PRIMITIVE ELEMENTS FOR CYCLIC pⁿ-EXTENSIONS OF COMMUTATIVE RINGS

Annetta G. ARAMOVA

In this note we study the existence and the construction of a primitive element for a cyclic Galois p^n -extension, where p is a prime natural number.

Let A be a commutative unitary ring which is an algebra over the prime field F_p . Let B be a Galois extension of A (cf. [1, Theorem 1.3]) with cyclic Galois group (σ) of order p^n . Such a B will be called a cyclic p^n -extension of A. If B is generated by a single element z over A, i.e. B = A[z], we say that z is a primitive element for the extension B/A.

It is well known that a field Galois extension has a primitive element. But there are examples of Galois extensions of rings which have no primitive elements: cf. [4], [2, Remarks 3 and 4], [3, §2]. In [2, Theorem 5] Kikumasa and Nagahara found conditions for a cyclic 2^2 -extension to have a primitive element. The theorem below generalizes this result to an arbitrary cyclic p^n -extension.

Notation. For a group G acting on a ring R, we set:

 $R^{c} = \{x \in R \mid g(x) = x \ \forall g \in G\};$

 $t_H(x) = \sum_{h \in H} h(x)$ for a subgroup H of G;

 $G_{\mathbf{z}}(\mathbf{a}) = \{ g \in G \mid g(\mathbf{a}) \subset \mathbf{a} \}$ the decomposition subgroup of an ideal $\mathbf{a} \subset R$;

 $G_T(a) = \{g \in G \mid \forall x \in R : g(x) - x \in a\}$ the inertia subgroup of a;

 $Max(R) = \{M \mid M \text{ is a maximal ideal of } R\};$

 R^* = the group of units of R;

 F_q = the field with q elements.

In what follows, we fix a cyclic p^n -extension B/A with Galois group (σ) and we set:

 $B_i = B^{(\sigma^{p'})}$ for $0 \le i \le n$ (Clearly $B_0 = A$ and $B_n = B$);

 $\operatorname{Max}_0(A) = \{ M \in \operatorname{Max}(A) \mid MB_1 \in \operatorname{Max}(B_1) \}, \text{ and abbreviate as follows:}$

 $Max_0 = Max_0(A)$ unless there are confusions.

Finally, for a ring $S \supset A$ we denote by \bar{s} the image of $s \in S$ in $\bar{S} = S/MS$ when M is fixed in Max(A).

Theorem. Let B/A be a cyclic p^n -extension with Galois group (σ) and let

 $n \geq 2$. Assume that

- (i) the set $Max(A)\backslash Max_0$ is finite;
- (ii) for every $M \in \text{Max}(A)\backslash \text{Max}_0$ the field A/M contains at least p^n elements. Then B/A has a primitive element z which is of the form $z = y_n + \sum_{i=1}^{n-1} a_i y_i$, where $a_i \in A$ for $1 \le i \le n-1$, and $\sigma^{p^{i-1}}(y_i) = y_i + 1$ for $1 \le i \le n$.

Lemma 1 (cf. e.g. [8, Corollary 2.2]). The element z is primitive for B/A if and only if $\sigma^k(z) - z \in B^{\times}$ for $1 \le k < p^n$.

Remarks 2. Note that for $0 \le j < i \le n$, B_i is a cyclic p^{i-j} -extension of B_j with Galois group $(\sigma^{p^j}|_{B_i})$.

