we put $\binom{i}{j} = 0$ for j > i, then $g(D^i, D^j) \in \text{End}(B_A)$ and

$$D^{i}(xy) = \sum_{D^{j} \leq D^{i}} g(D^{i}, D^{j})(x)D^{j}(y).$$

Thus D satisfies (B.2).

$$\begin{split} g(D^{i}, D^{j})(xy) &= \binom{i}{j} D^{i-j}(xy) = \binom{i}{j} \sum_{k=0}^{i-j} \binom{i-j}{k} D^{i-j-k}(x) D^{k}(y) \\ &= \sum_{k=0}^{i-j} \binom{i}{j+k} D^{i-j-k}(x) \binom{j+k}{k} D^{k}(y) = \sum_{k=0}^{i-j} g(D^{i}, D^{j+k})(x) g(D^{j+k}, D^{j})(y). \end{split}$$

For $D^iD^j \geq D^k$

$$g(D^{i}D^{j}, D^{k})(x) = {i+j \choose k} D^{i+j-k}(x) = \sum_{s+t=k,0 \le s \le i,0 \le t \le j} {i \choose s} D^{i-s} {j \choose t} D^{j-t}(x)$$
$$= \sum_{s+t=k,0 \le s \le i,0 \le t \le j} g(D^{i}, D^{s}) g(D^{j}, D^{t})(x)$$

shows that D satisfies (B.3).

We can easily see that D satisfies (B.4).

Thus D is an example of a r.s.h P.

Let B be of prime characteristic p and $\partial = \{d_0 = 1, d_1, \dots, d_{p^{e-1}}\}$ (\subseteq End (B_A)) a higher derivation of rank p^e of B (see [4]). Then $P = \{(d_1)^{i_0}(d_p)^{i_1}\cdots (d_{p^{e-1}})^{i_{e-1}}; 0 \le i_j \le p-1\}$ becomes a post whose order

$$(d_1)^{i_0}(d_p)^{i_1}\cdots(d_{p^{e-1}})^{i_{e-1}}\geq (d_1)^{j_0}(d_p)^{j_1}\cdots(d_{p^{e-1}})^{j_{e-1}}$$

is defined by

$$\sum_{s=k}^{e-1} p^s \cdot i_s \geq \sum_{s=k}^{e-1} p^s \cdot i_s$$

for each $k = 0, 1, \dots, e-1$ (see [6]). Further we can see that P satisfies (A.1) -(A.6) and (B.1)-(B.4).

We will study P-Galois extensions with these examples of posets P in mind. In the rest of this paper, we assume that P is a r.s.h.

Let
$$P(s) := \{ \Gamma \in P : ht(\Gamma) \le s \}$$
. Then $P(1) = P(min)$. Further we

have the following

Lemma 1.1. (1) $\Lambda P(s) = P(s)\Lambda = P(s)$ for any $\Lambda \in P(1)$, where $\Lambda P(s)$ (resp. $P(s)\Lambda$) means $\{\Lambda \Gamma; \Gamma \in P(s)\}$ (resp. $\{\Gamma \Lambda; \Gamma \in P(s)\}$).

- (2) If $\Omega \notin P(1)$ then $\Omega \Delta_i = 0$ for any $\Delta_i \in P(max)$.
- *Proof.* (1) If $\Lambda \in P(1)$ then $\Lambda \Gamma$, $\Gamma \Lambda \neq 0$ are clear for all $\Gamma \in P(s)$ since Λ is an isomorphism. Further it is easy to see that $ht(\Lambda \Gamma) = ht(\Gamma \Lambda) = ht(\Gamma)$. This yields that $P(s) = \{\Lambda \Gamma : \Gamma \in P(s)\} = \{\Gamma \Lambda : \Gamma \in P(s)\}$.
- (2) Suppose $\Omega \Delta_j \neq 0$. For a minimal element Λ of Ω , $\Omega \Delta_j > \Lambda \Delta_j$ by (A.4). (i). But this contradicts to the maximality of Δ_j since $\Lambda^{-1}\Omega \Delta_j > \Lambda^{-1}\Lambda \Delta_j = \Delta_j$ again by (A.4).(i).

Let $m_{\mathcal{Q}}$ be the number of minimal elements of \mathcal{Q} . Then we have the following

Lemma 1.2. $m_0 \Omega = \Omega$.

Proof. For $x \in B$,

$$Q(x) = Q(x1) = \sum_{\Lambda \leq \Omega} g(\Omega, \Lambda)(x)\Lambda(1)$$

= $\sum_{\Lambda \in P(1), \Lambda \leq \Omega} g(\Omega, \Lambda)(x)\Lambda(1) = m_g\Omega(x)$

since $g(\Omega, \Lambda) = \Omega$ for any minimal element Λ of Ω by (B.4).(ii).

Corollary 1.3. Let $\Omega \in P$.

- (1) If A is an algebra over a field of characteristic 0 then $m_0 = 1$.
- (2) If A is an algebra over a field of prime characteristic p > 0 then $m_{\Omega} = 1$ (mod p).

Proof. (1) is clear by Lemma 1.2.

(2) Since $(m_{\Omega}-1)\Omega = 0$, we have $m_{\Omega}-1 \equiv 0 \pmod{p}$.

In the rest, we put $P(max) = \{\Delta_1, \Delta_2, \dots, \Delta_k\}$, $P_i := \{\Omega \in P ; \Omega \leq \Delta_i\}$ and $H_i := P_i \cap P(1)$. For $\Lambda \in P(1)$, $\Lambda \Delta_1 = \Delta_j$ for some j, and in this case $\Lambda P_1 = \{\Lambda \Omega ; \Omega \in P_1\} = P_j$ and $\Lambda H_1 = \{\Lambda \Omega ; \Omega \in H_1\} = H_j$. If P satisfies (A.5) and $P(1) = \{\Lambda_1, \dots, \Lambda_k\}$, then $P(max) = \{\Lambda_i \Delta_1 ; i = 1, 2, \dots, k\} = \{\Delta_1, \Delta_2, \dots, \Delta_k\}$.

A finite poset S is said to be a pure poset if each maximal element has the same length.

Lemma 1.4. Assume P satisfies (A.5). Then

- (1) P is a pure poset.
- (2) $P = \bigcup_{i=1}^{k} P_i$ and P_i is isomorphic to P_j as a poset for $i, j = 1, 2, \dots, k$.
- (3) Assume $H_1 \ni 1$, Then H_1 is subgroup of P(1) if and only if H_i is a subgroup of P(1) for all H_i such that $H_i \ni 1$. Moreover, if this is the case $H_i = H_1$.
- (4) If $H_1 = \{1\}$, then $m_{d_1} = 1$, P_i is a sublattice of P and $P_i \cap P_j = \phi$ for $i \neq j$ and $i, j = 1, 2, \dots, k$.
 - *Proof.* (1) Since $P(max) = \{\Lambda_i \Delta_1; i = 1, 2, \dots, k\}, ht(\Lambda_i \Delta_1) = ht(\Delta_1).$
- (2) $P = \bigcup_{i=1}^k P_i$ is clear. The relation between P_i and P_j is given by $\Lambda P_i = P_j$ for some $\Lambda \in P(1)$. Hence $f_A : P_i \Rightarrow P_j : \Omega \mapsto \Lambda \Omega$ gives an isomorphism.
- (3) H_i is obtained by $\Lambda_i H_1$ for some $\Lambda_i \in P(1)$. Assume H_1 forms a subgroup of P(1) and $1 \in H_i = \Lambda_i H_1$. Then Λ_i must be in H_1 , and hence, $H_i = \Lambda_i H_1 = H_1$. The converse is clear.
- (4) Assume $H_1 = \{1\}$. Since each P_i is obtained by $\Lambda_i P_1$ for some $\Lambda_i \in P(1)$, $H_i = \Lambda_i H_1 = \{\Lambda_i\}$ shows that $m_{\Delta_i} = 1$ and thus P_i is a lattice with the join Δ_i and the meet Λ_i . If $i \neq j$ and $H_i \cap H_j = \phi$ and hence $P_i \cap P_j = \phi$.

For a poset P, rank P is the maximal length of maximal elements of P. Then we can see that if P is a pure poset and

- (1) rank P = 1, then P is a finite group of automorphisms,
- (2) rank $P \ge 2$, then for each $\Omega \in P$ with $ht(\Omega) = 2$,

$$\Omega(xy) = \sum_{\Lambda \leq \Omega, \Lambda \in P(1)} g(\Omega, \Lambda)(x)\Lambda(y) + g(\Omega, \Omega)(x)\Omega(y)$$

= $\Omega(x)(\sum_{\Lambda} \Lambda(y)) + g(\Omega, \Omega)(x)\Omega(y)$

shows that Ω is a $(g(\Omega, \Omega), \Sigma_{\Lambda} \Lambda)$ -derivation of B. In particular, if $\Sigma_{\Lambda} \Lambda = 1$ and $g(\Omega, \Omega) = 1$ then Ω is a derivation of B.

2. The trivial crossed product of P over B. In this section we shall define a ring D(B, P) which is generated by elements $\{u_B : \Omega \in P\}$ over B and shall study the relationship between D(B, P) and $End(B_A)$.

Let $D(B, P) = \sum_{g \in P} \bigoplus Bu_g$ be a free left *B*-module with a *B*-basis $\{u_g; Q \in P\}$. Then D(B, P) becomes a right *B*-module via

$$u_{\Omega} \cdot b = \sum_{\Lambda \leq \Omega} g(\Omega, \Lambda)(b) u_{\Lambda}.$$

For,

$$u_{\Omega} \cdot (bc) = \sum_{A \leq \Omega} g(\Omega, A)(bc) u_A$$

$$= \sum_{\Lambda} (\sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(b) g(\Gamma, \Lambda)(c)) u_{\Lambda} \quad \text{by (i) of (B.3), and}$$

$$(u_{\mathcal{G}} \cdot b) \cdot c = (\sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(b) u_{\Gamma}) c$$

$$= \sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(b) (\sum_{\Lambda \leq \Gamma} g(\Gamma, \Lambda)(c)) u_{\Lambda}$$

$$= \sum_{\Lambda} (\sum_{\Lambda \leq \Gamma} g(\Omega, \Gamma)(b) g(\Gamma, \Lambda)(c)) u_{\Lambda}.$$

Since $u_{\mathfrak{g}} \cdot (b+c) = u_{\mathfrak{g}} \cdot b + u_{\mathfrak{g}} \cdot c$ is clear, the above shows that D(B, P) is a right B-module.

Let $D' = \sum_{B \in P} u_B \cdot B$ be a right B-submodule of D(B, P). Then we can obtain the following

Theorem 2.1. D' coincides with D(B, P) and $\{u_{\Omega}; \Omega \in P\}$ is a right B-basis of D'.

Proof. Let $\Lambda \in P(1)$ and let b an element of B. Then, $D' \ni u_{\Lambda}b = g(\Lambda, \Lambda)(b)u_{\Lambda}$ yields $bu_{\Lambda} \in D'$ since $g(\Lambda, \Lambda) = \Lambda$ is an isomorphism. Assume now $bu_{\Gamma} \in D'$ for any $\Gamma \in P(s)$. If Ω is a cover of $\Gamma \in P(s)$, we have

$$u_{\mathcal{Q}}b = g(\mathcal{Q}, \mathcal{Q})(b)u_{\mathcal{Q}} + \sum_{\mathcal{Q}' < \mathcal{Q}} g(\mathcal{Q}, \mathcal{Q}')(b)u_{\mathcal{Q}'}$$

where the sum $\sum_{\Omega' < \Omega}$ runs over all $\Omega' \in P(s)$ with $\Omega' < \Omega$ since $\Omega \in P(s+1)$. Hence, each $g(\Omega, \Omega')(b)u_{\Omega'} \in D'$ by induction hypothesis. Consequently we have $bu_{\Omega} \in D'$. Thus D' = D(B, P).

Assume now $a = \sum_{\Gamma \in P} u_{\Gamma}b_{\Gamma} = 0$ ($b_{\Gamma} \in B$). Since $\alpha \in \sum_{g \in P} \oplus Bu_{g}$, we can write $\alpha = \sum_{g \in P} c_{g}u_{g}$ for some $c_{g} \in B$ and $c_{g} = 0$ for all Ω . Let $\Delta \in P(max)$. Then $b_{d} = g(\Delta, \Delta)^{-1}(c_{d}) = 0$. Next let $Q_{1} = P - P(max)$ and $Q_{i+1} = Q_{i} - Q_{i}(max)$ for $i = 1, 2, \dots, k$. Assume now $b_{g} = 0$ for all $\Omega \in Q_{s}(max)$ for $s = 1, 2, \dots, t$. Then, $b_{\Gamma} = g(\Gamma, \Gamma)^{-1}(c_{\Gamma}) = 0$ for an arbitrary $\Gamma \in Q_{t+1}(max)$. Thus $\{u_{g}; \Omega \in P\}$ is right linearly independent over B.

