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PRIMITIVE ELEMENTS FOR CYCLIC
p"-EXTENSIONS OF COMMUTATIVE RINGS

ANNETTA G. ARAMOVA

In this note we study the existence and the construction of a primitive
element for a cyclic Galois p"-extension, where p is a prime natural number.

Let A be a commutative unitary ring which is an algebra over the prime
field Fp. Let B be a Galois extension of A (cf. [1, Theorem 1.3]) with cyclic
Galois group (o) of order p*. Such a B will be called a cyclic p"-extension of A.
If B is generated by a single element z over A, i.e. B = A[z], we say that z is
a primitive element for the extension B/A.

It is well known that a field Galois extension has a primitive element. But
there are examples of Galois extensions of rings which have no primitive
elements: cf. [4], [2, Remarks 3 and 4], [3, §2]. In [2, Theorem 5] Kikumasa
and Nagahara found conditions for a cyclic 2%-extension to have a primitive
element. The theorem below generalizes this result to an arbitrary cyclic
p"-extension.

Notation. For a group G acting on a ring R, we set:
Rée={x€ER| glx)=x VgE G};
ta(x) = Dnen h{x) for a subgroup H of G;
Gz(a) = {g € G| g(a) C a)} the decomposition subgroup of an ideal a C R ;
Grla)={g € G| Vx € R: g(x)—x € a} the inertia subgroup of a;
Max (R) = {M | M is a maximal ideal of R};
R* = the group of units of R ;
Fq = the field with ¢ elements.
In what follows, we fix a cyclic p”-extension B/A with Galois group (o) and
we set :
Bi= B®" for 0 < i < n (Clearly By= A and B. = B);
Maxo(A) = {M € Max(A) | MB, € Max(B:)}, and abbreviate as follows :
Maxo = Maxo(A) unless there are confusions.
Finally, for a ring S D A we denote by § the imageof s € Sin S = S/MS
when M is fixed in Max(A).

Theorem. Let B/A be a cyclic p"-extension with Galois group (6) and let
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n = 2. Assume that
(i) the set Max(A)\Maxo is finite
(i) for every M € Max(A)\Max, the field AIM contains at least p" elements.
Then BIA has a primitive element z which is of the form z = ya+ 2/t aiyi,
where a; € A for 1 < i < n—1, and 6" ' (y:)) = yi+1 for 1 <i < n.

Lemma 1 (cf. eg. [8, Corollary 2.2]). The element z is primitive for BfA if
and only if 6*(z)—z € B* for 1 < k< p".

Remarks 2. Note that for 0 < j < 7 < », B; is a cyclic p*~’-extension of
B; with Galois group (6%’|s,).

Fix an integer 7, 1 < 7 < n. According to [7, Theorem 1.2], applied to the
extension B:/B:-1, there exists an element x in B; such that 6*"'(x) = x+1. Set
br = 6*(x)—x for 0 < £ < p'. Then:

(@) bx € B:i-1. Indeed, 6” '(be) = 6*0” ' (x)— 0" ' (x) = c*(x+1)—(x+1)
= bs.

(b)  bre1 = Doo’(b) for £ < p'—1. Indeed, assume that this is true for
k< p'~2 then brz = o(c*(x))—x = 0(brri+x)—x = D00’ (b)) + by,
hence (b) holds.

() ba=br+qfork=p""g+r with0< g < pand0 < » < p'"". Indeed,
o*(x) = "6 '(x) = 06"(x+q) = 0"(x)+q. Moreover, one has:

(d) Exceptfor i =1 and p = 2 one has &ais)(x) = 0. Indeed, by (c), a1zs(x)
= 205 o*(x) = 25828507 (0"(x) +q) = p28507 0" (x)+ ' 2420 ¢ which
imples (d).

Lemma 3. Let C/A be a cyclic p™-extension with Galots group (p). If x €
C is such that to(x) =1, then 0" (x) #+ x for every i, 1 < i < p".

Proof. This is easily shown: see eg. the proof of Theorem 11 in [2].

Lemma 4. Let z be such that z € B, and ¢ '(2) = z+1. Set by = 0*(2)
—z for 0 < k< p". Then for every M € Maxo the following hold :
(@) by mod MBn-1 & AIM for 1 < v < p"';
(b) z mod MB is primitive for BIMB over A/M.
In particular, if Max(A) = Maxo, then z is primitive for BJA.