Fix an integer $i, 1 \le i \le n$. According to [7, Theorem 1.2], applied to the extension B_i/B_{i-1} , there exists an element x in B_i such that $\sigma^{p^{i-1}}(x) = x+1$. Set $b_k = \sigma^k(x) - x$ for $0 \le k < p^i$. Then:

- (a) $b_k \in B_{i-1}$. Indeed, $\sigma^{p^{i-1}}(b_k) = \sigma^k \sigma^{p^{i-1}}(x) \sigma^{p^{i-1}}(x) = \sigma^k(x+1) (x+1) = b_k$.
- (b) $b_{k+1} = \sum_{j=0}^{k} \sigma^{j}(b_{1})$ for $k < p^{i} 1$. Indeed, assume that this is true for $k < p^{i} 2$, then $b_{k+2} = \sigma(\sigma^{k+1}(x)) x = \sigma(b_{k+1} + x) x = \sum_{j=0}^{k} \sigma^{j+1}(b_{1}) + b_{1}$, hence (b) holds.
- (c) $b_k = b_r + q$ for $k = p^{i-1}q + r$ with $0 \le q < p$ and $0 \le r < p^{i-1}$. Indeed, $\sigma^k(x) = \sigma^r \sigma^{p^{i-1}q}(x) = \sigma^r(x+q) = \sigma^r(x) + q$. Moreover, one has:
- (d) Except for i=1 and p=2 one has $t_{(\sigma|B_i)}(x)=0$. Indeed, by (c), $t_{(\sigma|B_i)}(x)=\sum_{k=0}^{p_{i-1}}\sigma^k(x)=\sum_{q=0}^{p_{i-1}-1}\sum_{r=0}^{p_{i-1}-1}(\sigma^r(x)+q)=p\sum_{r=0}^{p_{i-1}-1}\sigma^r(x)+p^{i-1}\sum_{q=0}^{p-1}q$ which imples (d).

Lemma 3. Let C/A be a cyclic p^n -extension with Galois group (ρ) . If $x \in C$ is such that $t_{(\rho)}(x) = 1$, then $\rho^i(x) \neq x$ for every $i, 1 \leq i < p^n$.

Proof. This is easily shown: see e.g. the proof of Theorem 11 in [2].

Lemma 4. Let z be such that $z \in B$, and $\sigma^{p^{n-1}}(z) = z+1$. Set $b_k = \sigma^k(z) - z$ for $0 \le k < p^n$. Then for every $M \in \text{Max}_0$ the following hold:

- (a) $b_r \mod MB_{n-1} \notin A/M \text{ for } 1 \leq r < p^{n-1}$;
- (b) $z \mod MB$ is primitive for B/MB over A/M. In particular, if $Max(A) = Max_0$, then z is primitive for B/A.

Proof. Let $M \in \text{Max}_0$ and $\overline{B} = B/MB$. Then \overline{B} is a cyclic p^n -extension of \overline{A} with the induced action of σ . As $\overline{B}^{(\sigma^p)} = B_1/MB_1$ is a field, \overline{B} is also a field by [7, Theorem 1.8]. By Remarks 2(a) one has $b_k \in B_{n-1}$.

Suppose that
$$\bar{b}_r \in \bar{A}$$
 for some $r, 1 \le r < p^{n-1}$. Then $\sigma^r(\bar{b}_1) - \bar{b}_1 = \sigma^r(\sigma(\bar{z}) - \bar{z}) - (\sigma(\bar{z}) - \bar{z}) = \sigma(\bar{b}_r) - \bar{b}_r = 0$.

On the other hand, by Ramarks 2(b) $t_{(\sigma|B_{p^{n-1}})}(b_1) = b_{p^{n-1}} = 1$. According to Lemma 3 $\sigma^i(\bar{b}_1) \neq \bar{b}_1$ for every $i, 1 \leq i < p^{n-1}$. This contradiction proves (a).

Next, we shall show that $\overline{b}_k \in \overline{B}_{n-1}^{\times}$ for $1 \le k < p^n$ and then (b) will follow from Lemma 1. Suppose that $\overline{b}_k = 0$ for some $k, 1 \le k < p^n$. Writing k in the form $k = p^{n-1}q + r$ with $0 \le q < p$ and $0 \le r < p^{n-1}$, by Remarks 2(c) one has $\overline{b}_r = -q \in \overline{A}$. Now (a) implies that r = 0, so $k = p^{n-1}q$ and $b_k = q$. But as $k \ge 1$, q > 0 and $\overline{b}_k = q \ne 0$ which is a contradiction.

