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0. Introduction. Let B be a ring with an identity 1. A a subring of B with
common identity 1 of B and G a finite group of A-automorphisms of B. B/A
is called a separable extension if the epimorphism ¢ : BQsB== B; u(b®c)
= bc splits as a B— B-homomorphism (see [5]). B/A is called a G-Galois
extensionif (1) B¢ ={p€ B; Ad)=bforal A€ G} =Aand(2) Bais a
finitely generated projective module and End(B4) is ring isomorphic to a trivial
crossed product, D(B, G) = Z1ec®Bua, of G over B (see [2]).

A separable extension is closely related to a G-Galois extension. Indeed if
BJ/A is a G-Galois extension then BfA is a separable extension, and if B is a
commutative separable extension of A such that B = A and G is strongly
distinct, then B/A is a G-Galois extension. For this reason, for a finite group G
of automorphisms, we call a G-Galois extension is a Galois extension of sepa-
rable type in this paper. On the other hand, there are various kind of works about
constant subrings which correspond to (purely) inseparable cases of fields. For
a subset P of End(B.), B = {b € B; 2(b) = 0 for all 2 € P such that 2 is
not a ring automorphism}N{d € B; A(s) = b for all A € P such that A is a
ring automorphism} is called a constant subring of B if B” forms a subring. For
example, if P ={do=1,d,, **, dm, ***} is a higher derivation of B (see [4]),
then BF is a subring which contains 1. We say B/A is a P-Galois extension if

(1) B? = A is a constant subring,
(2) B, is a finitely generated projective module and End(B4) is ring isomor-
phic to a trivial crossed product, D(B, P), of P over B which is defined in

§2.

In this paper, we consider a finite partially ordered set (= poset) P of End
(Ba) which is called a relative sequence of homomorphisms. As will be seen in
§1, P is able to contain a finite group of automorphisms, a set of derivations and
a set of higher derivations etc. In §2, we shall construct a ring D(B, P) which
is a free left (as well as right) B-module with a B-basis {«e ; 2 € P}. This ring
corresponds to the trivial crossed product D(B, G) in the case of a G-Galois
extension B/A and plays an important role in the theory of P-Galois extension.
In §3, we shall define a P-Galois extension and study some properties of P-Galois
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extensions. As is remarked above, one can choose a finite group of automor-
phisms and a set of derivations (resp. higher derivations) as P. Thus the notion
of a P-Galois extension is a generalized notion of a Galois extension of separable
type and inseparable type. In §4, we shall study P-Galois extensions B/A when
a relative sequence of homomorphisms P satisfies some additional conditions. In
§5, we shall study a P-Galois extension B/A such that B.® > Aa, that is, A4
is a direct summand of Ba. Finally in §6, we shall treat of the case of P-Galois
extensions of algebras over a commutative ring A.

General constructive studies of G-Galois extensions of inseparable types will
be seen in forthcoming paper of the author.

1. A finite poset of End(B.). Let a subset P = {8, £, -, 2.} of End
(Ba) be a poset with the order <. A minimal (resp. maximal) element of P
means a minimal (resp. maximal) element of P with respect to the order. . By
P(min) (resp. P(max)), we donote the set of all minimal (resp. maximal) elements
of P. A € P(min) (resp. A € P(max)) is said to be a minimal (resp. maximal)
element of 2; if A < 25 (resp. /1 > ;). £; is said to be a cover of £ if 2; >
£2: and there is no £ such that £; > 2. > 2:. If Q; is a cover of £2:, we denote
it by £2; > Q.. For 2;, a chain of £; means a descending chain

QjZan>>-Qj1>>"' >>-Q.im

where £;, is a minimal element of £;, and in this case, m+1 is said to be the
length of this chain. The reader can find relevent notations of the poset in [1].

For a finite poset P of End(Ba4), we shall give the notion of a relative
sequence of homomorphisms (abbreviate a r.s.h).
We state following conditions (A.1)-(A.6) and (B.1)-(B.4).

(Al) 2 =0 for all 2 € P and P(min) coincides with all A € P such that
/1 is a ring automorphism.
(A2) Any two chain of £ have the same length.
By #t(2) we denote the length of the chain of Q.
(A3) For @ I'e Pif QI =0 then 2’ € P and if QI' = 0 then I'Q = 0.
(Ad4) For 2, N, € P, assume QI € P and 2, € P.
@ 8N = QL (resp. [12 = Q) if and only if IT = I3
(i) LI = A if and only if A = I} for some £ < Q2 and [y < I where
&, e P.
(A5) |P(min)| = |P(max)|, where | %| means the cardinality of the set *.
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If 2 =Ar, A (resp. I') is said to be a left (resp. right) factor of £ and I”
(resp. A) is denoted by (£2/A) (resp. (2/I");). (2/A)e (resp. (2/T"),) is determined
uniquely by (A.4), (i).

(A6) Forany 4 € P(max), if 2 < 4 then Q is a left (as well as right) factor
of 4.

Remark. If P satisfies conditions (A.1)-(A.4), then P(min) forms a group

since it is a finite semigroup which is contained in the group of automorphisms
of B.

(B.1) £(1) =0 for all 2 € P— P(min).
(B.2) For 2, there exist g(£2, I') € End(B.) for all I" such that g(2, ') = 0
if ' £ Q2 and

2(xy) = Zrer 9(2, M(x)I"(y) for x,y in B

Since g(R, I") = 0 for I' £ 2, we have
(B2) L2(xy) = Zrse 9(2, I)(x)I(y)
where 2)r<o means the sum of all I such that I" < Q.
The formulation of (B.2') is more essential than that of (B.2) and we use the
formulation (B.2') in the rest of this paper when this causes no confusion.

(B3 () g(.Q, A)(x_\)) = 2asrso Q(Q, [')(x)g(r. /1)(}’)
for x, y € B where 2 4srse means the sum of all " such that A < I' < Q.
@ LetQ A, '€ Pand 21 =2 I'. Then

9(2A, I')(x) = Zasaasaaa=r ¢(Q, 2)g(A, A')x)

for x € B, where 2l g:c0,4's4,0'4=r means the sum of all g(2, 2)g(A, A’) such
that ' < Q A" <Aand QAN =T.
(B4) () ¢(£, Q) is a ring automorphism for each Q.
(i) g(2, A) = 2 for all minimal element A (€ P(min)) of Q.
(i) g, M) =01for I < Q.

P is said to be a r.sh if it satisfies (A.1)-(A.4) and (B.1)-(B.4).

For the convenience of readers, we shall state an example of a r.sh.

Let D be an A-derivation of B such that D" =0and D' =0 for0 < <
n—1. Then D = {D" =1, D, D? -+, D"'} becomes a poset whose order D' >
DY is defined by 7 = ;.

We can easily see that D satisfies the conditions (A.1)-(A.4).
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Since P(min) = {1} and P(max) = {D"* '} in D, D satisfies (A.5)-(A.6).
ForD'eDandx,y<E B

Di(xy) = Sool DD

Hence, if we put g(D’, D¥): = (;:)D"‘j where we put (;) =0 for ; > 7, then
g(D!, D’) € End(B,) and ‘

D(xy) = Soszo (D', D))D'().
Thus D satisfies (B.2).

oD, D)) = ()0~ = (§) i (*, ) D4 0)
= 2454(, 1 )07 (7 F)DA) = Bish oD, DD, D).
For D'D’ > D*

g(D'D?, D*)(x) = <z;])D'+’ kx) = Zs+t=k.osssi,Dstsj(i)Di_s(§>Dj_t(x)
= Dsse=rosssiostsi (D', D*)g(D’, Dt)(x)

shows that D satisfies (B.3).
We can easily see that D satisfies (B.4).
Thus D is an example of a rs.h P.