Theorem 2.2. D(B, P) becomes a ring under the multiplication defined by

$$(au_{\Lambda})(bu_{\Gamma}) = \sum_{\Lambda' \leq \Lambda} ag(\Lambda, \Lambda')(b)u_{\Lambda'\Gamma}$$

where $u_{A'\Gamma} = 0$ if $\Lambda'\Gamma = 0$.

Proof. It suffices to show that $(u_{\Omega}au_{\Lambda})b = u_{\Omega}(au_{\Lambda}b)$. Let $(u_{\Omega}au_{\Lambda})b = \sum_{\Gamma} c_{\Gamma}u_{\Gamma}$ and $u_{\Omega}(au_{\Lambda}b) = \sum_{\Gamma} d_{\Gamma}u_{\Gamma}$ for c_{Γ} , $d_{\Gamma} \in B$. Then

$$(u_{\Omega}au_{\Lambda})b = \sum_{\Omega'' \leq \Omega, \Omega'' \Lambda \neq 0} g(\Omega, \Omega'')(a)u_{\Omega'' \Lambda}b$$

= $\sum_{\Omega'' \leq \Omega, \Omega'' \Lambda \neq 0} g(\Omega, \Omega'')(a)(\sum_{\Gamma' \leq \Omega'' \Lambda} g(\Omega'', \Gamma')(b)u_{\Gamma'})$

Hence, for a fixed Ω'' such that $\Omega'' \Lambda \geq \Gamma$, the coefficient of u_{Γ} is

$$g(\Omega, \Omega'')(a)g(\Omega''\Lambda, \Gamma)(b)$$

and hence.

$$c_{\Gamma} = \sum_{\Omega'' \leq \Omega, \Omega'' \Lambda \geq \Gamma} g(\Omega, \Omega'')(a) g(\Omega'' \Lambda, \Gamma)(b).$$

On the other hand.

$$u_{\mathcal{Q}}(au_{\Lambda}b) = u_{\mathcal{Q}}(a\sum_{\Lambda' \leq \Lambda} g(\Lambda, \Lambda')(b)u_{\Lambda'})$$

$$= \sum_{\Lambda' \leq \Lambda} (\sum_{\mathcal{Q}' \leq \mathcal{Q}, \mathcal{Q}'\Lambda' \neq 0} g(\Omega, \Omega')(ag(\Lambda, \Lambda')(b))u_{\mathcal{Q}'\Lambda'})$$

$$= \sum_{\Lambda' \leq \Lambda, \mathcal{Q}' \leq \mathcal{Q}, \mathcal{Q}'\Lambda' \neq 0} (\sum_{\mathcal{Q}' \leq \mathcal{Q}'' \leq \mathcal{Q}} g(\Omega, \Omega'')(a)g(\Omega'', \Omega')g(\Lambda, \Lambda')(b))u_{\mathcal{Q}'\Lambda'}.$$

Thus, for a fixed Ω'' such that $\Omega'' \Lambda \geq \Gamma$, the coefficient of u_{Γ} is

$$\sum_{\Omega' \leq \Omega'', \Lambda' \leq \Lambda, \Omega' \Lambda' = \Gamma} g(\Omega, \Omega'')(a)(g(\Omega'', \Omega')(b)) = g(\Omega, \Omega'')(a)g(\Omega'' \Lambda, \Gamma)(b)$$

by (B.3).(ii). Therefore d_{Γ} is also $\sum_{\Omega'' \leq \Omega, \Omega''' \Lambda \geq \Gamma} g(\Omega, \Omega'')(a) g(\Omega'' \Lambda, \Gamma)(b)$. Let j be the map of D(B, P) to $\operatorname{End}(B_A)$ defined by

$$j(bu_{\mathcal{Q}}): x \Rightarrow b\mathcal{Q}(x).$$

Then j is a ring homomorphism. Indeed, $j(bu_{\Lambda}cu_{\Gamma}(x)) = b\sum_{\Lambda' \leq \Lambda} g(\Lambda, \Lambda')(c)\Lambda'\Gamma(x)$. While, $j(bu_{\Lambda})j(cu_{\Gamma})(x) = j(bu_{\Lambda})(c\Gamma(x)) = b(\sum_{\Lambda' \leq \Lambda} g(\Lambda, \Lambda')(c)\Lambda'\Gamma(x))$. Since j is a ring homomorphism, $\operatorname{End}(B_{\Lambda})$ can be regarded as a left D(B, P)-module via j.

3. A *P*-Galois extension and a *P*-Galois system. In this section we shall study *P*-Galois extensions for a r.s.h *P*. We put $P(max) = \{\Delta_1, \Delta_2, \dots, \Delta_k\}$ and 1 is a minimal element of Δ_1 .

We use following notations:

- (i) $T = \sum_{A \in P(1)} A$.
- (ii) $T\Delta_i = \sum_{A \in P(1)} \Lambda \Delta_i$.

For $P(max) \ni \Delta_i$, Δ_j , if $\Delta_i = \Lambda \Delta_j$ for some $\Lambda \in P(1)$, we call Δ_i and Δ_j are similar. Then we may choose a set $N = \{\Delta_1, \Delta_2, \dots, \Delta_h\}$ which consists of all non-similar elements of P(max) for some $h \le k$.

Lemma 3.1. Assume Δ_m and Δ_n are elements of N.

- (1) $\Lambda \Delta_m = \Lambda' \Delta_n$ for some $\Lambda, \Lambda' \in P(1)$ if and only if $\Lambda = \Lambda'$ and m = n.
- (2) $P(max) = \{ \Lambda \Delta_1, \Lambda \Delta_2, \dots, \Lambda \Delta_n ; \Lambda \text{ runs over all elements of } P(1) \}.$
- (3) If j is an isomorphism and $m \neq n$, then $T\Delta_m \neq T\Delta_n$.
 - *Proof.* (1) If $A\Delta_m = A'\Delta_n$, then Δ_m and Δ_n are similar, and hence, m = n

since Δ_m , $\Delta_n \in \mathbb{N}$. Then $\Lambda = \Lambda'$ by (A.4).(i). The converse is clear.

- (2) For distinct Δ_m and Δ_n of N, $\Lambda \Delta_m \neq \Lambda \Delta_n$ for any Λ , $\Lambda' \in P(1)$. Next, for any $\Delta_s \in P(max)$, Δ_s is similar to some $\Delta_i \in N$. Thus $P(max) = \{\Lambda \Delta_1, \Lambda \Delta_2, \dots, \Lambda \Delta_n; \Lambda$ runs over all elements of P(1).
- (3) First we note that $\Lambda \Delta_m \neq \Lambda' \Delta_n$ for any Λ , $\Lambda' \in P(1)$ by (1). Hence $\{u_{\Lambda \Delta_m}, u_{\Lambda \Delta_n}; \Lambda \text{ runs over all elements of } P(1)\}$ is linearly independent over B, and hence $\sum_{\Lambda \in P(1)} u_{\Lambda \Delta_m} \neq \sum_{\Lambda \in P(1)} u_{\Lambda \Delta_n}$. This shows that $T\Delta_m = j(\sum_{\Lambda \in P(1)} u_{\Lambda \Delta_n}) \neq j(\sum_{\Lambda \in P(1)} u_{\Lambda \Delta_n}) = T\Delta_n$.

Remark. Since |P(1)|h = (|P(max)|, |P(1)|) is a divisor of |P(max)|.

Further we put as follows:

- (iii) $\Delta = \sum_{i=1}^h T \Delta_i \ (= \sum_{i=1}^h \Delta_i).$
- (iv) For $\Gamma \in P$, $g(T\Delta_i, \Gamma) = \sum_{A \in P(1)} g(A\Delta_i, \Gamma)$, where $g(A\Delta_i, \Gamma) = 0$ if $A\Delta_i$ is not a maximal element of Γ (Cf. (B.2')). Further, $g(\Delta, \Gamma) = \sum_{i=1}^h g(T\Delta_i, \Gamma)$.
- (v) $B_1 = B^{P(1)} = \{b \in B : \Lambda(b) = b \text{ for all } \Lambda \in P(1)\}.$
- (vi) $B_0 = \{b \in B : \Omega(b) = 0 \text{ for all } \Omega \in P P(1)\}.$
- (vii) $B^P = B_1 \cap B_0$.

Since $\Lambda T = T$ for all $\Lambda \in P(1)$, we have

(1') $T(B) \subseteq B_1$.

By Lemma 1.1.(2), we have $\Omega \Delta_j = 0$ for any $\Omega \in P - P(1)$ and a maximal element Δ_j of P. Hence

(2') $\Delta_j(B) \subseteq B_0$.

In virtue of (1') and (2'), we have

(3') $\Delta(B) \subseteq B_0 \cap B_1$.

A subset S of P is called an ideal if $\Omega \in S$ and $\Gamma \leq \Omega$ then $\Gamma \in S$.

Lemma 3.2. If S is an ideal of P then $B^s = \{b \in B : \Lambda(b) = b \text{ for all } \Lambda \in S \cap P(1)\} \cap \{b \in B : \Omega(b) = 0 \text{ for all } \Omega \in S - P(1)\} \text{ is a subring of } B \text{ which contains } A.$

Proof. For $x, y \in B^s$, $x - y \in B^s$ is clear. For $\Omega \in S$, $\Omega(xy) = \sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(x)\Gamma(y) = \sum_{\Lambda \leq \Omega, \Lambda \in S(min)} g(\Omega, \Lambda)(x)\Lambda(y)$ and each $g(\Omega, \Lambda)(x) = \Omega(x) = 0$ by (B.4).(ii) if $\Omega \notin S(min)$. Thus B^s is a subring of B. $A \subseteq B^s$ is clear.

Definition 3.3. B/A is called a P-Galois extension if

(a) $B^P = A$

- (b) B_A is a finitely generated projective module
- (c) j is an isomorphism.

In the rest, we shall assume following additional conditions:

- (i) P satisfies (A.6)
- (ii) P is a pure poset.

Further, in the rest we denote $u_{\mathcal{Q}}$ by \mathcal{Q} and $\sum_{A \in P(1)} u_{AA_s}$, by $T\mathcal{Q}_s$, when this causes no confusion.

Theorem 3.4. Assume $B^P = A$ and j is an isomorphism. Then $j(\sum_{i=1}^h (T\Delta_i \cdot B)) = Hom(B_A, A_A) = B^*$, and A_A is a direct summand of B_A if and only if there exist $x_1, x_2, \dots, x_h \in B$ such that $\sum_{i=1}^h T\Delta_i(x_i) = 1$.

Proof. First we note that $B_0 \cap B_1 = A$ since $B^P = A$. If P = P(1) (and hence P = P(max)) then P is a finite group of automorphisms of B and $\Delta = T$. Let $f \in B^*$. Then $f = j(\sum_{A \in P = P(1)} \Lambda b_A)$ for $b_A \in B$. Since $j(\Gamma)f = f$ for any $\Gamma \in P$, $\sum_{A \in P} \Lambda b_A = \sum_{A \in P} \Gamma \Lambda b_A$ yields $b_A = b_1$ for all $\Lambda \in P(1)$. (cf. [2]).