Lemma 5. Let $M \in \text{Max}(A)$ and t = |Max(B/MB)|. Then $t = p^m$ for some m, $0 \le m \le n$, and $|\text{Max}(B_m/MB_m)| = t$. If $M \in \text{Max}(A) \setminus \text{Max}_0$ then t > 1 and $N \cap B_m \in \text{Max}_0(B_m)$ for each $N \in \text{Max}(B)$ with $N \supset M$. Moreover, $|\text{Max}(B_i/MB_i)| = p^i$ for $0 \le i \le m$.

Proof. For $N, N' \in \text{Max}(B)$ with $N \cap N' \supset MB$, there is an element τ in (σ) such that $\tau(N) = N'$. Hence $[(\sigma): (\sigma)_z(N)] = t$ and $(\sigma)_z(N) = (\sigma^t)$. Clearly $t = p^m$ for some $m, 0 \leq m \leq n$. Moreover, if $N \cap B_m = N' \cap B_m$ ($\supset M$) then, there is an element ρ in (σ^{p^m}) such that $\rho(N) = N'$ which coincides with N. Hence N is the unique maximal over $N \cap B_m$, therefore $(N \cap B_m)B = N$. Thus $|\text{Max}(B_m/MB_m)| = p^m$ (cf. [9, (20.4)] and [7, Lemma 1.4]). The other assertions will be easily seen.

Lemma 6. Assume that $|\operatorname{Max}(A)\backslash \operatorname{Max_0}| < \infty$ and fix an integer $i, 1 \le i \le n$. Then there exists an element $y \in B_i$ with $\sigma^{p^{i-1}}(y) = y+1$ and such that for every $N \in \operatorname{Max}(B_{i-1})$ with $M = N \cap A \notin \operatorname{Max_0}$, there holds for $\tilde{b}_k = (\sigma^k(y) - y) \mod N$ $(0 \le k < p^{i-1})$ one of the following conditions:

- (i) $\vec{b}_k \in \{0, 1\}$;
- (ii) $\tilde{b}_k \notin A/M$,

where for $p^{m} = |Max(B_{i-1}/MB_{i-1})|$,

- (a) if $p^m < p^{i-1}$ and $1 \le h < p^{i-m-1}$ then $\tilde{b}_{p^m h} \notin A/M$,
- (β) if $p^m = p^{i-1}$ then $\tilde{b}_k \in \{0, 1\}$.

Proof. Let $Max(A)\backslash Max_0 = \{M_v \mid 1 \le v \le w\}$. Then $M_vB_{i-1} = \bigcap_{j=1}^{t_o} N_{vj}$ where $N_{vj} \in Max(B_{i-1})$ (e.g. [7, Lemma 1.4]), so that $Max(B_{i-1}/M_vB_{i-1}) = \{N_{vj}/M_vB_{i-1} \mid 1 \le j \le t_v\}$. By Lemma 5, we have $t_v \le p^{i-1}$ for $1 \le v \le w$.

Take an $x \in B_i$ such that $\sigma^{p^{i-1}}(x) = x+1$ (cf. Remarks 2). Then $\sigma^k(x) - x$

 $\in B_{i-1}$ for $0 \le k < p^{i-1}$. By the chinese remainder theorem, we can choose an element $b \in B_{i-1}$ such that $b \equiv \sigma^{j-1}(x) - x \pmod{N_{vj}}$ for every $v, 1 \le v \le w$, and for every $j, 1 \le j \le t_v$. Now, we set y = x + b. Then $\sigma^{p^{i-1}}(y) = \sigma^{p^{i-1}}(x) + b = x + 1 + b = y + 1$ and $y \equiv \sigma^{j-1}(x) \pmod{N_{vj}B_i}$ for $1 \le v \le w$, $1 \le j \le t_v$. Moreover $b \equiv 0 \pmod{N_{v1}}$ and $\sigma^{tv}(y) = \sigma^{tv}(x) + \sigma^{tv}(b) \equiv \sigma^{tv}(x) \pmod{N_{v1}}$ for $1 \le v \le w$ by Lemma 5.