Let B be of prime characteristic p and d = {do = 1, d1, ***, dpe-1} (S End
(Ba)) a higher derivation of rank p° of B (see [4]). Then P = {(d\)™(dp)"'+**
(dpe-1)'; 0 < 7; < p—1} becomes a post whose order

(d)®(dp)" ==+ (dpe-)™* 2 (A1) (dp)" * =+ (dpe- )
is defined by
28k P8 2 25Tk P4 Ts

foreach # = 0,1, *++, e—1 (see [6]). Further we can see that P satisfies (A.1)
-(A.6) and (B.1)-(B.4).

We will study P-Galois extensions with these examples of posets P in mind.
In the rest of this paper, we assume that P is a r.sh.

Let P(s): ={re P: ht(I') <s}. Then P(1) = P(min). Further we
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have the following

Lemma 1.1. (1) AP(s) = P(s)A = P(s) for any A€ P(l), where
AP(s) (resp. P(s)A) means {AI'; I € P(s)} (resp. {T'A; I' € P(s)}).
(2 If Q¢ PQ1) then Q4; = 0 for any 4; € P(max).

Proof. (1) 1f A € P(1) then AI", I’'A + 0 are clear for all I" € P(s) since
A is an isomorphism. Further it is easy to see that at(AI") = ht(I'A) = ht(I).
This yields that P(s) = {A'; ' € P(s)} ={I'A; I" € P(s)}.
(2) Suppose £24; # 0. For a minimal element A of 2, 24; > Ad; by (A4).
(i). But this contradicts to the maximality of 4; since A7'Q4; > A™'A4; = 4,
again by (A.4).(3).

Let mgo be the number of minimal elements of £2. Then we have the
following

Lemma 1.2. mof2 = Q.
Proof. For x € B,

2(x) = Q(x1) = Zas0 9(2, A)(x)A(1)
= 2ermase 9(82, /l)(x)/l(l) = maf2(x)

since g(2, A) = £ for any minimal element /A of 2 by (B.4).(ii).

Corollary 1.3. Let Q € P.

(1) If A is an algebra over a field of characteristic 0 then mgo = 1.

(2) If A is an algebra over a field of prime characteristic p > 0 then mg = 1
(mod p).

Proof. (1) is clear by Lemma 1.2,
(2) Since (me—1)2 = 0, we have ma—1 = 0 (mod ).

In the rest, we put P(max) = {4, Lp, +++, 4}, P.:={Q € P; 2 < 4))
and H:: = P;NP(1). For A € P(1), Ad, = 4; for some , and in this case AP,
={AQ2; Q€ P} = P;and AH, ={AQ; 2 € H\} = H,. If P satisfies (A.5)
and P(1) ={Ay, -+, A}, then Plmax) ={A:d; i =12+ k} = {4,
dz, tee, Ak}.

A finite poset S is said to be a pure poset if each maximal element has the
same length.
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Lemma 1.4. Assume P satisfies (A.5). Then

(1) P is a pure poset.

(2) P = U\P: and P; is isomoyphic to P; as a poset for i,7 =1,2,++, k.

(3) Assume Hi D1, Then H, is subgroup of P(1) if and only if H; is a
subgroup of P(1) for all H; such that H; © 1. Moreover, if this is the case
H: = H,.

(4) If Hi=1{1}, then ms, = 1, P; is a sublattice of P and PPNP; = ¢ for ¢
+jand i,j =12+, k.

Proof. (1) Since P(max) = {A:idi; i = 1,2, +++, B}, ht(A:dh) = ht(d).

(2) P =%, P:isclear. The relation between P; and P; is given by AP;
= P;forsome /1 € P(1). Hence f4: Pi= P;; 21— AR gives an isomorphism.

(3) H: is obtained by A:H, for some A; € P(1). Assume H; forms a
subgroup of P(1) and 1 € H: = A:H,. Then A: must be in H,, and hence, H;
= /M:H, = H,. The converse is clear.

(4) Assume H, = {1}. Since each P: is obtained by A:P, for some A;: €
P(Q1), H; = A:H, = {A;} shows that m4 = 1 and thus P; is a lattice with the join
4; and the meet A:.. If i + 7 and H:NH; = ¢ and hence NP, = ¢,

For a poset P, rank P is the maximal length of maximal elements of P.
Then we can see that if P is a pure poset and
(1) rank P =1, then P is a finite group of automorphisms,
(2) rank P = 2, then for each 2 € P with ht(R) = 2,

Qxy) = Zasaerwy 9(2, A)x)A(y)+9(2, 2)(x)2(y)
= Q2(x) (24 AN +9(R, 2)(x)2(y)

shows that Q is a (g(R, 2), 24 A)-derivation of B. In particular, if 2.4 =1
and g(2, 2) = 1 then 2 is a derivation of B.

2. The trivial crossed product of P over B. In this section we shall
define a ring D(B, P) which is generated by elements {u#o; 2 € P} over B and
shall study the relationship between D(B, P) and End(B.).

Let D(B, P) = Xlaer@ Bug be a free left B-module with a B-basis {#s; £
€ P}. Then D(B, P) becomes a right B-module via

ug b = AESJQ g(.Q, A)(b)u/l-
For,
u.o'(bc) = Dl4s0 Q(Q. A)(bC)uA
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= 2(Brsa (2, I(B)g(I", AXc))ua by (i) of (B3), and

(ug+b)-c = (Zrsa 9(2, I)(b)ur)c
= 2rse Q(Q, F)(b)(ZAsr g([', A)(C))uA
= 2(XZasr Q(Q, F)(b)Q(F- A)e))ua.

Since #o*(b+c) = ua*b+ uo-c is clear, the above shows that D(B, P) is
a right B-module.

Let D’ = Xlgep 1o+ B be a right B-submodule of D(B, P). Then we can
obtain the following

Theorem 2.1. D’ coincides with D(B, P) and {ua; Q € P} is a right
B-basis of D',
Proof. Let A € P(1) and let b an element of B. Then, D" D usb = g(A,

A)(B)ua yields bus € D’ since g(A, {1) = /l is an isomorphism. Assume now
bur € D’ for any I' € P(s). If 2 is a cover of I' € P(s), we have

uob = g(2, 2)(B)us+2Lo<o g(, .Q')(b)ua'

where the sum 2o/« runs over all 2° € P(s) with 2’ < 2 since 2 € P(s+1).
Hence, each g(R2, 2')(b)uo € D’ by induction hypothesis. Consequently we
have buo € D’. Thus D' = D(B, P).

Assume now « = 2rer urbr =0 (br € B). Since @ € Xocr@Bug, we
can write @ = 2)coun for some ce € B and ce = 0 for all 2. Let 4 € P(max).
Then bs = g(4,4) (cs) =0. Next let Q@ = P—P(max) and Q:ir1 = Q:
—Qi(max) for i = 1,2, +++, k. Assume now bg = 0 for all 2 € Qs(max) for s
=1,2,++,t. Then, br = g(I', I')"Ycr) = 0 for an arbitrary I" € Q+1(muax).
Thus {uo; 2 € P} is right linearly independent over B.

Theorem 2.2. D(B, P) becomes a ring under the multiplication defined by
(azm)(bur) = D4z ag(/l, A’)(b)uA’I'
where uar =0 A’ = 0.

Proof. It suffices to show that (ueaua)b = uolausb). Let (ugauas)d = X r
crur and uglauab) = XZr drur for cr, dr € B. Then

(ugau,;)b = Dovsa.ea+0 9(2, -Q")(a)un'mb
= 2arso,avas0 9(2, Q"N a)(Zrrsara g(Q7, I (b)ur)

Hence, for a fixed 2" such that 27/ = I', the coefficient of «r is
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9(2, 2" Na)g(2" A, I')(b)
and hence,
cr = Darsa,avazr 9(82, 2°)a)g(2" A, T')(b).
On the other hand,

ualauab) = ug(aX arsa g(A, A')Xb)us)
= EA'sA(Zg'so.a'A':u Q(Q, .Q')(ag(/l, A)( b))un’A')
= Dasnasa.oacol nasonse 92, 2N a)g(Q”, 2)Vg(A, 1)b))ug s

Thus, for a fixed 2" such that £2”/1 = I', the coefficient of #r is
Zasarasaoa=r §(2, Q) a)g(R", 2)b)) = g(R, 2")a)g(R" A, I')(b)

by (B.J3).(ii). Therefore dr is also Dgrso,0vazr 9(2, 27N a)g(R2"A, I')(b).
Let j be the map of D(B, P) to End(Ba) defined by

j(bug) : x= b2(x).