Assume now $P \neq P(1)$ and $\Omega \in P - P(1)$. Then we can easily see that $\Omega \cdot T\Delta_i = 0$ by Lemma 1.1.(2) and $\Lambda \cdot T\Delta_i = T\Delta_i$ for $\Lambda \in P(1)$. Then $j(\sum_{i=1}^h (T\Delta_i \cdot B)) \subseteq B^*$ by (3'). For $f \in B^*$, f is obtained by j(V) for $V = \sum_{\Omega \in P} \Omega b_{\Omega}$ $(\in D(B, P))$ since j is an isomorphism. Then

$$j(\Gamma)f = j(\Gamma V) = \sum_{A \in P(1)} j(\Gamma A)b_A + \sum_{G \notin P(1)} j(\Gamma \Omega)b_G$$

$$= \begin{cases} 0 & \text{if } \Gamma \notin P(1) \\ f & \text{if } \Gamma \in P(1). \end{cases} \dots (*)$$

First we assert that $V = \sum_{i=1}^k \Delta_i \cdot b_{di}$. For choosing Γ from P - P(1), we can see $b_A = 0$ for all $\Lambda \in P(1)$ by (*) and the fact that $\Gamma \Lambda \neq \Gamma \Omega$ for $\Lambda \in P(1)$ and $\Omega \in P - P(1)$ (by (A.4).(i)). Hence we assume that $b_B = 0$ for all Ω such that $ht(\Omega) \leq m < ht(\Delta_1)$. Let Γ be an arbitrary element of $ht(\Gamma) = m+1$. Then Γ is a cover of some Ω with the height m. Assume $\Gamma \notin P(max)$ and Δ_i is an maximal element of Γ . Then there exists $\Gamma_i \in P$ such that $\Delta_i = \Gamma_i \Gamma$ by (A.6). If $\Gamma_i \in P(1)$, then $ht(\Delta_i) = ht(\Gamma_i \Gamma) = ht(\Gamma)$ implies a contradiction $\Gamma \in P(max)$, since P is a pure poset. Thus $\Gamma_i \notin P(1)$, and hence.

$$0 = j(\Gamma_i)f = j(\Delta_i)b_{\Gamma} + \sum_{Q \neq \Gamma, Q \notin P(1)} j(\Gamma_i Q)b_{Q}.$$

Noting that $\Gamma_i \Omega \neq \Delta_i$ for any $\Omega \neq \Gamma$, we have $b_{\Gamma} = 0$. Consequently we have

$$V = \sum_{i=1}^h \Delta_i \cdot b_{\Delta_i} = \sum_{i=1}^h (\sum_{\Lambda \in P(1)} \Lambda \Delta_i \cdot b_{\Lambda \Delta_i}).$$

Since $\Lambda_0 V = V$, $\Lambda_0(\sum_{A \in P(1)} \Lambda \Delta_i \cdot b_{Ad_i}) = \sum_{A \in P(1)} \Lambda_0 \Lambda \Delta_i \cdot b_{Ad_i} = \sum_{A \in P(1)} A_0 A \Delta_i \cdot b_{Ad_i}$

 $\Lambda \Delta_i \cdot b_{A\Delta_i}$. Hence, for a fixed $\Lambda \in P(1)$, take $\Lambda_0 = \Lambda^{-1}$. Then we have $b_{A\Delta_i} = b_{\Delta_i}$. Therefore $b_{A\Delta_i} = b_{\Delta_i}$ for all $\Lambda \in P(1)$. Thus

$$V = \sum_{i=1}^{h} T \Delta_i \cdot b_{\Delta_i} \in \sum_{i=1}^{h} (T \Delta_i \cdot B).$$

Let $B_A \oplus > A_A$. Then the projection $\pi: B_A \Rightarrow A_A$ is obtained by $\sum_{i=1}^h T\Delta_i \cdot x_i$ for some $x_i \in B$ and so $1 = (\sum_{i=1}^h T\Delta_i \cdot x_i)(1) = \sum_{i=1}^h T\Delta_i(x_i)$. Conversely, if there exist $x_1, x_2, \dots, x_h \in B$ such that $\sum_{i=1}^h T\Delta_i(x_i) = 1$, then $\varphi: b \Rightarrow \varphi(b) = \sum_{i=1}^h T\Delta_i(x_ib)$ is an epimorphism with $\varphi(a) = a$ for all $a \in A$. Thus $B = A \oplus \text{Ker } \varphi$.

Theorem 3.5. If B/A is a P-Galois extension, then there exists a system $\{x_i, y_{ii}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\} \subseteq B$ such that

$$\sum_{i=1}^{s} x_i \left(\sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it}) \right) = \delta_{1,\Gamma}$$

for all $\Gamma \in P$.

Moreover, if this is the case,

$$\sum_{i=1}^{s} \Omega(x_i) \left(\sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it}) \right) = \delta_{\Omega, \Gamma}$$

for all $\Gamma \in P$.

Proof. Since B_A is finitely generated projective, there exists a projective coordinate system $\{x_i, f_i; i = 1, 2, \dots, s, x_i \in B, f_i \in B^*\}$, and each f_i is obtained by $\sum_{i=1}^h T \Delta_i \cdot y_{it}$, $y_{it} \in B$, by Theorem 3.4. Namely,

$$D(B, P) \ni 1 = \sum_{i=1}^{s} x_{i} (\sum_{t=1}^{h} T \Delta_{t} \cdot y_{it})$$

= $\sum_{i=1}^{s} x_{i} (\sum_{t=1}^{h} g(T \Delta_{t}, 1)(y_{it})) \cdot 1$
+ $\sum_{i=1}^{s} x_{i} \sum_{\Gamma \neq 1} (\sum_{t=1}^{h} g(T \Delta_{t}, \Gamma)(y_{it})) \Gamma.$

Therefore $\sum_{i=1}^{s} \sum_{t=1}^{h} x_i g(T\Delta_t, \Gamma)(y_{it}) = \delta_{1,\Gamma}$.

For $\Omega \in P$,

$$\Omega = \Omega \cdot 1 = \Omega(\sum_{i=1}^{s} x_{i}(\sum_{t=1}^{h} T\Delta_{t} \cdot y_{it}))
= \sum_{\Gamma \leq \Omega}(\sum_{i=1}^{s} g(\Omega, \Gamma)(x_{i})\sum_{t=1}^{h} \Gamma T\Delta_{t} \cdot y_{it})
= \sum_{A \in P(1), A \leq \Omega}(\sum_{i=1}^{s} g(\Omega, \Lambda)(x_{i})\sum_{t=1}^{h} \Lambda T\Delta_{t} \cdot y_{it})
= \sum_{i=1}^{s} (m_{\Omega}Q(x_{i})\sum_{t=1}^{h} T\Delta_{t} \cdot y_{it})
= \sum_{i=1}^{s} (\Omega(x_{i})\sum_{t=1}^{h} T\Delta_{t} \cdot y_{it}) \text{ (by Lemma 1.2)}
= \sum_{i=1}^{s} \Omega(x_{i})\sum_{t=1}^{h} g(T\Delta_{t}, \Omega)(y_{it})\Omega
+ \sum_{i=1}^{s} \Omega(x_{i})\sum_{\Gamma \neq \Omega}\sum_{t=1}^{h} g(T\Delta_{t}, \Gamma)(y_{it})\Gamma.$$

This implies

$$\sum_{i=1}^{s} \Omega(x_i) \sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it}) = \delta_{\Omega, \Gamma}.$$

Definition 3.6. Let $\Omega \in P$. For this fixed Ω , a system $\{x_i, y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\} \subseteq B$ is called a (P, Ω) -Galois system for B/A if it satisfies

$$\sum_{i=1}^{s} x_i (\sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it})) = \delta_{\mathcal{Q}, \Gamma}$$

for any $\Gamma \in P$. In particular, a (P, 1)-Galois system for B/A is called a P-Galois system for B/A.

Let $\{x_i, y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$ be a *P*-Galois system for B/A. Then

$$\sum_{i=1}^{s} x_i (\sum_{t=1}^{h} g(T\Delta_t, 1)(y_{it})) = 1 \text{ and } \sum_{i=1}^{s} x_i (\sum_{t=1}^{h} g(T\Delta_t, \Omega)(y_{it})) = 0$$

for $\Omega \neq 1$.

Further, for $\Lambda_0 \subseteq P(1)$,

$$g(T\Delta_t, \Lambda_0) = \sum_{\Lambda \Delta_t \geq \Lambda_0, \Lambda \in P(1)} g(\Lambda \Delta_t, \Lambda_0) = \sum_{\Lambda \Delta_t \geq \Lambda_0, \Lambda \in P(1)} \Lambda \Delta_t.$$

Hence we have

$$\sum_{i=1}^{s} (\chi_i(\sum_{t=1}^h \sum_{\Lambda \Delta_t \geq 1, \Lambda \in P(1)} \Lambda \Delta_t(y_{it})) = 1$$

$$\sum_{i=1}^{s} (\chi_i(\sum_{t=1}^h \sum_{\Lambda \Delta_t \geq \Lambda_0, \Lambda \in P(1)} \Lambda \Delta_t(y_{it})) = 0$$
(**)

for all $\Lambda_0(\neq 1) \in P(1)$.

Thus we have the following

Corollary 3.7. If B/A is a P-Galois extension, then $P(1) = \{1\}$ if and only if P_i contains P(1), where $P_i = \{\Omega \in P : \Omega \leq \Delta_i\}$.

Proof. Assume each P_i contains P(1). If P(1) contains $\Lambda(\neq 1)$, then $P(max) = \{\text{maximal elements of } 1\} = \{\text{maximal elements of } \Lambda\}$, and this contradicts to (**). The converse is clear.

Lemma 3.8. Let $\Lambda \in P(1)$. If B has a (P, Λ) -Galois system $\{x_i, y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$ for B/A, then

- (1) $m_{\Omega} \cdot 1$ is a unit element of B.
- (2) $\sum_{i=1}^{s} \Omega(x_i)(\sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it})) = \delta_{\Omega\Lambda,\Gamma}$ for any $\Omega \in P$.

Proof. Since $\sum_{i=1}^{s} x_i (\sum_{t=1}^{h} T \Delta_t \cdot y_{it}) = \sum_{i=1}^{s} (x_i (\sum_{t=1}^{h} g(T \Delta_t, \Lambda)(y_{it})) \Lambda) = \Lambda$,

$$\Omega \Lambda = \Omega \cdot (\sum_{i=1}^{s} x_i (\sum_{t=1}^{h} T \Delta_t \cdot y_{it})
= \sum_{i=1}^{s} (\sum_{\Omega' \leq \Omega} g(\Omega, \Omega')(x_i) \sum_{t=1}^{h} \Omega' T \Delta_t \cdot y_{it})
= \sum_{i=1}^{s} m_{\Omega} \Omega(x_i) \sum_{t=1}^{h} T \Delta_t \cdot y_{it}
= \sum_{i=1}^{s} \Omega(x_i) \sum_{t=1}^{h} T \Delta_t y_{it} \text{ (by Lemma 1.2)}
= \sum_{i=1}^{s} \Omega(x_i) (\sum_{\Gamma} \sum_{t=1}^{h} g(T \Delta_t, \Gamma)(y_{it}) \Gamma).$$

Thus,

$$1 = \sum_{i=1}^{s} \Omega(x_i) (\sum_{t=1}^{h} g(T\Delta_t, \Omega\Lambda)(y_{it})) \text{ and }$$

$$\sum_{i=1}^{s} \Omega(x_i) \sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it}) = 0 \text{ for } \Gamma \neq \Omega\Lambda.$$

The following theorem gives a characterization for B/A to be a P-Galois extension.

Theorem 3.9. Let $B^P = A$. Then B|A is a P-Galois extension if and only if B has a P-Galois system $\{x_i, y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$ for B|A.

Proof. Assume B has a P-Galois system $\{x_i, y_{it} : i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$. First we shall show that j is an isomorphism. For $f \in \text{End}(B_A)$, we put $V = \sum_{i=1}^{s} f(x_i) \sum_{t=1}^{h} T \Delta_t \cdot y_{it} \ (\in D(B, P))$. Then, for $b \in B$,

$$j(V)(b) = \sum_{i=1}^{s} f(x_i) \sum_{t=1}^{h} T \Delta_t(y_{it}b) = f(\sum_{i=1}^{s} x_i \sum_{t=1}^{h} T \Delta_t(y_{it}b))$$

$$= f(\sum_{\mathcal{Q} \in P} (\sum_{i=1}^{s} x_i \sum_{t=1}^{h} g(T \Delta_t, \mathcal{Q})(y_{it})) \mathcal{Q}(b))$$

$$(\text{since } \sum_{t=1}^{h} T \Delta_t(y_{it}) \in A)$$

$$= f(\sum_{t=1}^{h} \sum_{i=1}^{s} x_i g(T \Delta_i, 1)(y_{it})b) = f(b)$$

shows that j is an epimorphism. Next we shall show that j is a monomorphism.

$$b(\sum_{i=1}^{s} j(\Omega)(x_i) \sum_{t=1}^{h} T \Delta_t \cdot y_{it}) = b(\sum_{i=1}^{s} \Omega(x_i) \sum_{\Gamma} \sum_{t=1}^{h} g(T \Delta_t, \Gamma)(y_{it}) \Gamma)$$

= $b(\sum_{i=1}^{s} \Omega(x_i) \sum_{t=1}^{h} g(T \Delta_t, \Omega)(y_{it}) \Omega) = b\Omega$

by Lemma 3.8. Let $W = \sum_{Q \in P} b_Q Q$ be an arbitrary element of D(B, P). Then

$$W = \sum_{\Omega \in P} (\sum_{i=1}^{s} b_{\Omega} j(\Omega)(x_i) \sum_{t=1}^{h} T \Delta_t \cdot y_{it}) = \sum_{i=1}^{s} (jW)(x_i) \sum_{t=1}^{h} T \Delta_t \cdot y_{it})$$

yields that W = 0 if j(W) = 0. Since $\{x_i, \sum_{t=1}^h T \Delta_t \cdot y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$ is a projective coordinate system for B/A, B_A is finitely generated projective. The converse is proved in Theorem 3.5.