Fix $v, 1 \le v \le w$, and set $M = M_v, t = t_v, N = N_{v1}, N_j = N_{vj}$. Then for $G = (\sigma|_{B_{i-1}}), t = [G: G_Z(N)]$, so that $t = p^m$ for some $m, 0 \le m \le i-1$, $G_Z(N) = (\sigma^{p^m}|_{B_{i-1}}), N_j = \sigma^{j-1}(N)$ for $1 \le j \le t$, and $B_{i-1}^{G_Z(N)} = B_m$. Moreover, N_j is the unique prime over $m_j = N_j \cap B_m$, therefore $m_j B_{i-1} = N_j$. Thus $|\text{Max}(\overline{B}_m)| = t$, where $\overline{B}_m = B_m/MB_m$, (cf. Lemma 5).

Now we shall show that for k = tq + s with $0 \le s < t$ and $0 \le q < p^{i-m-1}$ one has:

(a)
$$\sigma^{k}(y) \equiv \begin{cases} \sigma^{t(q+1)}(y) \pmod{N_{j}B_{i}} & \text{for } 1 \leq j \leq s; \\ \sigma^{tq}(y) \pmod{N_{j}B_{i}} & \text{for } s+1 \leq j \leq t. \end{cases}$$

From $y - \sigma^{j-1}(x) \in N_j B_i$ it follows that $\sigma(y) - \sigma^j(x) \in \sigma(N_j B_i)$ and since $\sigma(N_j) = N_{j+1}$, one obtains:

$$\sigma(y) \equiv \begin{cases} \sigma^{t}(y) \pmod{N_{1}B_{i}}; \\ y \pmod{N_{j+1}B_{i}} & \text{for } 2 \leq j+1 \leq t. \end{cases}$$

Assume that:

(b)
$$\sigma^{s}(y) \equiv \begin{cases} \sigma^{t}(y) \pmod{N_{j}B_{i}} & \text{for } 1 \leq j \leq s; \\ y \pmod{N_{j}B_{i}} & \text{for } s+1 \leq j \leq t. \end{cases}$$

Clearly σ^t acts on B_i/N_jB_i $(1 \le j \le t)$. In case $1 \le j \le s$, we have $\sigma^{s+1}(y)$ mod $N_{j+1}B_i = \sigma^t(\sigma(y) \mod N_{j+1}B_i) = \sigma^t(y) \mod N_{j+1}$ $(2 \le j+1 \le s+1)$. In case $s+1 \le j \le t-1$, we have $\sigma^{s+1}(y) \equiv \sigma(y) \equiv y \pmod N_{j+1}B_i$. Moreover in case j = t, we have $\sigma^{s+1}(y) \equiv \sigma(y) \pmod \sigma(N_j)B_i \equiv \sigma^t(y) \pmod N_iB_i$. Hence (b) holds for σ^{s+1} . Then $\sigma^k(y) \mod N_jB_i = \sigma^{tq}\sigma^s(y) \mod N_jB_i = \sigma^{tq}(\sigma^s(y) \mod N_jB_i)$, therefore using (b), we obtain (a).

From Lemma 4(a) and Lemma 5, applied to the extension B_i/B_m , it follows that $b_{th} \mod N_j \notin B_m/m_j$ for $1 \le j \le t$, $1 \le h < p^{i-m-1}$. Hence by (a) one has:

(c)
$$b_k \mod N_j \begin{cases} = 0 & \text{for } q = 0, \ s+1 \le j \le t ; \\ = 1 & \text{for } q = p^{i-m-1}-1, \ 1 \le j \le s ; \\ \notin B_m/m_j & \text{otherwise.} \end{cases}$$

If $t = p^{i-1}$ then q = 0 and so, by (a), $b_k \mod N_j \in \{0, 1\}$ for $1 \le j \le t$. This

completes the proof of the lemma.

Proof of the theorem. For every $i, 1 \le i \le n$, take the element $y_i \in B_i$ constructed in Lemma 6.