Then j is a ring homomorphism. Indeed, j(buacur(x)) = b2 454 9(A,
ANe)A'T(x). While, j(bua)i(cur)x) = j(bus)cl'(x)) = b(Zasa 9(A, A)
(¢)A'T'(x)). Since j is a ring homomorphism, End(B.,) can be regarded as a left
D(B, P)-module via j.

3. A P-Galois extension and a P-Galois system. In this section we shall
study P-Galois extensions for a rsh P. We put P(max) = {4, 4, +++, 4x} and
1 is a minimal element of 4.

We use following notations :

) T = 2Zserm A
(i) T4 = Zaera) A4

For P(max) D 4;, 4;,if 4; = Ad; for some A € P(1), we call 4; and 4; are
similar. Then we may choose a set N = {4\, 4, *+, 4.} which consists of all
non-similar elements of P(max) for some % < k.

Lemma 3.1. Assume dn and Ad» ave elements of N.
(1) Adn= A'dn for some A, A’ € PQl) if and only if A = A’ and m = n.
(2 Plmax) = {Ady, Ade, «++, Adw; A runs over all elements of P(1)}.
3) If j is an isomorphism and m + n, then Tdn + Tdn.

Proof. (1) If Adw = A’da, then dn and 4» are similar, and hence, m = »
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since dm, 4 € N. Then A = A’ by (A4).(i). The converse is clear.

(2) For distinct 4» and 4, of N, Adn'# Ad, for any A, A" € P(1). Next,
for any 4s € P(max), ds is similar to some 4: € N. Thus P(max) = {Ad,
Adb, +++, Adx; A runs over all elements of P(1)}.

(3) First we note that Adm = A'4. for any A, A’ € P(1) by (1). Hence
{24 44m #as.; /A Tuns over all elements of P(1)} is linearly independent over B,
and hence zneru) Unam F EAEP(I) Uas,. This shows that 74 = j(z:AeP(l)
Unsm) F J(Zaeray Uasn) = Tdn.

Remark. Since |P(1)|%2 = (|P(max)|, |P(1)| is a divisor of |P(max)|.

Further we put as follows:

([i) 4=01T4: (= 2k, 4).

(ivy ForI'€ P, g(T4:, I") = Zaerwy g(Ad:, '), where g(Ad;, ') = 0 if Ad;
is not a maximal element of I" (Cf. (B.2")). Further, g(4, I") = 22, g( T4,
.

(v) Bi=B'W={be B; A(b) = b for all 4 € P(1)}.

(vi) Bo={b€ B:; 2(b) =0 for all 2 € P—P(1)}.

(i) B = BiNBo.

Since AT = T for all A € P(1), we have

(1) T(B) < Bu.
By Lemma 1.1.(2), we have £24; =0 for any 2 € P—P(1) and a maximal
element 4; of P. Hence

2) 4i(B) < Bo.
In virtue of (1') and (2'), we have

(3) 4(B) € BN B.

A subset S of Piscalledanidealif 2€ Sand "< Q then " € S.

Lemma 3.2. If S is an ideal of P then B° ={b & B; A(b) = b for all
AeSNPUIN{bE B; 2b)=0 for all 2 S—P(1)} is a subving of B
which contains A.

Proof. For x,y € B°, x—y € B’ isclear. For 2 € S, 2(xy) = Xrse
9(Q2, IN)(x)I'(y) = Zaso.aestmimy 9(2, A)x)A(y) and each g(2, A)(x) = 2(x)
= 0 by (B.A4).(ii) if 2 & S(min). Thus B° is a subring of B. A S B® is clear.

Definition 3.3. B/A is called a P-Galois extension if
@ Bf=A
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(b) Ba is a finitely generated projective module
(c) j is an isomorphism.

In the rest, we shall assume following additional conditions:
(i) P satisfies (A.6)
(i) P is a pure poset.
Further, in the rest we denote u#g by £2 and X aepq) %44, by Tds, when this
causes no confusion.

Theorem 3.4. Assume B® = A and j is an isomorphism. Then j(Z -
(T4:+B)) = Hom(Ba, As) = B*, and Aa is a direct summand of Ba if and
only if there exist x\, X2, ***, xn» € B such that D TAx:) = 1.

Proof. First we note that BoN B, = A since B = A. If P = P(1) (and
hence P = P(wmax)) then P is a finite group of automorphisms of Band 4 = T.
Let f € B*. Then f = j(Zsep-rmy Aba) for bs € B. Since j(I')f = f for any
T'E€ P, Duer Abs = Daep ['Nba yields by = b, for all A € P(1). (cf. [2]).

Assume now P # P(1) and 2 € P—P(1). Then we can easily see that
2+T4; =0 by Lemma 1.1.(2) and A+ T4; = T4; for A € P(1). Then j(Z%:
(74:-B)) € B* by (3). For f € B*, f is obtained by j(V) for V = X oer Qba
(& D(B, P)) since j is an isomorphism. Then

DY = jJ(I'V) = Dacrmy i(TA) ba+Daeray J(12) be
B {0 if ' ¢ P(1)
~ it e PQ).

First we assert that V = X%, 4:+b4. For choosing I' from P— P(1), we
cansee ba = 0 for all 4 € P(1) by (*) and the fact that I'/1 + I'Q for A € P(1)
and 2 € P— P(1) (by (A.4).())). Hence we assume that bo = 0 for all £ such that
ht(Q) < m < ht(d). Let I' be an arbitrary element of ht(I") = m+1. Then
I is a cover of some 2 with the height m. Assume I' & P(max) and 4; is an
maximal element of I'. Then there exists I': € P such that 4: = I'.I" by (A.6).
If I:e PQ1), then ht(4:) = ht(I:T) = k(") implies a contradiction I" €
P(max), since P is a pure poset. Thus I': & P(1), and hence.

0 = j(I')f = /(d)br+ Zosr.0erny i{(Ti2) bo.

Noting that I:2 # 4; for any 2 =+ I', we have br = 0. Consequently we have
V =3k dirbsy = Zhi(Zacray Adiv basy).

Since AV =V, A(Zaermy Adi*bas) = Zaeray AoAdisbas = Ziaery
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Adi+ bas.. Hence, for a fixed A € P(1), take Ao = A~'. Then we have b4, =
bs,. Therefore bas, = ba, for all A € P(1). Thus

V = 2?=1 TA:"bd} S 2?=I(TA1"B).

Let Ba® > Aa. Then the projection 7: Ba= A, is obtained by 3%,
T4:+x; for some x; € B and so 1 = (241 T4:-x:)(1) = 24, T4{x:). Con-
versely, if there exist xi1, x2, ***, x» € B such that 2%, 74:(x;) = 1, then ¢: b
= o(b) = 211 Td{x:b) is an epimorphism with ¢(a) = a for all e € A, Thus
B = A@Ker ¢.

Theorem 3.5. If B/A is a P-Galois extension, then there exists a system {x:,
Y, 1=12 ¢ sand t =1,2,+++ h} S B such that

2 12 o T4, D3a) = bur

for al ' € P.
Morveover, if this is the case,

% Qx)(E o Tde, TXya)) = bor
Jor all I' € P.