Let P satisfy also (A.5). Thus P is a r.s.h with (A.5) and (A.6), $P(max) = \{ \Lambda \Delta_1 : \Lambda \in P(1) \}$ and $\Delta = T \Delta_1 = \Delta_1 T$. Applying theorems 3.4-3.9, we have

the following simpler formulation in this case.

Corollary 3.10. Let $B^P = A$. Then B/A is a P-Galois extension if and only if there exists a P-Galois system $\{x_i, y_i; i = 1, 2, \dots, s\} \subseteq B$ for B/A (i.e., $\sum_{i=1}^{s} g(\Delta, \Gamma)(y_i) = \delta_{1,\Gamma}$). Moreover if this is the case, A_A is a direct summand of B_A if and only if there exists an element $x \in B$ such that $\Delta(x) = 1$.

Let P be a r.s.h with $\Delta = \sum_{t=1}^{h} T\Delta_t$ again, and let Φ_t be the map from $B \otimes_A B$ to D(B, P) defined by $\Phi_t(b \otimes c) = bT\Delta_t \cdot c$ for each $t = 1, 2, \dots, h$. Then Φ_t is a D(B, A) - B-homomorphism, where the D(B, P)-module structure of $B \otimes_A B$ is defined by $d\Omega(b \otimes c) = d\Omega(b) \otimes c$. For, $\Phi_t(d\Omega(b) \otimes c) = d\Omega(b) T\Delta_t \cdot c$ and $d\Omega \Phi_t(b \otimes c) = d\Omega \cdot bT\Delta_t \cdot c = d(\sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(b) \Gamma T\Delta_t \cdot c) = dm_{\Omega}\Omega(b) T\Delta_t \cdot c = d\Omega(b) T\Delta_t \cdot c$ since $\Gamma T\Delta_t = 0$ if $\Gamma \notin P(1)$ by Lemma 1.1.(2)

Theorem 3.11. If B/A is a P-Galois extension then $\Phi(B \otimes_A B) = D(B, P)$, where $\Phi = \sum_{t=1}^h \Phi_t$. In particular, if h = 1, that is, $\Delta = T\Delta_1$, then $\Phi = \Phi_1$ is an isomorphism.

Proof. Let $\{x_i, y_{it}; i = 1, 2, \dots, s \text{ and } t = 1, 2, \dots, h\}$ be a P-Galois system for B/A. For $Q \cdot b \in D(B, P)$, we shall show that there exist $\alpha_1, \alpha_2, \dots, \alpha_h \in B \otimes_A B$ such that $\sum_{t=1}^h \varphi_t(\alpha_t) = Q \cdot b$. Now,

$$\sum_{t=1}^{h} \Phi_{t}(\sum_{i=1}^{s} Q(x_{i}) \otimes y_{it}) b = \sum_{t=1}^{h} (\sum_{i=1}^{s} Q(x_{i}) T \Delta_{t} \cdot y_{it}) b$$

$$= \sum_{i=1}^{s} Q(x_{i}) (\sum_{t=1}^{h} T \Delta_{t} \cdot y_{it}) b$$

$$= \sum_{i=1}^{s} Q(x_{i}) \sum_{t=1}^{h} (\sum_{\Gamma \in P} g(T \Delta_{t}, \Gamma)(y_{it}) \Gamma) b = \Omega \cdot b$$

since $\sum_{i=1}^{s} Q(x_i) \sum_{t=1}^{h} g(T\Delta_t, \Gamma)(y_{it}) = \delta_{\mathcal{Q}, \Gamma}$ by Lemma 3.8. This means that Φ is an epimorphism.

Assume now $\Delta = T\Delta_1$. Then we already know that Φ_1 is an epimorphism. If $0 = \Phi_1(b \otimes c) = b\Delta c = b(\sum_{\mathcal{Q} \in P} g(T\Delta_1, \mathcal{Q})(c)\mathcal{Q})$, then $bg(T\Delta_1, \mathcal{Q})(c) = 0$ for all $\mathcal{Q} \in P$. Consequently we have

$$b\sum_{i=1}^{s} (T\Delta_{1}, \Omega)(cx_{i}) \otimes g(T\Delta_{1}, \Delta_{1})(y_{i}))$$

= $b\sum_{i=1}^{s} ((\sum_{Q \in P} g(T\Delta_{1}, \Omega)(c)\Omega(x_{i})) \otimes g(T\Delta_{1}, \Delta_{1})(y_{i})) = 0.$

While

$$b(\sum_{i=1}^{s} T\Delta_{1}(cx_{i}) \otimes g(T\Delta_{1}, \Delta_{1})(y_{i}))
= b \otimes (\sum_{i=1}^{s} T\Delta_{1}(cx_{i})g(T\Delta_{1}, \Delta_{1})(y_{i}))
= b \otimes \sum_{i=1}^{s} (\sum_{\mathcal{Q} \in P} g(T\Delta_{1}, \Omega)(c)\Omega(x_{i})g(T\Delta_{1}, \Delta_{i})(y_{i}))$$

- $=b\otimes\sum_{i=1}^{s}(\sum_{\mathcal{Q}\in\mathcal{P}}g(T\Delta_{1},\Omega)(c)\Omega(x_{i})g(\Delta_{1},\Delta_{1})(y_{i}))$
- $=b\otimes \sum_{i=1}^{s}(g(T\Delta_{1},\Delta_{1})(c)\Delta_{1}(x_{i})g(\Delta_{1},\Delta_{1})(y_{i})) \text{ (by Theorem 3.5)}$
- $=b\otimes g(\Delta_1,\Delta_1)(c)=(1\otimes g(\Delta_1,\Delta_1))(b\otimes c)$

since $g(T\Delta_1, \Delta_1) = g(\Delta_1, \Delta_1)$. Noting that $1 \otimes g(\Delta_1, \Delta_1)$ is an isomorphism, we can obtain that $b \otimes c = 0$. Then it is easy to see that $\sum_j b_j \otimes c_j = 0$ if $\Phi_1(\sum_j b_j \otimes c_j) = 0$.

B/A is said to be a projective Frobenius extension if B_A is finitely generated projective and ${}_AB_B \cong {}_AB_B^*$. Then we have the following as a corollary of Theorem 3.11.

Corollary 3.12. Assume P satisfies (A.5). If B/A is a P-Galois extension, then B/A is a projective Frobenius extension.

Proof. Since P satisfies (A.5), P is pure by Lemma 1.4 and $\Delta = T\Delta_1$. Then ${}_{A}B_{B} \cong {}_{A}\Delta \cdot B_{B} \cong {}_{A}B_{B}^{*}$ by $b \mapsto \Delta \cdot b \mapsto j(\Delta \cdot b)$.

4. The case P satisfies (A.5) and (A.6). In this section, we assume that P is a r.s.h with (A.5) and (A.6). If $B^P = A$ then we have the diagram

Let B/A be a P-Galois extension.

- (i) If P = P(1) then $B_1 = A$ and B/A is a P-Galois extension of separable type.
- (ii) If $P(1) = \{1\}$ then $B_0 = A$ and B/A is a P-Galois extension of inseparable type which will study in the following paper.

Since P satisfies (A.5), if $P(max) = \{\Delta_1, \Delta_2, \dots, \Delta_k\}$, then $P(1) = \{\Lambda_1 = 1, \Lambda_2, \dots, \Lambda_k\}$, $P(max) = \{\Lambda_i \Delta_1; i = 1, 2, \dots, k\}$ and $\Delta = T\Delta_1$. Further any Δ_i and Δ_j of P(max) are similar. Hence we put $\Delta_i = \Lambda_i \Delta_1$ in the rest. Moreover B_0 coincides with $B^{P_1} = \{b \in B; \Omega(b) = 0 \text{ for all } \Omega \in P_1 - P(1)\}$, and hence $B^P = B_0 \cap B_1 = B^{P_1} \cap B^{P(1)}$.

Lemma 4.1. (1) P_1 is a r.s.h if and only if $H_1P_1 \subseteq P_1$.

(2) $m_A = 1$ if and only if $m_{Ai} = 1$ for all $i \ge 2$. In this case P_1 is a r.s.h and

if $\Omega\Gamma \in P_1$ (resp. $\Gamma\Omega \in P_1$) for $\Omega \in P_1$ and $\Gamma \in P$, then $\Gamma \in P_1$. Moreover Λ_i is a unique minimal element of Δ_i and $\Delta_i = \Delta_1\Lambda_i$ for all i.

Assume $m_{\Delta} = 1$.

- (3) Let $\Omega_i \in P_i$. Then $\Omega_i = \Lambda_i \Omega_1$ (resp. $\Omega_i = \Omega_1' \Lambda_i$) for some $\Omega_1 \in P_1$ (resp. $\Omega_1' \in P_1$) and $g(\Delta_i, \Omega_i) = \Lambda_i g(\Delta_1, \Omega_1) = g(\Delta_1, \Omega_1') \Lambda_i$.
 - (4) $g(\Delta_1, \Delta_1) = 1$ $(= \Lambda_1)$ if and only if $g(\Delta_i, \Delta_i) = \Lambda_i$ for all $i \ge 2$.
- *Proof.* (1) Assume $H_1P_1 \subseteq P_1$. P_1 becomes a r.s.h if we show that $\Omega\Gamma \in P_1$ for Ω , $\Gamma \in P_1$ such that $\Omega\Gamma \neq 0$. Let Ω_0 and Γ_0 be respective minimal elements of Ω and Γ . Then $\Omega\Gamma \geq \Omega_0\Gamma_0$ implies $\Gamma_0^{-1}\Omega_0^{-1}\Omega\Gamma \geq 1$. Thus $\Gamma_0^{-1}\Omega_0^{-1}\Omega\Gamma \in P_1$, and hence $\Omega\Gamma \in H_1(H_1P_1) \subseteq H_1P_1 \subseteq P_1$. The converse is clear.
- (2) Since $\Delta_i = \Lambda_i \Delta_1$, $m_{\Delta_1} = 1$ if and only if $m_{\Delta_i} = 1$. If $m_{\Delta_1} = 1$ then $H_1 = \{1\}$ and hence P_1 is a r.s.h by (1). Since $m_{\Delta_i} = 1$, Λ_i is a unique minimal element of Δ_i and so $\Delta_i = \Delta_1 \Lambda_i$ for all i. Let $\Omega \Gamma \in P_1$ for $\Omega \in P_1$ and $\Gamma \in P$. If $\Gamma \in P_i \neq P_1$ then $\Delta_1 \geq \Omega \Gamma \geq \Lambda_1 \Lambda_i = \Lambda_i \neq 1$ and this contradicts to that $\Lambda_1 = 1$ is a unique minimal element of Δ_1 .
- (3) Let $\Omega_i \leq \Delta_i$. Then $\Lambda_i \leq \Omega_i \leq \Delta_i$ implies that $1 \leq \Lambda_i^{-1}\Omega_i \leq \Lambda_i^{-1}\Delta_i = \Delta_1$. Hence $\Lambda_i^{-1}\Omega_i = \Omega_1 \in P_1$ and $\Omega_i = \Lambda_i\Omega_1$. By the similar way we can see that $\Omega_i = \Omega_1'\Lambda_i$ for some $\Omega_1' \in P_1$. For $b \in B$,

$$\Delta_{i} \cdot b = \sum_{\Gamma_{i} \neq i} g(\Delta_{i}, \Gamma_{i})(b) \Gamma_{i} = \Lambda_{i}(\sum_{\Gamma_{1} \leq d_{1}} g(\Delta_{1}, \Gamma_{1})(b) \Gamma_{1})$$
$$= \sum_{\Gamma_{1} \neq i} \Lambda_{i} g(\Delta_{1}, \Gamma_{1})(b) \Lambda_{i} \Gamma_{1}$$

show that $g(\Delta_i, \Omega_i) = \Lambda_i g(\Delta_i, \Omega_i)$. By the similar way we can see that $g(\Delta_i, \Omega_i) = g(\Delta_i, \Omega_i')\Lambda_i$.

(4) This is a direct consequence of the latter half of (3).

Theorem 4.2. Let B/A be a P-Galois extension.

(1) Assume P_1 is a r.s.h. Then B/B_0 is a P_1 -Galois extension if and only if $m_{d_1} = 1$.

Assume $g(\Delta_1, \Delta_1) = 1$. Then

- (2) B/B_1 is a P(1)-Galois extension.
- (3) B coincides with $B_0[B_1]$, the subring generated by B_0 and B_1 . More precisely, $B = \sum_{i=1}^s B_0 v_i = \sum_{i=1}^s w_i B_0$ for v_i , $w_i \in B_1$ and $B = \sum_{i=1}^s B_1 v_i' = \sum_{i=1}^s w_i' B_1$ for v_i' , $w_i' \in B_0$.