Let $M \in \operatorname{Max}(A) \backslash \operatorname{Max_0}$ and set $p^m = |\operatorname{Max}(\overline{B}_{n-1})|$. Then $m \le n-1$. By condition (ii) one can choose elements $a_{i_M} \in A$, $1 \le i \le n-1$, such that 1, $\bar{a}_{1_M}, \dots, \bar{a}_{m_M}$ are linearly independent in \overline{A} over F_p , and $\bar{a}_{i_M} = 0$ for $m+1 \le i \le n-1$. According to (i), for every $i, 1 \le i \le n-1$, there is an $a_i \in A$ such that $a_i \equiv a_{i_M} \pmod{M}$ for each $M \in \operatorname{Max}(A) \backslash \operatorname{Max_0}$.

We shall prove that $z = y_n + \sum_{i=1}^{n-1} a_i y_i$ is primitive for B/A, by showing that $b_k = \sigma^k(z) - z \in B_{n-1}^{\times}$ for $1 \le k < p^n$ (cf. Lemma 1 and Remarks 2(a)).

Let $N \in Max(B_{n-1})$ and set $M = N \cap A$.

If $M \in \text{Max}_0$, then as $\sigma^{p^{n-1}}(z) = z+1$, by Lemma 4(b) and Lemma 1 one has $b_k \notin N$ for $1 \le k < p^n$.

Let $M \notin \text{Max}_0$. Then $\bar{z} = \bar{y}_n + \sum_{i=1}^m \bar{a}_i \bar{y}_i$, where $1, \bar{a}_1, \dots, \bar{a}_m$ are linearly independent over F_p .

Take a k, $0 \le k < p^n$, and write it in the form $k = p^{n-1}q_{n-1} + \sum_{j=0}^{n-2} p^j q_j$ with $0 \le q_j < p$ for $0 \le j \le n-1$. Set:

$$k_i = \sum_{j=0}^{i-2} p^j q_j$$
 for $2 \le i \le n, r = k_n$;

 $b_{iv} = \sigma^v(y_i) - y_i$, $\tilde{b}_{iv} = b_{iv} \mod N \cap B_{i-1}$ for $0 \le v < p^n$, $1 \le i \le n$.

As $\sigma^{pi}(y_i) = y_i$, by Remark 2(c) one has $b_{1k} = q_0$ and $b_{ik} = b_{iki} + q_{i-1}$ for $2 \le i \le n$.

Suppose that $b_k \in N$. Then, from $\sigma^k(z) - z \equiv 0 \mod N$, it follows that

$$\tilde{b}_{nr} = -q_{n-1} - \sum_{i=0}^{m} \bar{a}_{i} (\tilde{b}_{ik_{i}} + q_{i-1}) - \bar{a}_{1}q_{0}.$$

From Lemma 5, one obtains that $|\operatorname{Max}(\overline{B}_{i-1})| = p^{i-1}$ for $2 \le i \le m$. Hence $\tilde{b}_{iki} \in \{0,1\}$ for $2 \le i \le m$ by Lemma $6(\beta)$ (noting $k_i < p^{i-1}$). Therefore $\tilde{b}_{nr} \in \overline{A}$, which implies that Lemma 6(i) is fulfilled for \tilde{b}_{nr} , that is, $\tilde{b}_{nr} \in \{0,1\}$. Now, from the linear independence of $1, \bar{a}_1, \dots, \bar{a}_m$ over F_p , we conclude that $q_0 = 0$, $\tilde{b}_{iki} + q_{i-1} = 0$ for $2 \le i \le m$, and $\tilde{b}_{nr} = -q_{n-1}$. Assume that $q_j = 0$ for $0 \le j \le u < m-1$. Then $k_{u+2} = 0$ and so $b_{u+2,k_{u+2}} = 0$. Therefore $q_{u+1} = 0$. Hence $q_j = 0$ for $1 \le j \le m-1$. Hence, if m = n-1 then r = 0, $b_{nr} = 0$ and so $q_{n-1} = 0$ which implies k = 0. In case m < n-1, we have $r = \sum_{j=m}^{n-m} p^j q_j = p^m \sum_{j=m}^{n-m} p^{j-m} q_j < p^m p^{n-m-1}$ and $\tilde{b}_{nr} = -q_{n-1} \in A/M$. According to Lemma $6(\alpha)$ this is possible only if $\sum_{j=m}^{n-2} p^{j-m} q_j = 0$. But then r = 0, $b_{nr} = 0$ and so $q_{n-1} = 0$. Hence k = 0. Therefore, it follows that $b_k \notin N$ for $1 \le k < p^n$.