Proof. Since B. is finitely generated projective, there exists a projective
coordinate system {x:, fi; i =1,2,+-+ 5, x: € B, f € B*}, and each f; is
obtained by 21¢-)74:*y:, v« € B, by Theorem 3.4. Namely,

D(B, P) 51=2L x,~('2’t‘=1 T4, 'yu)
= 2ia 220 g( T4, 1)()’z‘t))°1
+ 2301 2 20, (X1 g( T, T (i)

Therefore 2§12 ¢=1 x:9(Tde, I')(yie) = Su,r.
For Q= P,

2=0'1= 0201 x(Zt=1Tds+ yi2))
= 2rsa(B8a 9(2, I')(x) 281 T'TA:+ yie)
= zﬁer,Asn(E?:l g(.Q, A)(xi)EL: ATA:'J’{:)
= 2?:1(7}299(.96;)2?=1TA:'3)£¢)
=201 2(x:) 281 T4+ y«) (by Lemma 1.2)
= 2 2(x) 280 (T4, Q) (y:)82
+ 281 2(x) X re0Xt-1 (T, T)(yi)T.

This implies
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f:l Q(x,) ?:] g( TA:, F)(yit) = 8.0,1".

Definition 3.6. Let 2 € P. For this fixed 2, a system {x:, y«; i =1,
2,-+,sandt =1,2, +++, b} S Bis called a (P, 2)-Galois system for B/A if it
satisfies

2 23 o( T4, D)) = Sarr

for any I € P. Inparticular, a (P, 1)-Galois system for B/A is called a P-Galois
system for B/A.

Let {x:, ye; i =1,2,+++,5and f =1,2, *++, &} be a P-Galois system for
B/A. Then

S x5 g(T4:, D(ye)) = 1 and 251 2302y (T4, 2)(vie)) = 0

for 2 + 1.
Further, for Ao € P(1),

g( TA!, Al)) = EAAgaAo.AEP(]) g(/ldt. AD) = ZAAtZAo,AEP(l) AAt
Hence we have

?:1(xi(2?=12u,zx.ms?u) Adt(yit)) =1
f:l(Xi(ZLlEAmzAo..4ez=(1) AAt(yit)) =0

for all Ao(+ 1) € P(Q1).
Thus we have the following

Corollary 3.7. If B/A is a P-Galois extension, then P(1) = {1} if and only
if P; contains P(1), where P ={Q € P; Q < 4.}.

Proof. Assume each P; contains P(1). If P(1) contains A(= 1), then
P(max) = {maximal elements of 1} = {maximal elements of A}, and this contra-
dicts to (*3*). The converse is clear.

Lemma 3.8. Let A € P(1). If B kas a (P, A)-Galois system {x:, v ; i =
1,2, ++-,sand t =1,2,+++, h} for B/A, then
(1) me-l is a unit element of B.
(2) 2?:1 Q(L‘)(Z?:l g( TAt, F)(yu)) = 89/1,1‘ for any Le P

Proof Since 2§y x{ 281 T yie) = 23z Dta1 g(TAe, Ayu))A) =
A’
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RN = .Q‘(Z‘?:l x:’(E?:lTAt'y:'t)
= 2D(Bers0 9(Q2, Q)N x) X1 Q' T yir)
= 2% MQ-Q(JCi)z:?:l T4,y
= %1 Q(x:)28-1Tdyie (by Lemma 1.2)
= 281 L N(Zr2ta of T4, F)(yit)[')-

Thus,

1 = 281 Q0x) (28 g(T4,, 2A)v:)) and
21 Q)2 9(T:, T)(yie) =0 for I' + Q.

The following theorem gives a characterization for B/A to be a P-Galois
extension.

Theorem 3.9. Let B = A. Then B/A is a P-Galois extension if and only
if B has a P-Galois system {x:, yi; i=1,2,+++,s and t =1,2,+++, h} for
B/A.

Proof. Assume B has a P-Galois system {x:, v ; 1 =1,2,+*+,s and t =
1,2, *++, k). First we shall show that j is an isomorphism. For f € End(Ba), we
put V = 2., f(xe)E?:;TAryn (e D(B, P)).

Then, for b € B,

]( V)(b) = Y f(xf)2?=u TA:()’:‘tb) = f(2?=l XiE:':l Tdt(yitb))
= f(Egep(2?=1 X200 g( T4., -Q)(.Vx't))-Q(b))
{since 2?=1 TA:(J’H) e A)
= f(2012801 x:9(T4:, 1)(3i)b) = £(b)

shows that 7 is an epimorphism. Next we shall show that ; is a monomorphism.

b(2§=1 J'(Q)(x.-)Zli'=1 TA:’Yz't) = b(2?=1 Q(xi)ZrZ}Ll g( 74, F)(yit)[')
= b(2fa1 R(x) Xt g(TAe, 2)(3:)2) = bR

by Lemma 3.8. Let W = 3lger bof2 be an arbitrary element of D(B, P). Then
W = 29EP(2?=1 bgj(g)(xi)Z:':lTAt'yit) = §=1(]'W)(xf)2fr'=1 TA:'}’M)

yields that W = 0 if j(W) = 0. Since {x;, 2f-1Td:*yie; i =1,2,+++, s and ¢
= 1,2, +++, h} is a projective coordinate system for B/A, B is finitely generated
projective. The converse is proved in Theorem 3.5.

Let P satisfy also (A.5). Thus P is a r.sh with (A5) and (A.6), P(max) =
{Ad; A€ PQ1)} and 4 = Td = 4 T. Applying theorems 3.4-3.9, we have
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the following simpler formulation in this case.

Corollary 3.10. Let B = A. Then B/A is a P-Galois extension if and
only if there exists a P-Galois system {x:, y:; i = 1,2, +++,s} S B for B/A (i.e.,
S8 g(d, T (v:) = 8i,r). Moreover if this is the case, Aa is a divect summand
of Ba if and only if there exists an element x € B such that A(x) = 1.

Let P be a rsh with 4 = 2%, T4, again, and let @; be the map from
B®4B to D(B, P) defined by @.(bQ®c) = bTd-c for each t =1,2, -+, h.
Then @; is a D(B, A)— B-homomorphism, where the D(B, P)-module structure
of BRuB is defined by dQ(b®c) = dR(6)®@c. For, @.(d2(b)Rc) =
dQ(b)Td:+c and dROAbRc) = dR-bTd:i-c = d{(Drse 9(2, IN(O)TA:+ )
= dmaR2(b) T c = dQ(b)TA:+c since I'T4: =0 if I' ¢ P(1) by Lemma
1.1.(2)

Theorem 3.11. If B/A is a P-Galois extension then ®(BQ4sB) = D(B, P),
where © = 2410 In particular, if h =1, that is, 4 = T, then @ = O, is
an isomorphism.

Proof. Let {xi,yu;i=12+++,5s and £ =1,2,+-+, 4} be a P-Galois
system for B/A. For 2+b € D(B, P), we shall show that there exist a1, a, ***,
a» € BQu4B such that 2=, 0.(a:) = 2+b. Now,

2?=1¢t(2§=1 .Q(L‘)@J’it)b = ?:1( ?:1 .Q(x,) TAt'yit)b
=24 Q(X:’)(ELl TAt‘yn)b
=35 Q)21 (Drer g(Tde, T)(ya))b = 246

since 25-1 2(x:)28-1 9(T4:, I')(y«t) = da.r by Lemma 3.8. This means that @
is an epimorphism.

Assume now 4 = T4,.. Then we already know that @, is an epimorphism.
If0 = G:(b®c) = bdc = b(Zaer 9( T, 2)(c)$2), then bg( T, 2)(c) = 0 for
all 2 € P. Consequently we have

b2 ( T, 2)ex)®g( T, 4)(y:))
= b251((Zoer (T, 2)(0)2(x:))Rg( T, 4)(y:)) = 0.
While

0 = b(D8a1 Th(cx)Rg( T, 4)(y:)
= b®(2?=lTAl(cxi)g( T4, Al)(yf))
= b®2?=1(295p g( 74, .Q)(C)Q(x;)g( T4, Ai)(Yf))
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= bQ4-1(Loer g( T, 2)(c)2(x)g(, 4)(y:))
= bQ31-1(g( T, h)Xc)h(x:)g(dr. 4)(y:)) (by Theorem 3.5)
= b®g(dy, 4)(c) = (1Qg(4, 4))bRc)

since g( T4, 4) = g(di, 41). Noting that 1Qg(4, 4) is an isomorphism, we
can obtain that 5&c¢ = 0. Then it is easy to see that 23; 5;Qc; = 0 if (3,
bj®Cj) = 0.