Proof. Let $\{x_i, y_i; i = 1, 2, \dots, s\}$ be a *P*-Galois system for B/A.

(1) Let B/B_0 be a P_1 -Galois extension. Then there exists a P_1 -Galois system $\{u_i, v_i; i = 1, 2, \dots, t\}$ for B/B_0 . Namely,

$$\sum_{i=1}^{t} u_i g(\Delta_1, \Omega)(v_i) = \delta_{1,\Omega}$$
 for any $\Omega \in P_1$.

If Δ_1 is a minimal element $\Lambda \neq 1$, then we have a contradiction that

$$0 = \sum_{i=1}^{t} u_i g(\Delta_i, \Lambda)(v_i) = \sum_{i=1}^{t} u_i \Delta_i(v_i) = \sum_{i=1}^{t} u_i g(\Delta_i, 1)(v_i) = 1.$$

Conversely, assume $m_{A_1} = 1$ and $\Omega \in P_1$. Then $\Omega \notin P_i$ for $i \neq 1$, and hence $g(\Delta, \Omega) = g(\Delta_1, \Omega)$. Thus

$$\delta_{1,\Omega} = \sum_{i=1}^s x_i g(\Delta, \Omega)(y_i) = \sum_{i=1}^s x_i g(\Delta_1, \Omega)(y_i)$$

for any $\Omega \in P_1$ shows that $\{x_i, y_i; i = 1, 2, \dots, s\}$ is a P_1 -Galois system for B/B_0 .

(2) $\sum_{i=1}^{s} \Delta_{1}(x_{i})g(\Delta, \Omega)(y_{i}) = \delta_{A_{1},\Omega}$ by Lemma 3.8.(2). While, for each $\Lambda_{j} \in P(1)$, noting that Lemma 4.1.(4) and $g(\Delta_{1}, \Delta_{1}) = 1$, we have

$$\sum_{i=1}^{s} \Delta_{1}(x_{i}) \Lambda_{j}(y_{i}) = \sum_{i=1}^{s} \Delta_{1}(x_{i}) g(\Delta_{j}, \Delta_{j})(y_{i}) = \sum_{i=1}^{s} \Delta_{1}(x_{i}) g(\Delta_{j}, \Delta_{j})(y_{i})$$

$$= \begin{cases} 1 & \text{if } \Delta_{j} = \Delta_{1} \\ 0 & \text{if } \Delta_{i} \neq \Delta_{1} \end{cases}$$

and this shows that $\sum_{i=1}^{s} \Delta_{1}(x_{i}) \Lambda_{j}(y_{i}) = \delta_{1,A}$, and $\{\Delta_{1}(x_{i}), y_{i}; i = 1, 2, \dots, s\}$ is a P(1)-Galois system.

(3) Let $\Omega \leq \Delta_1$. Since $\{\Omega(x_i), y_i ; i = 1, 2, \dots, s\}$ is a (P, Ω) -Galois system for B/A and $A_j = g(\Delta_j, \Delta_j)$ is the minimal element of Δ_j by Lemma 4.1. (4), we have

$$\sum_{i=1}^{s} \Omega(x_i) T(y_i) = \sum_{i=1}^{s} \Omega(x_i) (\sum_{A_j \in P(1)} \Lambda_j(y_i))$$

$$= \sum_{i=1}^{s} \Omega(x_i) (\sum_{A_j \in P(max)} g((\Delta_j, \Delta_j)(y_i))$$

$$= \begin{cases} 1 & \text{if } \Omega = \Delta_1 \text{ and } \Delta_j = \Delta_1 \\ 0 & \text{otherwise} \end{cases}$$

Thus, for any $b \in B$,

$$B_0[B_1] \ni \sum_{i=1}^s \Delta_1(bx_i) T(y_i) = \sum_{g \le d_1} (\sum_{i=1}^s g(\Delta_1, \Omega)(b) \Omega(x_i) T(y_i))$$

= $\sum_{i=1}^s g(\Delta_1, \Delta_1)(b) \Delta_1(x_i) T(y_i) = \sum_{i=1}^s b \Delta_1(x_i) y_i = b.$

Consequently, we have $B = B_0[B_1] = \sum_{i=1}^s B_0 \cdot T(y_i)$.

Next we consider $\sum_{i=1}^{s} T(x_i) \Delta_1(y_i b) \in B_1[B_0]$ for $b \in B$.

For $P(1) \ni \Lambda \neq 1$, $\sum_{i=1}^{s} \Lambda(x_i) \Delta_1(y_i b) = \sum_{i=1}^{s} \Lambda(x_i) g(\Delta, 1)(y_i b) = 0$ since $\{\Lambda(x_i), y_i; i = 1, 2, \dots, s\}$ is a (P, Λ) -Galois system. Hence

$$\sum_{i=1}^{s} (T(x_i) \Delta_1(y_i b)) = \sum_{i=1}^{s} x_i \Delta_1(y_i b)$$

$$= \sum_{0 \leq d_1} (\sum_{i=1}^{s} x_i g(\Delta_1, \Omega)(y_i) \Omega(b)) = \sum_{i=1}^{s} x_i g(\Delta, 1)(y_i) b = b.$$

Thus $b \in B_1[B_0]$ and hence $B = B_1[B_0] = \sum_{i=1}^s T(x_i)B_0$. Next we shall show that $B = \sum_{i=1}^s A_i(x_i)B_1$.

$$B \supseteq \sum_{i=1}^{s} \Delta_{1}(x_{i})B_{1} \supseteq \sum_{i=1}^{s} \Delta_{1}(x_{i})T(y_{i}b)$$

$$= \sum_{i=1}^{s} \Delta_{1}(x_{i})(\sum_{A_{j} \in P(1)} A_{j}(y_{i})A_{j}(b)))$$

$$= \sum_{i=1}^{s} \Delta_{1}(x_{i})A_{1}(y_{i})A_{1}(b) + \sum_{i=1}^{s} \Delta_{1}(x_{i})(\sum_{j\neq 1} A_{j}(y_{i})A_{j}(b)))$$

$$= \sum_{i=1}^{s} (\Delta_{1}(x_{i})g(\Delta, \Delta_{1})(y_{i})A_{1}(b)) + \sum_{i=1}^{s} (\Delta_{1}(x_{i})(\sum_{j\neq 1} g(\Delta, \Delta_{j})(y_{i})A_{j}(b)))$$

$$= \sum_{i=1}^{s} \Delta_{1}(x_{i})g(\Delta, \Delta_{1})(y_{i})A_{1}(b) = b$$

for $b \in B$ since $\{\Delta_1(x_i), y_i; i = 1, 2, \dots, s\}$ is a (P, Δ_1) -Galois system and the minimal element of Δ_1 is 1. Thus $B = \sum_{i=1}^s \Delta_1(x_i)B_1$.

Finally

$$B \supseteq \sum_{i=1}^{s} B_{1} \Delta_{1}(y_{i}) \ni \sum_{i=1}^{s} T(bx_{i}) \Delta_{1}(y_{i})$$

$$= \sum_{i=1}^{s} ((\sum_{A_{i} \in P(1)} A_{j}(b) A_{j}(x_{i})) \Delta_{1}(y_{i}))$$

$$= \sum_{i=1}^{s} (\sum_{A_{j} \in P(1)} A_{j}(b) A_{j}(x_{i}) g(\Delta_{1}, 1)(y_{i}) = \sum_{i=1}^{s} bx_{i} g(\Delta_{1}, 1)(x_{i}) = b$$

since $\{x_i, y_i; i = 1, 2, \dots, s\}$ is a *P*-Galois system. Thus $\sum_{i=1}^{s} B_i \Delta_i(y_i) = B$.

Let $m_{d_1} = 1$, $g(\Delta_1, \Delta_1) = 1$ and B/A a P-Galois extension. Then B/B_0 is a P_1 -Galois extension and B/B_1 is a P(1)-Galois extension by Theorem 4.2. Further B_0 is a P(1)-admissible, $B_0^{P(1)} = A$, and if B_1 is P_1 -admissible then $B_1^{P_1} = A$.

Then it is natural to ask that whether B_0/A (resp. B_1/A) is a P(1)-Galois extension (resp. P_1 -Galois extension). As will be seen in the next section, these are true if $B_A \oplus > A_A$. But, first we shall prove the converse of this problem.

Theorem 4.3. Let $m_{A_1} = 1$ and $B^P = A$. If B_0/A is a P(1)-Galois extension and B_1/A is a P_1 -Galois extension then B/A is a P-Galois extension.

Proof. Let $\{u_i, v_i; i = 1, 2, \dots, t\}$ be a P(1)-Galois system for B_0/A and let $\{x_i, y_i; i = 1, 2, \dots, s\}$ be a P_1 -Galois system for B_1/A . Since $\Gamma_k \in P_k$ is obtained by $\Gamma_1 \Lambda_k$ for some $\Gamma_1 \in P_1$ by Lemma 4.1.(3), $g(\Delta_k, \Gamma_k) = g(\Delta_1, \Gamma_1) \Lambda_k$ by Lemma 4.1.(3). Therefore

$$\sum_{i=1}^{s} x_i g(\Delta_k, \Gamma_k)(y_i) = \sum_{i=1}^{s} x_i g(\Delta_1, \Gamma_1)(\Lambda_k(y_i)) = \sum_{i=1}^{s} x_i g(\Delta_1, \Gamma_1)(y_i)$$

= $\delta_{1,\Gamma_1} = \delta_{\Lambda_k,\Gamma_k}$.

We now consider

$$\sum_{j=1}^{t} u_j(\sum_{i=1}^{s} x_i g(\Delta, \Gamma)(y_i v_j))$$

$$= \sum_{j=1}^{t} u_j(\sum_{i=1}^{s} x_i (\sum_{\alpha \in P} g(\Delta, \Omega)(y_i) g(\Omega, \Gamma)(v_j))).$$

Then, for $\Omega \in P_k$, $\Omega = \Omega_1 \Lambda_k$ for some $\Omega_1 \in P_1$, and hence

$$\sum_{i=1}^{s} x_{i} g(\Delta, \Omega)(y_{i}) = \sum_{i=1}^{s} x_{i} g(\Delta_{k}, \Omega)(y_{i}) = \sum_{i=1}^{s} x_{i} g(\Delta_{1}, \Omega_{1}) \Lambda_{k}(y_{i})$$
$$= \sum_{i=1}^{s} x_{i} g(\Delta_{1}, \Omega_{1})(y_{i}) = 0$$

if $\Omega \notin P(1)$ since $\Lambda_k(y_i) = y_i$.

Next

$$\sum_{i=1}^{s} x_i g(\Delta, \Omega)(y_i) = 0 \quad \text{if } \Omega \notin P(1) \quad \text{and}$$

$$\sum_{i=1}^{s} x_i g(\Delta, \Lambda_k)(y_i) = \sum_{i=1}^{s} x_i g(\Delta_k, \Lambda_k)(y_i) = 1 \quad \text{for } \Lambda_k \in P(1).$$

Thus we have

$$\sum_{j=1}^{t} u_j(\sum_{i=1}^{s} x_i g(\Delta, \Gamma)(y_i v_j)) = \begin{cases} 0 & \text{if } \Gamma \notin P(1) \\ \delta_{1,\Gamma} & \text{if } \Gamma = \Lambda_k \in P(1). \end{cases}$$

Consequently, we have

$$\sum_{j=1}^{t} u_j(\sum_{i=1}^{s} x_i g(\Delta, \Gamma)(y_i v_j)) = \delta_{1,\Gamma} \quad \text{for } \Gamma \in P.$$

and this means that B has a P-Galois system for B/A.

- 5. *P*-Galois extensions B/A with $B_A \oplus > A_A$. In this section we assume the following conditions:
 - (i) P satisfies (A.5) and (A.6), and so we may put $P(max) = \{\Delta_1, \Delta_2, \dots, \Delta_k\}$ = $\{\Lambda_i \Delta_1; i = 1, 2, \dots, k\}$ where $P(1) = \{\Lambda_1 = 1, \Lambda_2, \dots, \Lambda_k\}$ and $\Delta_i = \Lambda_i \Delta_1 = \Delta_1 \Lambda_i$. Moreover P_1 forms a r.s.h by Lemma 4.1.(1).
 - (ii) $m_{\Delta_1} = 1$ and $g(\Delta_1, \Delta_1) = 1$.
 - (iii) $B_A \oplus > A_A$.

Lemma 5.1. Let $\Omega \in P_1$.