Thus, $b_k \in B_{n-1}^{\times}$ for every $k, 1 \le k < p^n$, which completes the proof of the theorem.

Remarks 7. Now we shall comment on the assumptions of the theorem. It is known [7, Theorem 1.2] that a cyclic *p*-extension always has a primitive element, so we can assume $n \ge 2$. In [4, Lemma 2] (cf. also [2, Lemma 3]) it is shown that condition (ii) is necessary for a cyclic 2^2 -extension to have a primitive element. However, there are examples of a 3^2 -extension [2, Remark 2] and of a 2^3 -extension [2, Remark 3] which show that this condition is not necessary in general. But if condition (ii) does not hold, then there are extensions which have no primitive elements: cf. e.g. the example of a 2^3 -extension of F_4 in [2, Remark 4]. On the other hand, in [8, Theorem 2.4] it is proved that every separable extension of an LG ring R of degree d has a primitive element if and only if for every $M \in Max(R)$, R/M has at least d elements. (A commutative ring R with identity is called an LG ring if whenever a polynomial g in $R[X_1, \dots, X_m]$ represents a unit over R_M , for each $M \in Max(R)$, then g represents a unit over R_M .)

Example 9 below shows that when condition (i) is not fulfilled, then there are extensions which have no primitive elements. However, this condition is not necessary in general: cf. Example 10 below.

In [2, Theorem 11] it is shown that if $Max(A) = Max_0$, then B/A has a primitive element with trace 1. Taking an idea from the proof of this theorem (cf. Lemma 3), we find a primitive element with trace 0 (cf. Lemma 4 and Lemma 2(c)), which is used in order to establish the main result.

Finally, note that using [5, Théorèm 2.3] we may assume that p is a prime natural number in the Jacobson radical of A.

Lemma 8. If $n \ge 2$ and $B^* \subset A$, then B/A has no primitive element.

Proof. Assume that B = A[z]. Then by Lemma 1 one has $\sigma(z) - z = a \in B^{\times}$, so that $a \in A$. Hence $\sigma^{p}(z) = z + pa = z$ which contradicts Lemma 1.

Example 9. Let k be an algebraically closed field of characteristic 2 and let B = k[x, y] be the polynomial ring in 2 indeterminates. Let σ be the k-linear endomorphism of B defined by $\sigma(x) = x + 1$, $\sigma(y) = x^2 + y + 1$. Then σ is an automorphism of B and B is a cyclic 2^2 -extension of $A = B^{(\sigma)}$ which has no primitive element.

Indeed, as $y = \sigma(y) - (\sigma(x))^2$, we have $B = k[\sigma(x), \sigma(y)]$, therefore σ is an

automorphism. Since $\sigma^2(x) = x$, $\sigma^2(y) = y + 1$ and $\sigma^4(y) = y$, the order of σ is 4.

Let $N \in \operatorname{Max}(B)$. Then N = (x - a, y - b) for some $a, b \in k$ and B/N = k. Hence, σ being k-linear, $G_T(N) = G_Z(N)$. Thus by [1, Theorem 1.3] B is a Galois extension of A if and only if $G_Z(N) = 1$ for every $N \in \operatorname{Max}(B)$. Suppose that $\sigma^i(N) \subset N$ for some $i, 1 \le i < 4$. Then $\sigma^i(x - a) = x + i - a \in N$, therefore i = 2. But $\sigma^2(y - b) = y + 1 - b \notin N$. Hence $G_Z(N) = 1$.