BJA is said to be a projective Frobenius extension if Ba is finitely generated
projective and 4Bz = 4Bf. Then we have the following as a corollary of
Theorem 3.11.

Corollary 3.12. Assume P satisfies (A5). If B/A is a P-Galois extension,
then BJA is a projective Frobenius extension.

Proof. Since P satisfies (A.5), P is pure by Lemma 1.4 and 4 = T4,.. Then
4Bs = 44+Bs = ,B¥ by b A'bb—»j(d-b).

4. The case P satisfies (A.5) and (A.6). In this section, we assume that P
is a r.sh with (A5) and (A.6). If B = A then we have the diagram

B, = B*®

O, A=B‘°=BoﬂB:

Let B/A be a P-Galois extension.

(i) If P = P(1) then B: = A and B/A is a P-Galois extension of separable
type.

(i) If P(1) = {1} then By = A and B/A is a P-Galois extension of insepa-
rable type which will study in the following paper.

Since P satisfies (A.5), if P(max) = {4, &s, « -+, 4}, then P(1) = {A, =1,
Az, ++ o, Aw}, P(max) = {Aidh; i=1,2,+++ k} and 4 = T4, Further any 4
and 4; of P(max) are similar. Hence we put 4: = A4 in the rest. Moreover
By coincides with B”' = {b € B; Q(b) = 0 for all .2 € Pi— P(1)}, and hence
Bf = BiN B, = B""N B,

Lemma 4.1. (1) P is a r.s.h if and only if H\P, € P,.
2) ma=1i and only if ma, = 1 for all i = 2. In this case P, is a v.s.h and
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fQRre Pi(rep. 1€ P)for 2 Phand ' € P, then I’ € Pi.. Moreover A;:
is a unique minimal element of 4; and 4;: = 4 A; for all i.
Assume ma.= 1.
(3) Let 2: € P Then 2 = N8 (vesp. 2: = QA A:) for some 2 € P, (resp.
Qe Pl) and g(d;‘, .Q.') = Aig(dl, .Ql) = g(dl, .Ql’)/l.
4) g{dh, Ax) =1(= Al) if and only if g(d;, 4:) = A Jor all i = 2.

Proof. (1) Assume H\P, S P.. P becomes a r.sh if we show that 2" €
P, for , I’ € P, such that Q" = 0. Let £ and [o be respective minimal
elements of 2 and I". Then QI = QI implies [3'2'Q =2 1. Thus
Iv''Qr € P, and hence 2I' € Hi(H:P)) € H\P, © P.. The converse is
clear.

(2) Since 4; = Ay, ma, = 1 if and only if ma, = 1. If ms, =1 then H,
= {1} and hence P, is a r.sh by (1). Since #24, = 1, A; is a unique minimal
element of 4; and so 4: = diA: foralli. Let Q' € Pfor € Prand I' € P.
I € P+ Pithen 4 = QI' 2 M1 /A; = A; + 1 and this contradicts to that /L
=1 is a unique minimal element of 4.

(3) Let 2: < 4;. Then A; < : < 4; implies that 1 < A7'Q: < A7'd: =
1. Hence A7'8Q2; = 2, € P, and £; = A:£:.. By the similar way we can see that
$2: = Q{A; for some @ € P.. For b € B,

dicb = D, g4, LB = A rsa, 9(4, D)D)
= 2F|A| Aig(Al, Fl)(b)/l,ﬂ

show that g(d:, 2:) = Awg(d,, £:). By the similar way we can see that g(J:, 2:)
= g(Al, -Ql,)Ai-
(4) This is a direct consequence of the latter half of (3).

Theorem 4.2. Let B/A be a P-Galois extension.

(1) Assume P is a v.s.h. Then B[Bo is a Pi-Galois extension if and only if
ma, = 1.
Assume g(d, 4) = 1. Then

(2) B/Bi is a P(1)-Galois extension.

(3) B coincides with Bo[Bi], the subring genevated by Bo and B\. Move
precisely, B = 25-1Bov: = 232 yw:Bo for vi, wi € By and B = i< Biv:
= 2§=1M)§Bl f07’ vi, wi € Bo.

Proof. Let {x:, y:; i =1,2,+++, s} be a P-Galois system for B/A.
(1) Let B/Bo be a Pi-Galois extension. Then there exists a P,-Galois system
{uvi; i=1,2,+++, t} for B/Bo. Namely,
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Dtauig(d, 2)(v:) = 81,0 for any 2 € P,
If 4, is a minimal element /A = 1, then we have a contradiction that
0= Dioiug(d, A)v:) = Diciu:di(v:) = Dtciuig(dy, 1){(v:) = 1.

Conversely, assume m4, = 1 and 2 € P.. Then 2 & P: for i #+ 1, and hence
o(d, 2) = g(4, 2). Thus

S0 = 2ia x.-g(d, .Q)(y;) =23 Xig(Aly -Q)(}’:')

for any 2 € P, shows that {x:;, y:; i =1,2,+++, s} is a P-Galois system for
B/Bo.

(2) 2231 A(x:)g(d. 2)(y:) = 841,02 by Lemma 3.8.(2). While, for each A; €
P(1), noting that Lemma 4.1.(4) and g(4, 4,) = 1, we have

2 A(x)A(y) = o A(x)g(ds, 4i)(y:) = 2o A(xi)g(4, 4:)(v:)
_( ia=a
RN 7 P A

and this shows that 23§-1 4i(x:)A{y:) = S, and {di(x:), yi; i =1,2, -+, s} is
a P(1)-Galois system.

() Let 2 < 4. Since {2x:),y:;i=12+++ s} is a (P, Q)Galois
system for B/A and A; = g(J;, 4;) is the minimal element of 4; by Lemma 4.1.
(4), we have

281 Q) T(v:) = Ziat L) (Zaserar Ai(3:))
= 21 L )(Zasepimany 9((d;, 4:) (1))
={1 if 2 =24 and 4; = 4
0 otherwise

Thus, for any b € B,

Bo[Bl] = 2?:1 Al(bx,-) T(yi) = 29541(22?:1 g(dn. ,Q)(b)Q(x,—) T(J’u‘))
= Zia 9(dh, 2)(0)A(x) T (y:) = i1 bdi(x:)y: = b.

Consequently, we have B = Bo[Bi] = 3§18y T(y:).

Next we consider 2%-; T (x:)4i(v:b) € Bi[Bs] for b € B.

For P(1) @ A + 1, %1 Ax) d(y:b) = 251 Alx:)g(4d, 1)(y:b) = 0 since
{Alx:), yi; i=1,2,+++, s} is a (P, A)-Galois system. Hence

2?:1( T(Xi)dl(yib)) = 2?=1 Xidl(yib)
= 2954;(2?:1 xig(dl, -Q)(J’z')-Q(b)) = 21 Xig(d, 1)(y.-)b = b.
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Thus b € B\[By] and hence B = Bi[Bo] = X281 T(x:) Bo.
Next we shall show that B = 3%., 4(x:)B..

B2 2L, 4(x)B) 2 2., A(x:) T(y:b)
= 2 le(xi)(zmepm /l,-(y,-)/lf(b)))
= 2a Az ) A(y) (D) + iy A(x)(Zjer Ai(v:) A5(5)))
= Zdx)g(d, 4)(y)Ni(B)+ Ziai(h(x:) (e 9(4, 4i)(y:)AL(D))
= 21 Ax)g(d, 4)(y)A:(b) = b

for b € B since {d(x:), y:; i = 1,2, +++, s} is a (P, 4)-Galois system and the
minimal element of 4, is 1. Thus B = X% 4(x:)Bi.
Finally

B 2 3L, Bidi(y:) 2 25 T(bxi) Ai(y:)
= 2?:1((24&?(1) AJ(b)AJ(Xf))Al(Yi))
= 2B asery Ai(B)Ai(x:)g(dh, 1)(y:) = 2kt bxig(h, 1)(x:) = b

since {x;, y:; i =1,2, -+, s} is a P-Galois system. Thus 2., B.4(y:) = B.