Proof Let M € Maxo and B = B/MB. Then B is a cyclic p"-extension of
A with the induced action of ¢. As B°” = B,/MB, is a field, B is also a field
by [7 Theorem 1.8]. By Remarks 2(a) one has bz € Ba-..
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Suppose that b, € A for some 7, 1 < r < "', Then
0"(5))— b1 = 0" (0(2)— 2)—(a(2)— 2)
- O'(Er)—gr = 0.

On the other hand, by Ramarks 2(b) fo18,m-(51) = bpn-v = 1. According to
Lemma 3 ¢°(5,) #+ b for every 7, 1 < i < p""'. This contradiction proves (a).

Next, we shall show that ., € BX_; for 1 < k£ < p” and then (b) will follow
from Lemma 1. Suppose that . = 0 for some %, 1 < & < p". Writing 4 in the
formk = p"'g+7r with0 < ¢ < pand 0 < » < p"', by Remarks 2(c) one has
by = —q € A. Now (a) implies that » = 0, s0 # = p"'q and bx = ¢g. But as
k>1 g >0and b = ¢ + 0 which is a contradiction.

Lemma 5. Let M € Max(A) and t = |Max(B/MB)|. Then t = p™ for
some m, 0 < m < n, and |Max(Bn/MB=)| = t. If M € Max(A)\Max, then t
> 1 and NN Bw € Maxo(Bn) for each N € Max(B) with N D M. Moreover,
IMax(B:/MB;)| = p' for 0 < i < m.

Proof. For N, N' € Max(B) with NN N’ D MB, there is an element 7 in
(0) such that t(N) = N'. Hence [(0): (6):(N)] = ¢t and (0):(N) = (¢*).
Clearly ¢ = p™ for some m, 0 < m < n. Moreover, if NNBr = N'NB» (D
M) then, there is an element p in (¢*™) such that o(N) = N’ which coincides
with N. Hence N is the unique maximal over NN Bg, therefore (NN Bn)B =
N. Thus [Max(Bn/MBn)| = p™ (cf. [9, (20.4)] and [7, Lemma 1.4]). The other
assertions will be easily seen.

Lemma 6. Assume that IMax(A)\Maxo| < oo and fix an integer i, 1 < {
< n. Then there exists an element y = B; with 6”7 '(y) = y+1 and such that
Jor every N & Max(B:-1) with M = NNA & Maxo, there holds for bx =
(6*(y)—y) mod N (0 < k < p'™") one of the following conditions :

G) b.<{0,1};
() b« A/M,
where for p" = |Max(B:-./MB:-1)|,
(@ P <pand 1< h<p ™" then bpmn & AIM,
B) i p™ = p"" then b. € {0, 1}.

Proof. Let Max(A)\Maxo = {M.| 1 < v < w}. Then M,B:i-) = NNy
where Ny; € Max(B:i-1) (eg. [7, Lemma 1.4]), so that Max(B;_1/M,B:-1) =
{Nuw/MyBi-1| 1<j < t,}). By Lemma 5 we have t, < p" ' for 1 < v < w.

Take an x € B; such that ¢”*"'(x) = x+1 (cf. Remarks 2). Then o*(x)—x
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€ B;-, for 0 < k < p*'. By the chinese remainder theorem, we can choose an
element b € B;_, such that 4 = ¢° '(x)—x (mod Ny;) for every v, 1 < v < w,
and for every j, 1 < j < t,. Now, we set y = x+b. Then ¢*'(y) = ¢*"'(x)
+b=x+14b=y+land y= o x) mod NyB) for 1l <v<w, 1<;j<
t». Moreover b = 0 (mod Nu1) and 6"(y) = 6*(x)+0"(b) = 6*(x) (mod Nu)
for 1 £ v £ w by Lemma 5.

Fixv,l1<v<w andset M = M,, t = ty, N = Ny, N; = Ny;.. Then for
G = (0ls..). t =[G: G«N)], so that ¢ = p™ for some m, 0 < m < i—1,
Gz(N) = (6®"5..,), N = ¢’ Y (N) for 1 < j < ¢, and Bf3* = Bn. Moreover,
N; is the unique prime over m; = N;N Bn, therefore m;B:-1 = N;. Thus
[Max(Bn)| = t, where Bn = Bun/MBn, (cf. Lemma 5).