- (1) If $\Gamma \in P_i$ and $\Omega\Gamma = \Delta_i$ then $\Gamma\Omega = \Delta_i$.
- (2) $\Omega \Lambda = \Lambda \Omega$ for all $\Lambda \in P(1)$.
- (3) B_1 is P_1 -admissible.

Proof. Assume $ht(\Delta_1) = n+1$. Then $ht(\Delta_i) = n+1$ for all $\Delta_i \in P(max)$ since P is a pure poset.

(1) Let $\Omega\Gamma = \Delta_i$. Then we have a chain

$$\Delta_i = \Omega\Gamma = \Omega_0\Gamma_0 \gg \Omega_{i_1}\Gamma_{i_1} \gg \Omega_{i_2}\Gamma_{i_2} \gg \cdots \gg \Omega_{i_{n-1}}\Gamma_{i_{n-1}} \gg \Lambda_i$$

for some $\Omega > \Omega_{ij}$ and $\Gamma > \Gamma_{ij}$ for $j = 1, 2, \dots, n-1$ by (A.4).(ii). Further $\Omega_{ij} \in P_1$ by Lemma 4.1.(2) and hence $\Gamma_{ij} \in P_i$. By (A.3), $\Gamma_{ij}\Omega_{ij} \neq 0$ and it is contained

in P_i . Thus

$$\Delta_i \geq \Gamma \Omega = \Gamma_0 \Omega_0 \gg \Gamma_{i_1} \Omega_{i_1} \gg \cdots \gg \Gamma_{i_{n-1}} \Omega_{i_{n-1}} \gg 1$$

shows that $ht(\Gamma\Omega) = n+1 = ht(\Delta_i)$. Thus $\Gamma\Omega = \Delta_i$.

- (2) For $\Lambda_i \in P(1)$, assume that $\Omega \Lambda_i = \Lambda_i \Omega'$. Then $\Omega' \in P_1$ since $\Lambda_i \Omega'$ has a unique minimal element Λ_i . Let $\Gamma \Omega = \Delta_1$ for $\Gamma \in P_1$. Then $\Delta_1 \Lambda_i = \Delta_i = \Gamma \Omega \Lambda_i = \Gamma \Lambda_i \Omega'$. Since $\Omega \Gamma = \Delta_1$ by (1), we have $\Gamma \Omega \Lambda_i = \Omega \Gamma \Lambda_i$. Noting that $\Gamma \Lambda_i \in P_i$ and $\Omega' \in P_1$, $\Delta_i = \Gamma \Lambda_i \Omega' = \Omega' \Gamma \Lambda_i$ by (1) again. Hence $\Omega \Gamma = \Omega' \Gamma$ and so $\Omega = \Omega'$ by (A.4).(i).
- (3) Let b and Ω be arbitrary elements of B_1 and P_1 . Then, for $\Lambda \in P(1)$, $\Lambda \Omega(b) = \Omega(b) = \Omega(b)$ show that $\Omega(b) \in B_1$.

Theorem 5.2. Let B/A be a P-Galois extension.

- (1) Hom (B_{0A}, A_A) is a homomorphic image of the submodule $u_T \Delta_1(B) = (\sum_{A \in P(1)} u_A) \Delta_1(B)$ of D(B, P) and B_0/A is a P(1)-Galois extension.
- (2) Hom (B_{1A}, A_A) is a homomorphic image of the submodule $u_{A_1}T(B)$ of D(B, P) and B_1/A is a P_1 -Galois extension.

Proof. Since B/A is a P-Galois extension with $B_A \oplus > A_A$, there exists $x \in B$ such that $1 = \Delta(x) = \Delta_1(T(x)) = T(\Delta_1(x))$. Hence $\Delta_1(B) = B_0$, $B_{B_0} \oplus > B_{B_0}$, $T(B) = B_1$ and $B_{B_1} \oplus > B_{1B_1}$. Thus, for any $f \in B^*$, $f|B_0 \in \text{Hom}(B_{0A}, A_A) = B_0^*$ gives an epimorphism of B^* to B_0^* and $f|B_1 \in \text{Hom}(B_{1A}, A_A) = B_1^*$ gives an epimorphism of B^* to B_1^* .

Thus we have $j(u_{\perp} \cdot B)|B_0 = B_0^*$ and $j(u_{\perp} \cdot B)|B_1 = B_1^*$.

(1) Since $u_T \cdot \Delta_1(B) \longrightarrow j(u_A \cdot B)|B_0: u_T \cdot \Delta_1(b) \mapsto j(\Delta b)|B_0$ gives an epimorphism, B_0^* is a homomorphic image of $u_T \cdot \Delta_1(B)$. B_{0_A} is also projective since B_A is projective and $B_{B_0} \oplus > B_{0_{B_0}} \cdot B = z_1 A + z_2 A + \cdots u_t A$ $(z_i \in B)$ implies $B_0 = \Delta_1(B) = \Delta_1(z_1)A + \Delta_1(z_2) + \cdots + \Delta_1(z_t)A$. Therefore B_{0_A} is finitely generated projective.

The map J_0 of a B_0 -submodule $\sum_{A \in P(1)} \bigoplus B_0 u_A$ of D(B, P) into $\operatorname{End}(B_{0_A})$ defined by $J_0(bu_A)(x_0) = b\Lambda(x_0)$ is a monomorphism. For if $J_0(\sum_{A \in P(1)} b_A u_A) = 0$, then $\sum_{A \in P(1)} b_A \Lambda(x_0) = 0$ for all $x_0 \in B_0$. Since $B_0 = \Delta_1(B)$, this means that $\sum_{A \in P(1)} b_A \Lambda \Delta_1(y) = 0$ for all $y \in B$, and hence $j^{-1}(\sum_{A \in P(1)} b_A \Lambda \Delta_1) = \sum_{A \in P(1)} b_A u_A \Delta_1 = 0$. Thus $b_A = 0$ for all $A \in P(1)$.

Let $\{x_i, g_i; i = 1, 2, \dots, s, x_i \in B_0, g_i \in B_0^*\}$ be a projective coordinate system for B_0/A . Since g_i is obtained by $J_0(\sum_{A \in P(1)} u_A \cdot \Delta_1(v_i))$,

$$\operatorname{End}(B_{0_{A}}) \ni J_{0}(u_{1}) = 1 = J_{0}(\sum_{i=1}^{s} x_{i}(\sum_{\Lambda \in P(1)} u_{\Lambda} \cdot \Delta_{1}(v_{i}))$$
$$= J_{0}(\sum_{i=1}^{s} x_{i}(\sum_{\Lambda \in P(1)} \Lambda \Delta_{1}(v_{i})u_{\Lambda}))$$

and this implies

$$\sum_{i=1}^{s} x_i \Lambda \Delta_1(v_i) = \delta_{1,\Delta}.$$

This shows that $\{x_i, \Delta_1(v_i); i = 1, 2, \dots, s\}$ is a P(1)-Galois system for B_0/A . (2) $u_{d_1} \cdot T(B) \longrightarrow j(\Delta \cdot B)|B_1 := B_1^* : u_{d_1} \cdot T(b) \mapsto j(u_d \cdot b)|B_1$ gives an epimorphism and B_{1_A} is finitely generated projective since $B = z_1A + \dots + z_nA$ ($z_i \in B$) yields $B_1 = T(B) = T(z_1)A + \dots + T(z_n)A$.

The map J_1 of a B_1 -submodule $\sum_{g \in P_1} \bigoplus B_1 u_g$ of D(B, P) into $\operatorname{End}(B_{1_A})$ defined by $J_1(bu_g)(x_1)$ for $x_1 \in B_1$ is a monomorphism. For, since $P_1(B_1) \subseteq B_1$, $bQ(x_1) \in B_1$. If $J_1(\sum_{g \in P_1} b_g u_g) = 0$ then $\sum_{g \in P_1} b_g Q(x_1) = 0$ for all $x_1 \in B_1$. Since $B_1 = T(B)$, this means that $\sum_{g \in P_1} b_g QT(y) = 0$ for all $y \in B$, and hence, $j^{-1}(\sum_{g \in P_1} b_g QT) = \sum_{g \in P_1} b_g(\sum_{A \in P_1} u_{gA}) = 0$. Thus $b_g = 0$ for all $Q \in P_1$.

Let $\{y_i, g_i; i = 1, 2, \dots, s, y_i \in B_1, g_i \in B_1^*\}$ be a projective coordinate system for B_1/A . Since g_i is obtained by $J_1(u_{A_1} \cdot T(v_i))$,

$$\operatorname{End}(B_{1_{A}}) \ni J_{1}(u_{1}) = J_{1}(\sum_{i=1}^{s} y_{i}(u_{A_{1}} \cdot T(v_{i}))$$

$$= J(\sum_{i=1}^{s} y_{i}(\sum_{g \leq A_{1}} g(\Delta_{1}, \Omega) \cdot T(v_{i})u_{g})$$

and this implies $\sum_{i=1}^{s} y_i g(\Delta_1, \Omega)(T(v_i)) = \delta_{1,\Omega}$. Thus B_1/A is a P_1 -Galois extension.

Combining Theorem 4.3 with Theorem 5.2, we have the following

Corollary 5.3. Let $B^P = A$. Then B/A is a P-Galois extension (with $B_A \oplus > A_A$) if and only if B_0/A is a P(1)-Galois extension with $B_{0_A} \oplus > A_A$ and B_1/A is a P_1 -Galois extension with $B_{1_A} \oplus > A_A$.

In the rest we shall study generating elements of B over A when B/A is a P-Galois extension.

Theorem 5.4. Let B/A be a P-Galois extension and let $\{x_i, y_i; i = 1, 2, \dots, s\}$ be a P-Galois system for B/A. Then B coincides with $A[\{y_i; i = 1, 2, \dots, s\}]$, the subring generated by $\{y_i; i = 1, 2, \dots, s\}$ over A. More precisely, $B = \sum_{i=1}^{s} Ay_i$.

Proof. Let $T = A[\{y_i; i = 1, 2, \dots, s\}]$ and let $\{\sum b_i \otimes t_i; b_i \in B, t_i \in T\}$ be a submodule of $B \otimes_A B$. We denote it by $B \otimes T$. For $\alpha = \sum_{i=1}^s b\Omega(x_i) \otimes y_i \in B \otimes T$, $\Phi(\alpha) = \sum_{i=1}^s b\Omega(x_i) \Delta \cdot y_i = \sum_{i=1}^s b\Omega(x_i) (\sum_{\Gamma \in P} g(\Delta, \Gamma)(y_i)\Gamma = b\Omega$ since $\{\Omega(x_i), y_i; i = 1, 2, \dots, t\}$ is a (P, Ω) -Galois system. But this means that $\Phi(B \otimes T) = D(B, P) = \Phi(B \otimes_A B)$ and we obtain $B \otimes T = T$

 $B \otimes_A B$ since Φ is an isomorphism by Theorem 3.11. Let $x \in B$ be an element such that $\Delta(x) = 1$. Then $x \otimes b = \sum b_i \otimes t_i$, $b_i \in B$ and $t_i \in T$, and so

$$(\Delta \otimes 1)(x \otimes b) = \Delta(x) \otimes b = 1 \otimes b \text{ and}$$

$$(\Delta \otimes 1)(x \otimes b) = (\Delta \otimes 1)(\sum b_i \otimes t_i) = \sum \Delta(b_i) \otimes t_i$$

$$= \sum (1 \otimes \Delta(b_i)t_i) \in A \otimes_A T = T$$

shows that B = T.

Let $S = \sum_{i=1}^{s} Ay_i (\subseteq T)$. Since $b\Omega$ is obtained by $\Phi(\sum_{i=1}^{s} b\Omega(x_i) \otimes y_i)$, we have $B \otimes S = B \otimes_A B$ again. Thus we can see S = B by the same way.

In the rest, we assume that B/A is a P-Galois extension. Then there exists $T(x) \in B_1$ such that $\Delta_1(T(x)) = 1$. We put $T(x) = x_{d_1}$ and for this x_{d_1} we put $x_{\mathcal{Q}} = (\Delta_1/\Omega)_{\ell}(x_{d_1})$ for $\Omega \in P_1$ (and so $(\Delta_1/\Omega)_{\ell} \in P_1$ by Lemma 4.1.(2)). Then $\Omega(x_{\mathcal{Q}}) = \Omega(\Delta_1/\Omega)_{\ell}(x_{d_1}) = \Delta_1(x_{d_1}) = 1$ and $x_1 = 1$ since $(\Delta_1/1)_{\ell} = \Delta_1$ and $x_1 = (\Delta_1/1)_{\ell}(x_{d_1})$.

Lemma 5.5. Let $\Gamma \in P_1$.