Note that $Max_0 = \phi$: if $M = N \cap A \in Max_0$, then MB = N (cf. [7, Theorem 1.8]), but this is a contradiction to $G_{\mathbb{Z}}(N) = 1$. Thus condition (i) of the theorem does not hold.

By Lemma 7, B/A has no primitive element.

Example 10. Let $B = F_p[x]$ be the polynomial ring with $q = p^p$. Let τ be an automorphism of F_q of order p and let $\alpha \in F_q$ be such that $\operatorname{tr}_{(\tau)}(\alpha) = 1$. Define the automorphism σ of B by $\sigma|_{F_q} = \tau$ and $\sigma(x) = x + \alpha$. Then B has a primitive element over $A = B^{(\sigma)}$, although $|\operatorname{Max}(A) \setminus \operatorname{Max}_0| = \infty$.

Indeed, since $\sigma^p(x) = x+1$ and $\sigma^{p^2}(x) = x$, the order of σ is p^2 . As $\sigma^i(x) - x \in F_q^x$ for $1 \le i < p^2$, for every $N \in \text{Max}(B)$ one has $G_T(N) = 1$, therefore B is a Galois extension of A [1, Theorem 1.3], and by Lemma 1, x is primitive for B/A.

If $f(x) = \sum_{i=0}^{m} a_i x^i \in A$ with $a_m \neq 0$, then $f(x) = \sigma^p(f(x)) = \sum_{i=0}^{m} a_i (x+1)^i$. Equating the coefficients of x^{m-1} , one finds $a_{m-1} = a_{m-1} + ma_m$, so that $m \equiv 0$ (p).

Now let $N = (f(x)) \in \operatorname{Max}(B)$ and $M = N \cap A$. Note that $M \in \operatorname{Max}_0$ if and only if $G_z(N) = (\sigma)$. But if $G_z(N) = (\sigma)$, then $\sigma(f(x)) = f(x)g(x)$ with $g(x) \in B$, which is fulfilled if and only if g(x) = 1, i.e. $f(x) \in A$. Therefore, if $\deg f(x) \not\equiv 0$ (p), then $f(x) \not\in A$ and $G_z(N) \not= (\sigma)$. Thus $|\operatorname{Max}(A) \setminus \operatorname{Max}_0| = \infty$.

REFERENCES

- [1] S. Chase, D. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Am. Math. Soc. 52 (1965), 15—33.
- [2] I. Kikumasa and T. Nagahara: Primitive elements of cyclic extensions of commutative rings, Math. J. Okayama Univ. 29 (1987), 91-102.
- [3] K. Kikumasa and T. Nagahara: On primitive elements of Galois extensions of finite commutative algebras, Math. J. Okayama Univ. 32 (1990), 13—24.
- [4] K. Kishimoto: Notes on biquadratic cyclic extensions of a commutative ring, Math. J. Okayama Univ. 28 (1986), 15—20.
- [5] A. Micali et A. Paques: Sur l'existence d'élément primitif et base normale, Bull. Soc. Math. Belg.

40 (1988), 289-295.

- [6] T. Nagahara: On separable polynomials over a commutative ring II, Math. J. Okayama Univ. 15 (1972), 149—162.
- [7] T. NAGAHARA and A. NAKAJIMA: On cyclic extensions of commutative rings, Math. J. Okayama Univ. 15 (1971), 81—90.
- [8] A. PAQUES: On the primitive element and normal basis theorems, Comm. in Algebra 16 (1988), 433 —455.
- [9] G. Scheja und U. Storch: Lokale Verzweigungstheorie, Schriftenreihe der Mathematischen Institutes der Universität Freiburg i, Ue. Nr. 5, WS 1973/74.

Institute of Mathematics, ul. "Acad. G. Bonchev" 8, 1113 Sofia, Bulgaria

(Received May 11, 1990)