Let ma4, = 1, g(4, 4) = 1 and B/A a P-Galois extension. Then B/B, is a
Pi-Galois extension and B/B, is a P(1)-Galois extension by Theorem 4.2.
Further By is a P(1)-admissible, Bf"’ = A, and if B, is P,-admissible then B!
= A.

Then it is natural to ask that whether By/A (resp. Bi/A) is a P(1)-Galois
extension (resp. Pi-Galois extension). As will be seen in the next section, these
are true if Ba@® > Aa. But, first we shall prove the converse of this problem.

Theorem 4.3. Let mas, =1 and B = A. If Bo/A is a P(1)-Galois
extension and Bi[/A is a P,-Galois extension then BIA is a P-Galois extension.

Proof. Let{u: vi; i=1,2 ++-, t} be a P(1)-Galois system for Bo/A and
let {x:, v:; i =1,2,+++, s} be a Pi-Galois system for Bi/A. Since I'x € Ps is
obtained by I/« for some It € P, by Lemma 4.1.3), g(dx, I'x) = g(&h, I)Ax by
Lemma 4.1.(3). Therefore

P2 x;g(Ak, Fk)(yi) = 2}ia xsg(dl, H)(Ak(yi)) = 2= x;g(dl, n)(y!)

= 81.1‘1 = aAhJ‘h-
We now consider

Dhau( 281 x:9(4, T')(y:v;)
= DhauilZi x:(Xaer 9(4, -Q)(}’i)g(-Q, F)(Uj)))-
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Then, for 2 € P, 2 = QA for some £, € P, and hence

2 xfg(A, .Q)(y.-) = 2011 x;g(da, .Q)(yi) = 2 x,-g(dl, .Ql)/lk(}’i)
= 21 x:9(d, 2)(y:) =0

if 2 & P(1) since Ax(y:) = y:.
Next

Dixg(d, 2)y:) =0 if 2 P(1) and
2 x:g9(d, A)(y:) = D81 x:9(de, Ax)(y:) =1 for Aw € P(1).

Thus we have

if I' & P(1)

Sterte Bte w0l D) = {1

Consequently, we have
2iau(Bia xig(4, Tyivs)) = di,r for '€ P,

and this means that B has a P-Galois system for B/A.

5. P-Galois extensions B/ A with B.®P > A4. In this section we assume
the following conditions :

(i) P satisfies (A.5) and (A.6), and so we may put P(max) = {di, Jo, * ++, 4}
={Aud; i=1,2,+++, k) where P(1) ={A1=1,A, ++, A} and 4; =
Nidy = 4. Moreover P, forms a r.sh by Lemma 4.1.(1).

(ii) ma, =1 and g(dl. dl =1.

(iii) Ba® > Aa.

Lemma 5.1. Let Q € P.
(1) FreP and O = 4; then I'Q = 4.,
2) A = AR for all A € PQ1).
(3) B is Pi-admissible.

Proof. Assume ht(4) = n+1. Then ht(4d;) = n+1 for all 4: € P(max)
since P is a pure poset.
(1) Let 2I"' = 4;. Then we have a chain

Ai = QI = QOR > -Qixnl > -Qizn'z DD -Qx'n—xnn-x > Az‘

forsome 2 > Q,and I' > I',forj = 1,2, -, n—1 by (A4).(ii). Further 2, €
P by Lemma 4.1.(2) and hence I';; € P;. By (A.3), I,9;, + 0 and it is contained
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in P;.. Thus
Ai = F-Q = -I—:J-QO >> Fini] >> e >> E’n-lgin-l >> 1

shows that 2t(I'Q) = n+1 = ht(d:). Thus I'Q = 4..

(2) For A:; € P(1), assume that 24; = A.82°. Then £’ € P, since A2’
has a unique minimal element A;. Let I'Q = 4, for I' € P,.. Then 4iA: = 4:
= I'QA: = I''1;Q’. Since QI = 4, by (1), we have I'RA; = Q2I'/l;. Noting that
I'A;€ Piand Q' € P, 4; = TN = Q' TA; by (1) again. Hence Q' = Q'T"
and so 2 = 2'by (A4).().

(3) Let & and R be arbitrary elements of B, and P.. Then, for A € P(1),
AQ(b) = QA(b) = 2(b) show that 2(b) € B.

Theorem 5.2. Let B/A be a P-Galois extension.

(1) Hom(Bo., As) is a homomorphic image of the submodule urd(B) =
(Bacray ua)h(B) of D(B, P) and Bof/A is a P(1)-Galois extension.

(2) Hom(Bi., As) is a homomordhic image of the submodule us, T(B) of
D(B, P) and B\/A is a Pi-Galois extension.

Proof. Since B/A is a P-Galois extension with Ba@® > Aa, there exists x
€ Bsuchthatl = d(x) = A(T(x)) = T(4(x)). Hence 4,(B) = Bo, Bs,® >
Boso, T(B) = By and Bs,@® > Bi,,. Thus, for any f € B*, f|Bs € Hom(B,,,
Aa) = B¥ gives an epimorphism of B* to B and f|B: € Hom(B.,, As) = B}
gives an epimorphism of B* to Bf.

Thus we have j(us*B)|Bo = B and j(us*B)|B: = Bf.

(1) Since wur*d(B)— j(us*B)|Bo: ur-4(b) j(4b)|By gives an
epimorphism, B¢ is a homomorphic image of ur+Zi(B). B, is also projective
since B is projective and Bs,®D > Buso'B = 21A+2A+ ++* u:A (2: € B)
implies Bo = 4(B) = A(21)A+d(z)+ -+ +4(z.)A. Therefore By, is
finitely generated projective.

The map Jo of a Bo-submodule 2aecray@Boua of D(B, P) into End(Bo,)
defined by Jo(bza)(x0) = bA(x0) is a monomorphism. For if Jo(Xaep)bazea) =
0, then D aermybaA(x0) = 0 for all xo € Bo. Since Bo = 4(B), this means that
Ziaermbaldd(y) =0 for all y€ B, and hence ;™ '(Xaermbsdd) =
DNaerwmbauadi = 0. Thus b4 = 0 for all 4 € P(1).

Let {x:,gi; i =1,2,+++, 5, x: € By, g: € B} be a projective coordinate
system for Bo/A. Since g: is obtained by Jo(Bserqy ua*hvs)),

End(BuA) = ]o(ux) =1= ]o(Z?:l xi(ZAEP(l) Ua 'Al(Ui))
= J(X5=1 x:(Zaery Adh(vi)ua
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and this implies
=1 xiAA](vi) = 4.

This shows that {x:;, &i(v:): i = 1,2, -+, s} is a P(1)-Galois system for Bo/A.

(2) wus» T(B)— j(4+B)|Bi: = Bf: uas,» T(b)— j(us+b)|B: gives an
epimorphism and B, is finitely generated projective since B = 214+ *++ + 2,4
(z: € B) yields B = T(B) = T(2)A+ +++ + T(z.)A.

The map /i of a Bi-submodule Zoer,@®Biug of D(B, P) into End(B.,)
defined by J1(bug)(x1) for x; € B is a monomorphism. For, since Pi(B:) € B,
b2(x1) € B.. If Ji(Zaerboug) = 0 then Xoecr,baR(x:1) = 0 for all x, € B..
Since B = T'(B), this means that X oer, 2227 (y) = 0 for all y € B, and hence,
j_l(EQEP]bQ.QT) = EQEPle(EAePl Zlm) = 0. Thus bg = O fOI' all .Q = Pl.

Let {y:;,9:; i=1,2,--+,s, y: € Bi,g: € B} be a projective coordinate
system for Bi/A. Since g: is obtained by Ji(u4,- T(v:)),

End(B.,) = N(w) = N1 yua, T(v:))
= J(Z¥1 y(Zasa, (4, Q) T(v:)ua)

and this implies 2§ yig(dh, @XT(v:)) = S1,o. Thus Bi/A is a P.-Galois
extension.