- (1) If $\Gamma(x_{\Delta_1}) = 1$. Then $\Gamma = \Delta_1$.
- (2) $\Gamma(x_{\Omega}) \neq 0$ if and only if Γ is a right factor of Ω and if this is the case, $\Gamma(x_{\Omega}) = x_{\Gamma_0}$ where Γ_0 is a left factor of Ω .
- (3) $\Lambda(x_{\mathcal{Q}}) = x_{\mathcal{Q}}$ for all $\Lambda \in P(1)$.

Proof. (1) If $\Gamma \neq \Delta_1$, then $(\Delta_1/\Gamma)_r \in P_1 - P(1)$ and we have a contradiction

$$1 = \Delta_1(x_{A_1}) = (\Delta_1/\Gamma)_{\tau}\Gamma(x_{A_1}) = (\Delta_1/\Gamma)_{\tau}(1) = 0.$$

(2) Assume $\Gamma(x_{\mathfrak{Q}}) = \Gamma(\Delta_1/\Omega)_{\ell}(x_{\mathfrak{d}_1}) \neq 0$. Then $\Gamma(\Delta_1/\Omega)_{\ell} \neq 0$ ($\in P_1$) by Lemma 4.1.(1) and hence $\Gamma_0\Gamma(\Delta_1/\Omega)_{\ell} = \Delta_1$ for some $\Gamma_0 \in P_1$. Thus $\Gamma_0\Gamma = \Omega$. Conversely, if $\Gamma_0\Gamma = \Omega$ for some $\Gamma_0 \in P_1$ then $\Gamma_0\Gamma(x_{\mathfrak{Q}}) = 1$ yields $\Gamma(x_{\mathfrak{Q}}) \neq 0$. Let $\Gamma_0\Gamma(x_{\mathfrak{Q}}) = 1$ for $\Gamma_0 \in P_1$. Then

$$1 = \Gamma_0 \Gamma(x_0) = \Gamma_0 \Gamma(\Delta_1/\Omega) (x_{A_1}) = \Delta_1(x_{A_1})$$

implies that $\Gamma_0\Gamma(\Delta_1/\Omega)_{\ell} = \Delta_1$, by (1) and hence $\Gamma(\Delta_1/\Omega)_{\ell} = (\Delta_1/\Gamma_0)_{\ell}$. Therefore $\Gamma(x_0) = \Gamma(\Delta_1/\Omega)_{\ell}(x_{\Delta_1}) = (\Delta_1/\Gamma_0)_{\ell}(x_{\Delta_1}) = x_{\Gamma_0}$.

Since $\Gamma_0\Gamma(x_0) = 1 = \Gamma_0\Gamma(\Delta_1/\Omega)_{\ell}(x_{d_1})$, $\Gamma_0\Gamma(\Delta_1/\Omega)_{\ell} = \Omega(\Delta_1/\Omega)_{\ell}$ shows that $\Gamma_0\Gamma = \Omega$ and hence Γ_0 is a left factor of Ω

(3)
$$\Lambda(x_{\mathcal{Q}}) = \Lambda(\Delta_1/\mathcal{Q})_{\ell}(x_{\mathcal{A}_1}) = (\Delta_1/\mathcal{Q})_{\ell}\Lambda(x_{\mathcal{A}_1}) = (\Delta_1/\mathcal{Q})_{\ell}(x_{\mathcal{A}_1}) = x_{\mathcal{Q}}.$$

For $X := \{x_{\mathcal{Q}} : \mathcal{Q} \in P_1\}$, a monomial of X means a product of these $x_{\mathcal{Q}}$.

We put

$$R_0 = \sum_{g_1, g_2, \dots, g_n \in P_1} A x_{g_1} x_{g_2} \cdots x_{g_n}$$

a left A-submodule of B generated by the monomials of X over A.

$$R = \sum_{\mathcal{Q}_1, \mathcal{Q}_2, \cdots, \mathcal{Q}_n \in P_1} B_0 x_{\mathcal{Q}_1} x_{\mathcal{Q}_2} \cdots x_{\mathcal{Q}_n}$$

a left B_0 -submodule of B.

Then we have the following

Theorem 5.6. (1) X is a left (as well as right) linearly independent over B_0 .

- (2) R_0 has systems $\{x_i, y_i; i = 1, 2, \dots, t\}$ and $\{z_j, w_j; j = 1, 2, \dots, u\}$ such that
 - (a) $x_i, w_j \in X$ and y_i and z_j are monomials of X for $i = 1, 2, \dots, t$ and $j = 1, 2, \dots, u$
 - (b) $\sum_{i=1}^{t} \Omega(x_i) y_i = \delta_{A_1, \Omega}$ and $\sum_{j=1}^{u} z_j \Omega(w_j) = \delta_{A_1, \Omega}$ for all $\Omega \in P_1$. For these systems $\{x_i, y_i; i = 1, 2, \dots, t\}$ and $\{z_j, w_j; j = 1, 2, \dots, u\}$
- (3) $R_0 = B_1 = \sum_{i=1}^t Ay_i \text{ and } R = B = \sum_{i=1}^t B_0 y_i$
- (4) If $P(1) = \{1\}$ then $B = \sum_{i=1}^{t} Ay_i = \sum_{j=1}^{u} z_j A$.

Proof. (1) Let $\alpha = \sum_{a,ht(a)=2} b_a x_a + b_1 x_1 = 0$ ($b_a, b_1 \in B_0$). Then, for any $\Gamma \in P_1$ with $ht(\Gamma) = 2$,

$$0 = \Gamma(\alpha) = \sum_{\mathbf{g}, ht(\mathbf{g})=2} (g(\Gamma, \Gamma)(b_{\mathbf{g}})\Gamma(x_{\mathbf{g}}) + g(\Gamma, 1)(b_{\mathbf{g}})x_{\mathbf{g}})$$
$$= \sum_{\mathbf{g}, ht(\mathbf{g})=2} g(\Gamma, \Gamma)(b_{\mathbf{g}})\Gamma(x_{\mathbf{g}}) = g(\Gamma, \Gamma)(b_{\Gamma})$$

by Lemma 5.5.(2) since Γ is not a right factor of Ω for $\Omega \neq \Gamma$. Thus $b_{\Gamma} = 0$ and $b_1 = 0$. Assume now $\{x_{\Omega} : \Omega \in P_1(m) = P_1 \cap P(m)\}$ is left linearly independent over B_0 . Let $\beta = \sum_{\Omega \in P_1(m+1)} b_{\Omega} x_{\Omega} = 0$. For any $\Gamma \in P_1$ with $2 \leq ht(\Gamma) \leq m + 1$.

$$0 = \Gamma(\beta) = \sum_{g \in P_1(m+1)} g(\Gamma, \Gamma)(b_g) \Gamma(x_g).$$

If $\Gamma(x_{\Omega}) \neq 0$, then $\Gamma(x_{\Omega}) = x_{\Gamma_0}$ where $\Gamma_0 = (\Omega/\Gamma)_r$ by Lemma 5.5.(2). Moreover $\Gamma(x_{\Omega}) \neq \Gamma(x_{\Omega_0})$ for $\Omega \neq \Omega_0$. For if $\Gamma(x_{\Omega_0}) \neq 0$, and the equality is hold, then $\Gamma(x_{\Omega}) = \Gamma(\Delta_1/\Omega)_{\ell}(x_{\Delta_1}) = \Gamma(x_{\Omega_0}) = \Gamma(\Delta_1/\Omega)_{\ell}(x_{\Delta_1})$ implies $1 = \Gamma_0\Gamma(\Delta_1/\Omega)_{\ell}(x_{\Delta_1}) = \Gamma_0\Gamma(\Delta_1/\Omega)_{\ell}(x_{\Delta_1})$ where $\Gamma_0 = (\Omega/\Gamma)_r$. Hence $\Delta_1 = \Gamma_0\Gamma(\Delta_1/\Omega)_{\ell} = \Gamma_0\Gamma(\Delta_1/\Omega)_{\ell}$ implies a contradiction that $(\Delta_1/\Omega)_{\ell} = (\Delta_1/\Omega)_{\ell}$. Thus $b_{\Omega} = 0$ for any Ω such that $\Gamma(x_{\Omega}) \neq 0$ by the assumption. Further, there exists Γ with $2 \leq ht(\Gamma) \leq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with $ht(\Omega) \geq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with $ht(\Omega) \geq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with $ht(\Omega) \geq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with $ht(\Omega) \geq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with $ht(\Omega) \geq m+1$ such that $\Gamma(x_{\Omega}) \neq 0$ for any Ω with L

- 2. Consequently $\{x_{\mathcal{B}}: \mathcal{Q} \in P_1(m+1)\}$ is left linearly independent over B_0 . Next, let $\sum_{\mathcal{G} \in P_1} x_{\mathcal{G}} b_{\mathcal{G}} = 0$ $(b_{\mathcal{G}} \in B_0)$. Then $0 = \mathcal{L}_1(\sum_{\mathcal{G} \in P_1} x_{\mathcal{G}} b_{\mathcal{G}}) = b_{\mathcal{L}_1}$. The right linear independence of X also can be proved by induction on the height of \mathcal{Q} .
- (2) Let $ht(\mathcal{A}_1) = n$. By Lemma 5.5.(2), $\mathcal{Q}(x_{\Gamma}) = \delta_{\mathcal{Q},\Gamma}$ for $\mathcal{Q}, \Gamma \in P_1$ and $ht(\mathcal{Q}) \geq ht(\Gamma)$. Hence we have $\mathcal{Q}(x_{\mathcal{A}_1}) \sum_{\Gamma, ht(\Gamma) = n-1} \mathcal{Q}(x_{\Gamma})\Gamma(x_{\mathcal{A}_1}) = \delta_{\mathcal{A}_1,\mathcal{Q}}$ for any $\mathcal{Q} \in P_1$ such that $ht(\mathcal{Q}) \geq n-1$. Hence we assume that there exist elements x_1, x_2, \dots, x_{s} and y_1, y_2, \dots, y_s such that
 - (a) $x_i \in X$ and y_i are monomials of X for $i = 1, 2, \dots, s$
 - (b) $\sum_{i=1}^{s} \Omega(x_i) y_i = \delta_{d_1, \Omega}$ for any $\Omega \in P_1$ with $ht(\Omega) \ge m+1$.

Let $\Omega \in P_1$ with $ht(\Omega) \geq m$.

$$\sum_{i=1}^{s} \Omega(x_i) y_i - \sum_{\Gamma, ht(\Gamma) = m} \Omega(x_{\Gamma}) (\sum_{i=1}^{s} \Omega(x_i) y_i)$$

= $\sum_{i=1}^{s} \Omega(x_i) y_i = \delta_{d_1, g_i}$ if $ht(\Omega) \ge m+1$.

While if $ht(\Omega) = m$, then

$$\sum_{i=1}^{s} \Omega(x_i) y_i - \sum_{\Gamma, ht(\Gamma)=m} \Omega(x_{\Gamma}) (\sum_{i=1}^{s} \Gamma(x_i) y_i)$$

$$= \sum_{i=1}^{s} \Omega(x_i) y_i - \Omega(x_{\Omega}) \sum_{i=1}^{s} \Omega(x_i) y_i$$

$$= \sum_{i=1}^{s} \Omega(x_i) y_i - \sum_{i=1}^{s} \Omega(x_i) y_i = 0.$$

Further each $\Gamma(x_i)$ is either 0 or $\Gamma(x_i) \in X$ by Lemma 5.5.(2). Hence each $\Gamma(x_i)y_i$ is a monomial of X provided $\Gamma(x_i)y_i \neq 0$. Therefore we can choose x_1, x_2, \dots, x_t and y_1, y_2, \dots, y_t such that

- (a) $x_i \in X$ and y_i is a monomial of X for all i.
- (b) $\sum_{i=1}^{s} \Omega(x_i) y_i = \delta_{A_1, \Omega}$ for all $\Omega \in P_1$.

Elements z_1, z_2, \dots, z_u and w_1, w_2, \dots, w_u can be choose by the similar way.

(3) It is clear that $R_0 \subseteq B_1$ by Lemma 5.5.(3). Since $\Lambda \Delta_1(bx_i) = \Delta_1 \Delta(bx_i) = \Delta_1(\Lambda(b)\Lambda(x_i)) = \Delta_1(bx_i)$ for any $b \in B_1$ and $\Lambda \in P(1)$, we have $\Delta_1(bx_i) \in A$. Hence

$$R_0 \supseteq \sum_{i=1}^t Ay_i \supseteq \sum_{i=1}^t \Delta_1(bx_i)y_i$$

= $\sum_{g \leq d_1} (\sum_{i=1}^t g(\Delta_1, \Omega)(b)\Omega(x_i)y_i) = g(\Delta_1, \Delta_1)(b) = b$

for all $b \in B_1$ since $g(\Delta_1, \Delta_1) = 1$ show that $R_0 = B_1$.

Next, for $b \in B$, $\Delta_1(bx_i) \in B_0$, and so

$$R \supseteq \sum_{i=1}^{t} B_0 y_i \supseteq \sum_{i=1}^{t} \Delta_1(bx_i) y_i$$

= $\sum_{Q \le d_1} (\sum_{i=1}^{t} g(\Delta_1, \Omega)(b) Q(x_i) y_i) = g(\Delta_1, \Delta_1)(b) = b$

show that

$$R = \sum_{i=1}^{t} B_0 v_i$$

(4) Assume $P(1) = \{1\}$. Then $B_1 = B$ and so $B = \sum_{i=1}^t Ay_i$. Moreover $\sum_{j=1}^u z_j A \ni \sum_{j=1}^u z_j \Delta_1(w_j b)$ $= \sum_{j=1}^u z_j \Delta_1(\sum_{j=1}^u z_j g(\Delta_1, \Omega)(w_j) \Omega(b))$ $= \sum_{j=1}^u z_j \Delta_1(w_j) b = b$

for all $b \in B$ (= B_1) show that $B = \sum_{j=1}^{t} z_j A$.

6. The case of algebras. In this section we assume that P satisfies conditions (i) and (ii) of §5, A is a commutative ring and B is an A-algebra.

Let B and B' be A-algebras. For finite posets $P \subseteq \operatorname{End}(B_A)$ and $P' \subseteq \operatorname{End}(B_A')$, $P \otimes P' := \{ \Omega \otimes \Omega' : \Omega \in P, \Omega' \in P' \}$ becomes a finite poset of End $((B \otimes_A B)_A)$ by $(\Omega \otimes \Omega')(\Sigma b \otimes b') = \Sigma(\Omega(b) \otimes \Omega'(b'))$ where the order $\Omega_1 \otimes \Omega_1' \geq \Omega_2 \otimes \Omega_2'$ is defined by $\Omega_1 \geq \Omega_2$ and $\Omega_1' \geq \Omega_2'$. Assume $\Omega \otimes \Omega' = 0$ only if $\Omega = 0$ or $\Omega' = 0$. If P and P' satisfy (A.1)-(A.4), then $P \otimes P'$ also satisfies the conditions. Since

$$(\Omega \otimes \Omega')(xy \otimes x'y') = \Omega(xy) \otimes \Omega'(x'y')$$

$$= (\sum_{\Gamma \leq \Omega} g(\Omega, \Gamma)(x)\Gamma(y)) \otimes (\sum_{\Gamma' \leq \Omega'} g(\Omega', \Gamma')(x')\Gamma'(y'))$$

$$= (\sum_{\Gamma \leq \Omega, \Gamma' \leq \Omega'} (g(\Omega, \Gamma) \otimes g(\Omega', \Gamma'))(x \otimes x')(\Gamma \otimes \Gamma')(y \otimes y'),$$

we put $g(\Omega \otimes \Omega', \Gamma \otimes \Gamma') = g(\Omega, \Gamma) \otimes g(\Omega', \Gamma')$ for $\Gamma \otimes \Gamma' \leq \Omega \otimes \Omega'$. Then $(\Omega \otimes \Omega')((x \otimes x') (y \otimes y')) = \sum_{\Gamma \otimes \Gamma' \leq \Omega \otimes \Omega'} g(\Omega \otimes \Omega', \Gamma \otimes \Gamma') (x \otimes x') (\Gamma \otimes \Gamma') (y \otimes y')$.

Thus $P \otimes P'$ becomes a r.s.h if $\Omega \otimes \Omega' = 0$ implies $\Omega = 0$ or $\Omega' = 0$. Moreover P and P' satisfy (A.5) and (A.6) so does $P \otimes P'$.

Let B/A be a P-Galois extension. Then B_A is a progenerator, and hence $B^*(B) = A$ [see [3]]. Since $B^* = j(\Delta \cdot B)$ by Theorem 3.4, we can choose an element $x \in B$ such that $\Delta(x) = 1$. Hence $B_A \oplus > A_A$ by Corollary 3.10. Thus, if B/A is a P-Galois extension then A_A is a direct summand of B_A .

Theorem 6.1. Let $m_{A_1} = m_{A_1} = 1$, $g(\Delta_1, \Delta_1) = 1$ and $g(\Delta_1', \Delta_1') = 1$. If B/A is a P-Galois extension and B'/A is a P'-Galois extension, then $P \otimes P'$ is a r.s.h. for $B \otimes_A B'/A$ and $B \otimes_A B'/A$ is a $P \otimes P'$ -Galois extension.

Proof. B/B_0 (resp. B'/B_0) is a P_1 (resp. P_1')-Galois extension by Theorem 4.2 and B_0/A (resp. B_0'/A) is a P(1) (resp. $P_1'(1)$)-Galois extension by Theorem 5.2. Assume $0 \neq \Omega \subseteq P$. Then there exists an element $x_{\mathcal{Q}} \subseteq B$ such that $\Omega(x_{\mathcal{Q}}) = 1$. Hence $\Omega \otimes \Omega' = 0$ only if $\Omega' = 0$ for $\Omega' \subseteq P'$. Thus $P \otimes P'$ is a r.s.h.

Let
$$x_{d_1} \in B$$
 be $\Delta_1(x_{d_1}) = 1$. For $b \otimes b' \in (B \otimes_A B')^{P \otimes P'}$,

$$B_0 \otimes B' \ni \Delta_1(x_{d_1} b) \otimes b'$$

$$= \sum_{\Gamma \in P} g(\Delta_1, \Gamma)(x_{d_1}) \Gamma(b) \otimes b'$$

$$= \sum_{\Gamma \in P} (g(\Delta_1, \Gamma) \otimes 1)(x_{d_1} \otimes 1)(b \otimes b') = b \otimes b'.$$

By the same way, we can also see that $b \otimes b' \in B \otimes B_0'$. Noting that $B \otimes_A B_0'$ and $B_0 \otimes_A B'$ are direct summands of $B \otimes_A B'$, we have $b \otimes b' \in B_0 \otimes B_0'$.

Next, let $y \in B_0$ be an element such that T(y) = 1. Then

$$A \otimes_{A} B' \ni T(yb) \otimes b' = \sum_{A \in P(1)} \Lambda(y) \Lambda(b) \otimes b'$$

$$= \sum_{A \in P(1)} (\Lambda \otimes 1)(y \otimes 1)(\Lambda \otimes 1)(b \otimes b')$$

$$= \sum_{A \in P(1)} (\Lambda(y) \otimes 1)(b \otimes b') = T(y)(b \otimes b')$$

$$= b \otimes b'.$$

We have $b \otimes b' \in B \otimes_A A$ by the similar way. Therefore $b \otimes b' \in A$. Further this is true for $\sum_j b_j \otimes b_j' \in (B \otimes_A B')^{P \otimes P'}$. For a P-Galois system $\{x_i, y_i; i = 1, 2, \dots, t\}$ for B/A and a P'-Galois system $\{x_i', y_i'; i = 1, 2, \dots, t'\}$ for B'/A, $\{(x_i \otimes x_j'), (y_i \otimes y_i'); i = 1, 2, \dots, t \text{ and } j = 1, 2, \dots, t'\}$ forms a $P \otimes P'$ -Galois system for $(B \otimes_A B')/A$.

Finally, we assume that B/A is a commutative P-Galois extension.

Corollary 6.2. Let $B^P = A$ and $g(\Delta_1, \Delta_1) = 1$. Then the following conditions are equivalent.

- (1) B/A is a P-Galois extension.
- (2) B/B_0 is a P_1 -Galois extension and B_0/A is a P(1)-Galois extension.
- (3) B/B_1 is a P(1)-Galois extension and B_1/A is a P_1 -Galois extension.

Proof. (1) \Longrightarrow (2). Let $\{x_i, y_i; i = 1, 2, \dots, s\}$ be a P-Galois system for B/A. Then, for each $\Omega_1 \in P_1$, $\sum_{i=1}^s x_i g(\Delta_1, \Omega_1)(y_i) = \sum_{i=1}^s x_i g(\Delta, \Omega_1)(y_i) = \delta_{1,\Omega_1}$ shows that $\{x_i, y_i; i = 1, 2, \dots, s\}$ is also a P_1 -Galois system for B/B_0 , and hence, B/B_0 is a P_1 -Galois extension. Moreover, B_0/A is a P(1)-Galois extension by Theorem 5.2.(1).

(2) \Longrightarrow (3). B_0 has a P(1)-Galois system and it is also that for B/B_1 . Thus B/B_1 is a P(1)-Galois extension. Next, if B/B_0 is a P_1 -Galois extension and B_0/A is a P(1)-Galois extension, then there exist $x \in B$ and $b_0 \in B_0$ such that $\Delta_1(x) = 1$ and $T(b_0) = 1$. Then $T\Delta_1(xb_0) = T(\sum_{\Gamma \le d_1} g(\Delta_1, \Gamma)(x)\Gamma(b_0) = T(b_0) = 1$. Since $T(xb_0) \in B_1$ and $T\Delta_1 = \Delta_1 T$, there exists $y \in B_1$ such that $\Delta_1(y) = 1$. Hence there exists a system $\{u_i, v_i; i = 1, 2, \dots, t\}$ in B_1 such that $\sum_{i=1}^t u_i Q(v_i) = \delta_{d_1, a}$ for all $Q \in P_1$ by Theorem 5.6.(2). Then this system $\{u_i, v_i; i \in A_1, a \in A_2\}$

= 1, 2, \cdots , t} is a P_1 -Galois system for B_1/A . For, any $b \in B$,

$$\sum_{i=1}^{t} u_i \Delta_1(v_i b) = \sum_{i=1}^{t} u_i \Delta_1(bv_i) = \sum_{i=1}^{t} u_i (\sum_{\Gamma \in P_1} g(\Delta_1, \Gamma)(b) \Gamma(v_i)) = b.$$

Hence $\sum_{i=1}^{t} u_i(\sum_{\Gamma \neq 1} g(\Delta_1, \Gamma)(v_i)\Gamma(b)) = 0$ for all $b \in B$, and this means that

$$\sum_{i=1}^{t} u_i g(\Delta_1, \Gamma)(v_i) \cdot \Gamma = 0 \quad \text{for any } \Gamma \neq 1, \quad \text{and so,}$$

$$\sum_{i=1}^{t} u_i g(\Delta_1, \Gamma)(v_i) = 0 \quad \text{for any } \Gamma \neq 1.$$

(3) \Longrightarrow (1). $B^P = A$ is clear. Let $\{x_i, y_i; i = 1, 2, \dots, s\}$ be a P(1)-Galois system for B/B_1 and let $\{u_j, v_j; j = 1, 2, \dots, t\}$ be a P_1 -Galois system for B_1/A . Let $\Gamma = \Lambda \Gamma_1$ for $\Lambda \in P(1)$ and $\Gamma_1 \in P_1$. Then

$$\sum_{i=1}^{s} x_i (\sum_{j=1}^{t} u_j g(\Delta, \Gamma)(v_j y_i)) = \sum_{i=1}^{s} x_i (\sum_{j=1}^{t} u_j g(\Delta_1, \Gamma_1)(\Lambda(v_j)\Lambda(y_i))$$

$$= \begin{cases} 0 & \text{if } \Lambda \neq 1 \\ \sum_{j=1}^{t} u_j g(\Delta_1, \Gamma_1)(v_j) & \text{if } \Lambda = 1. \end{cases}$$

Further $\sum_{j=1}^{t} u_j g(\Delta_1, \Gamma_1)(v_j) = \delta_{1,\Gamma_4}$. Consequently, we have

$$\sum_{i=1}^{s} x_i (\sum_{j=1}^{t} u_j g(\Delta, \Gamma)(v_j y_i)) = \delta_{1,\Gamma}$$

and this shows that the existence of a P-Galois system for B/A.

REFERENCES

- [1] G. Birkhoff: "Lattice Theory", 3rd ed., A.M.S. Colloq. Publ., XXV, A.M.S, Providence, R.I., 1967
- F. R. DeMeyer: Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117
 —127.
- [3] F. R. DeMeyer and E. Ingraham: "Separable Algebras over Commutative Rings", Lecture note in Math. 181 (1971), Springer-Verlag.
- [4] N. Jacobson: "Lecture in Abstract Algebra", Vol. 3, Van Nostrand, Princeton, 1964.
- [5] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 114—134.
- [6] A. Nowicki, K. Kishimoto and T. Nagahara: On some Cohen-Macaulay subsets of a partially ordered abelian group, Math. J. Okayama Univ. 28 (1986), 7—13.

DEPARTMENT OF MATHEMATICS SHINSHU UNIVERSITY MATSUMOTO 390, JAPAN

(Received October 1, 1991)