Combining Theorem 4.3 with Theorem 5.2, we have the following

Corollary 5.3. Let B® = A. Then B/A is a P-Galois extension (with Ba®
> Aa) if and only if BofA is a P(1)-Galois extension with Bo,® > Aa and
B\/A is a P,-Galois extension with B1.P > Aa.

In the rest we shall study generating elements of B over A when B/A is a
P-Galois extension.

Theorem 54. Let B/A be a P-Galois extension and let {x:, y:; i =1,
2, -, s} be a P-Galois system for BIA. Then B coincides with A[{y:: i =1,
2, <+, s}l, the subving generated by (y:: i = 1,2, -+, s} over A. Move precisely,
B = ?:1 Ayf.

Proof Let T =A[{y:; =12+ s}]and let {Z6:R¢t: b, EB, t; €
T} be a submodule of BQ«B. We denote it by BRT. For a= 2%,
b2(x:)@y: € BT, @(a) = X5 b2x)d-y: = 2% 02(x:)(Drep 9(4,
IYy)I' = b2 since {2(x.), yi; i =1,2,+++, t} is a (P, 2)-Galois system. But
this means that ®(BQT) = D(B, P) = ®(B®.B) and we obtain BRT =
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B®4B since @ is an isomorphism by Theorem 3.11. Let x € B be an element
such that 4(x) = 1. Then x®b = 26:®4;, b: € B and t; € T, and so

(4@1)(x®b) = A(x)®b = 1®b and
(AR1)(x®b) = (ARINZb:®t:) = Z4(b:)®¢;
=2(1R4(b:)t:) € AQuT =T

shows that B = T.
Let S = 2%, Ay: (€ T). Since bR is obtained by @(25-:62(x:)®y:), we
have BQS = B®4B again. Thus we can see S = B by the same way.

In the rest, we assume that B/A is a P-Galois extension. Then there exists
T(x) € B: such that 4(T(x)) = 1. Weput T(x) = x4, and for this x4, we put
Xe = (Zh/.Q)l(xa.) for 2 € P, (and so (Al/-Q)l € P by Lemma 4.1.(2)). Then
Q(x0) = 2(4/2)x4,) = A(xs,) =1 and x1 = 1 since (4/1)e = 4 and x;1 =
(4/1)Kx4)).

Lemma 5.5. Let I' € P..

(1) I I'(xa)=1. Then I' = 4.

(2) I'(xa) = 0 i and only if I' is a right factor of 2 and if this is the case,
I'(xe) = xr, where Iy is a left factor of Q.

() Alxo) = x0 for all A € P(1).

Proof. (1) If I" #+ 4, then (4,/T"), € P.— P(1) and we have a contradic-
tion

1= Al(XA,) = (AI/I")rP(xdl) = (Al/[')r(l) = (.

(2) Assume I'(xg) = F(AI/Q)I’(XAJ + 0. Then F(dl/.Q)z +0(e P) by
Lemma 4.1.(1) and hence IoI"(41/Q)s = 4, for some Iy € Pi. Thus il = Q.
Conversely, if [3]" = £ for some I3 € P, then Il (xg) = 1 yields I'(xa) # 0.
Let [2(xq) = 1 for It € P.. Then

1 = Nl (x0) = LiI(4/2)x4,) = M(x4.)

implies that IoI'(4,/2) = 4, by (1) and hence I'(4/R2): = (A /Tv).. Therefore
P(JC.Q) = P(AI/Q)t(xm) = (Al/n))e(xm) = Xro.

Since ol (x0) =1 = L4 /2)x4,), [2[(4:/2)e = 2(4,/2) shows that
I = £ and hence It is a left factor of &2

(B) Alxe) = A(Al/-Q)l(xAx) = (Al/-Q)i/l(xal) = (dl/g)!(xm) = Xg.

For X := {xo: 2 € P}, a monomial of X means a product of these xo.
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We put
Ry = b Axa,X0,"* " Xa,

£1,82,+++,2n€P)
a left A-submodule of B generated by the monomials of X over A.

R = p Buyxa,xa,*** X0n
§21,22,%++,2aEP)

a left Bo-submodule of B.
Then we have the following

Theorem 5.6. (1) X is a left (as well as right) linearly independent over
Bo.
(2) Ro has systems {x:,y:; i = 1,2, -+, tYand {2, w;; ] =1,2, *++, u} such
that
(@) xi:, w; € X and y: and z; are monomials of X for i = 1,2, +++, t and
j=1,2 " u
(b) 25’:1 .Q(x,-)yi = 641,.0 and 2}‘:1 z,—.Q(w,—) = 64,,9 fO?’ all Q Pl.
For these systems {x:,yi; i =1,2,++,t} and {z;, wj; j=1,2,++, u}
(3) Ro = B1 = f‘:x A}’i and R =B = 25=1Boy,-.
@) I PQ1) = {1} then B = 21 Ay: = ¥ ZA.

Proof. (1) Let @ = Zone@=2baxa+bixi =0 (bo, by € By). Then, for
any I’ € P, with (") = 2,

0= TI'(a) = Zasuar=2g(", T')(ba)(x0)+ (I, 1)(ba)xa)
= Zanem=2 9(I, r)(bn)['(xo) = g(f’, F)(br)

by Lemma 5.5.(2) since I is not a right factor of 2 for 2 = I. Thus br = 0 and
b = 0. Assume now {xo; 2 € Pi(m) = P,N P(m)} is left linearly independent
over By, Let 8 = 2gerumsnboxa =0. Forany I’ € P, with 2 < (") < m
+1,

0 =TI'(B) = Zecrim+n g(I', I')(ba)(x0).

If I'(xo) + 0, then I'(xao) = xr, where Iy = (Q/"), by Lemma 55.(2).
Moreover I'(xa) + I'(xa,) for 2 + . For if I'(xg,) # 0, and the equality is
hold, then P(xg) = F(Al/.Q)e(XA,) = F(xg.,) = F(Al/-Qo)e(XAl) implies 1=
Nl(/2)dxa,) = LT(4/20)(xs,) where Iy = (2/I"),. Hence 4, =
LI(4/Q)e = [(4 /), implies a contradiction that (4,/Q): = (4/)..
Thus b = 0 for any 2 such that I'(xe) = 0 by the assumption. Further, there
exists I" with 2 < h#(I") < m+1 such that I'(xo) # 0 for any 2 with 4(Q) =
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2. Consequently {xo; 2 € P(m+1)} is left linearly independent over Bo. Next,
Iet EQEP. x.obg = (bg (S5 Bo). Then 0= Al(ZQEP; x.ng) = bd.. The right
linear independence of X also can be proved by induction on the height of 2.

2) Let ht(4) = n. By Lemma 55.2), 2(xr) = dar for 2, € P, and
ht(2) = ht(I')._Hence we have 2(xs,)— Zrhery=n—1 2(xr)(x4,) = 84,0 for
any 2 € P, such that 4##(82) = n—1. Hence we assume that there exist ele-
ments x1, Xz, ***, X5 and 1, 32, ***, ¥s such that

(a) x: € X and y; are monomials of X for i = 1,2, «++, s

(b) %1 Qx:)yi = 04,0 for any 2 € P, with #(2) = m+1.

Let 2 € P, with 2t(2) = m.

i Q(xi)yi—Zr,hr(r)=m Q(xr)(2?=1 .Q(x;)yi)
= 281 Q(x)y: = Bane, if ht(Q2) = m+1.

While if %#£(2) = m, then

) -Q(Xz')yi_zr.h!(r)=m Q(Xr)(z:?:l F(XI)_'V{)
= 2§=1 Q(xf)yf—Q(xg)Z?=1 .Q(x,-)yg
= 251 Q(x)yi— 28 Qxi)y: = 0.

Further each I'(x;) is either 0 or I'(x;) € X by Lemma 55.(2). Hence each
I'(x:)y: is a monomial of X provided I'(x:)y: #+ 0. Therefore we can choose x1,
X2, ***, x¢ and yi, ¥z, ***, ¥¢ such that

(a) x; € X and y: is a monomial of X for all 7.

(b) 2251 2(x)y: = Sav0 for all 2 € P

Elements zi, 22, ***, 2z and ws, ws, ***, Wy can be choose by the similar way.

(3) Itis clear that Ry S B, by Lemma 55.(3). Since A(bx:) = 4 d(bx;)
= M(A(B)A(x:)) = 4i(bx;) for any b € B, and /A € P(1), we have 4(bx:) €
A. Hence

R 2 Ef'=1 A,’Vi > 25=1 dl(bxz-)y,-
= Poxa(Bha1 9(d, 2)(0)2(x1)y:) = g(, 4)(b) = b

for all b € B, since g(4, 4i) = 1 show that Ro = B..
Next, for b € B, 4,(bx:) € Bo, and so

R 2 Y Boy: 2 2t 4i(bxi)y:
= osa (i1 g(d, 2)(B)R(x)y:) = g(d, 4)(d) = b

show that

R = 2.1 Bovi.
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(4) Assume P(1) = {1}. Then B, = B and so B = 2}, Ay:.. Moreover

DU ZAD 2}‘.—_1 z; 1(%‘,‘17) _
= Desa, (2% ng(Al, Q)(wj)-Q(b))
= Dk zd(w))b = b

for all b € B (= B)) show that B = 2., zA.

6. The case of algebras. In this section we assume that P satisfies condi-
tions (i) and (ii) of §5, A is a commutative ring and B is an A-algebra.

Let B and B’ be A-algebras. For finite posets P < End(B.4) and P’ € End
(Bh), PQP :={RQR : Q€ P, Q2 € P} becomes a finite poset of End
((BQaB)a) by (2KQ2)(2ZbQb") = Z(2(b)RK(b’)) where the order 2:&2(
> Q4 is defined by 2 = £ and 2 = . Assume &L’ = 0 only if 2 =
0or =0 If Pand P satisfy (A.1)-(A4), then PRP also satisfies the
conditions. Since

(22 (xy®x'y") = 2(xy)QR'(x'y")
= (Zrse 9(Q, M) (3)(Zrse (2, I')Xx)' ("))
= (Zrsarse(g(R, N®g(Q, I')(xQ@xWTQI )y®y),

we put g(RRL, I'RI'") = g(Q,. NRg(2', I'") for 'R < RRR’. Then
(Q®Q')((JC®X') (J’®y')) = Drersoee Q(Q®Q', rer) (x®xl) (F®F')
(y®y").

Thus PP’ becomes a rsh if QRN =0 implies 2 =0 or 2 = 0.
Moreover P and P’ satify (A.5) and (A.6) so does PQP".

Let B/A be a P-Galois extension. Then By is a progenerator, and hence
B*(B) = A [see [3]]. Since B* = j(4-B) by Theorem 3.4, we can choose an
element x € B such that 4(x) = 1. Hence Ba® > A by Corollary 3.10. Thus,
if B/A is a P-Galois extension then A4 is a direct summand of Ba.

Theorem 6.1. Let mas, = mar =1, g(d, &) =1 and g(4i, &) =1. If
B[A is a P-Galois extension and B’'[A is a P’ -Galois extension, then PQP’ is a
v.s.h for BB [A and BR4B'[A is a PRP -Galois extension.

Proof. B/Bo (resp. B'/Bs) is a P, (resp. P;)-Galois extension by Theorem 4.2
and Bu/A (resp. Bo/A) is a P(1) (resp. Pi(1))-Galois extension by Theorem 5.2.
Assume 0 #+ 2 € P. Then there exists an element xo € B such that 2(xe) =
1. Hence QL =0 only if 2" =0 for '€ P’. Thus PQP’ is a rsh.
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Let x4, € B be 4i(x4,) = 1. For b®b” € (BR4B')P®”,

BO®B, = Al(%mb)@b'
= ZFEP Q(AJ, F)()MJF([))@IJ’
= ZFEP(g(Al, F)@].)(Lh@l)(b@b') = bHQb'.

By the same way, we can also see that 5&Q 5" € BQ B;. Noting that B&R4Bs
and By®.B’ are direct summands of B®.B’, we have 6Q¥’ € B,® B,
Next, let ¥ € By be an element such that 7(y) = 1. Then

AR4B' 2 T(y0)®b = Zsermy AW)A(L)RD’
= Zaery(ARDN(yR1)(AR1)(6® D)
= 2rern(A(y)R1(6R ) = T(}’)(b®b')
= bQb".

We have b®@b € BQ.A by the similar way. Therefore b@Qb € A.
Further this is true for 23,;6,Q6; € (B&Q4B')"®"". For a P-Galois system {x:, y: ;
i=12 ¢+, ¢t} for B/A and a P’-Galois system {x, yi; i =1,2,+++, ¢t} for
B/A, {(x:Qx}), y®y); i=1,2,+>+,t and j=1,2 -, ¢} forms a
PQ P’-Galois system for (B&R.B")/A.

Finally, we assume that B/A is a commutative P-Galois extension.

Corollary 6.2. Let BY = A and g(d, &) = 1. Then the following condi-
tions are equivalent.
(1) B/A is a P-Galois extension.
(2) B/By is a P\-Galois extension and BofA is a P(1)-Galots extension.
(3) B/B\ is a P(1)-Galois extension and B\[A is a P,-Galols extension.

Proof (1)=—=©2). Let{x: v:; =12+, s} be a P-Galois system for
B/A. Then, for each @& € P, 2i-i xi9(4d, 2)(v:) = Tk x:9(d, 2)(y:) =
81,0, shows that {x:, y:; i = 1,2, -+ +, s} is also a P-Galois system for B/B,, and
hence, B/B, is a P;-Galois extension. Moreover, By/A is a P(1)-Galois extension
by Theorem 5.2.(1).

(2)==(3). B, has a P(1)-Galois system and it is also that for B/B;. Thus
B/B, is a P(1)-Galois extension. Next, if B/B, is a Pi-Galois extension and Bo/A
is a P(1)-Galois extension, then there exist x € B and bo € B, such that 4i(x)
=1and T(bo) = 1. Then Td(xbo) = T(Zrsa, g(dh, I)x)(bo) = T(bo) =
1. Since T(xbo) € By and T4 = 4T, there exists y € B; such that 4i(y) =
1. Hence there exists a system {#:, vi; £ = 1,2, *++, t} in Bi such that 2%,
%:82(v:) = 64,,0 for all @ € P, by Theorem 5.6.(2). Then this system {u;, v:; ¢
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=1,2, -+, t} is a Pi-Galois system for Bi/A. For, any b € B,
Efeluféh(v.'b) = 25=1uidl(bvi) = 2$=lui(2[’EP| g(dl» P)(b)F(u;)) = b.
Hence Xéciud D re1 g(dy, T'w:)(5)) = 0 for all b € B, and this means that

St ug(d, T)(v:)- I’ =0 forany I' + 1, and so,
S ug(d, T')v:) =0 for any I" =+ 1.

(3)== (). B” = Aisclear. Let{x;, y:; i =1,2, +*+, s} be a P(1)-Galois
system for B/B; and let {u;, v;; j = 1,2, *++, t} be a Pi-Galois system for Bi/A.
Let ' = Al for A € P(1) and I1 € P.. Then

2 xi(2§=1zug(4 F)(Uj)'z')) = 23 Xr‘(21¢‘=1u,‘g(dl, Fl)(/l(vj)/l(y,-))
B { 0 if A=+1
- 2}:1%,’9([’1. 1—'1)(2,’5) ifA=1.

Further 23-12;9(4, ) (v;) = Si.r.. Consequently, we have
pI xi(Zj’:luJ’g(da F)(Uj%')) = Our

and this shows that the existence of a P-Galois system for B/A.
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