Now we shall show that for £ = fg+s with0 < s < tand 0 < ¢ < p*"!
one has:

ot*Y(y) (mod N;B)) for1 <j<s;

k(v) =
(@ o*y) = {a“’(y) (mod N;B;) for s+1<;<¢.

From y—¢’~'(x) € N;B: it follows that ¢(y)— ¢’(x) € o(N;B:) and since o(N;)
= N;41, one obtains :

o(y) = {dt(y) (mod N\ B:);
Y=1y  (mod NjuB:) for2<j+l<t.
Assume that :
s (0°(¥) (mod N;B)) for1<j<s;
b)  o*(y) = {y (mod N;B:) for s+1<j<¢.

Clearly ¢* actson Bi/N;B: (1 < j < #). Incase 1 < j < s, we have ¢°"'(y) mod
N;aBi = 6*(6{y) mod N;+:1B:) = ¢'(y) mod Ny (2 < j+1<s+1). In case
s+1<j<t—1, wehave 6°*(y) = 0(y) = y (mod N;+1B:). Moreover in case
7 = t, we have ¢°*'(y) = a(y) (mod o(N;)B;:) = ¢'(y) (mod N1B;). Hence (b)
holds for ¢**'. Then ¢*(y) mod N;B: = ¢*0°(y) mod N;B; = ¢* (¢°(y) mod
N;B.), therefore using (b), we obtain (a).

From Lemma 4(a) and Lemma 5, applied to the extension B;:/Bn, it follows
that b mod N; & Bafm;for1 < j < t,1 < h < p*~™!, Hence by (a) one has:

=0 forg=0s5+1<j7<¢;
€ bremodN;i=1 forg=p""1-11<j;<s;
& Bn/m; otherwise.

If t = p" then ¢ = 0 and so, by (a), b mod N; € {0, 1} for 1 < j < {. This
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completes the proof of the lemma.

Proof of the theorem. For every i, 1 < ¢ < 5, take the element y; € B;
constructed in Lemma 6.

Let M & Max(A)\Max, and set p” = |[Max(B»-1)|. Then m < n—1. By
condition (ii) one can choose elements ., € A, 1 <7 < n—1, such that 1,
@1, ***, @mw are linearly independent in A over Fp, and @i = 0 for m+1 < ¢
< n—1. According to (i), for every 7, 1 < i < n—1. there is an a; € A such
that a; = a:, (mod M) for each M € Max(A)\Maxao.

We shall prove that 2 = y,+ 272 a.y: is primitive for B/A, by showing that
by = 06*(z)—2 € Bx_, for 1 < k < p" (cf. Lemma 1 and Remarks 2(a)).

Let N € Max(Bx-1) and set M = NNA.

If M € Max,, then as ¢”"'(z) = 2+1, by Lemma 4(b) and Lemma 1 one
has b. & N for 1 < kb < p".

Let M & Maxo. Then Z = $.+271d:¥:, where 1, @1, **+, @n are linearly
independent over Fp.

Take a £, 0 < k£ < p", and write it in the form & = »" 'gn-1+ 21¢Pq;
with0< g, <pfor0<;<un-—-1. Set:

i=2
ki = gop"q,-forZS i< n,r=hkn;
biv = 06*(¥:)— i, biw = by mod NNBioi for 0 < v < p", 1< i < n.

As 6”(y:) = y:, by Remark 2(c) one has bi» = qo and bix = b+ g:-1 for 2 <
1< n

Suppose that b, € N. Then, from ¢*(z)—z = 0 mod N, it follows that
bar = _Qn—l_gii(gik:‘}‘q{—l)_a.lqo-

From Lemma 5, one obtains that [Max(B:-1)] = p"' for 2 < 7 < m. Hence b,
€ {0,1} for 2 < i < m by Lemma 6(8) (noting k: < p*~'). Therefore b., € A,
which implies that Lemma 6(i) is fulfilled for b, that is, 5. € {0,1}. Now,
from the linear independence of 1, &, *++, @» over Fp, we conclude that go = 0,
Bit+qgi-i=0for 2 <7< m, and bnr = —qu_1. Assume that gi=0for0 <
7 < u < m—1. Then ky+2 = 0 and s0 bu+2.4... = 0. Therefore gu+1 = 0. Hence
gi=0forl1 <j<m—1. Hence, if m = n—1then » = 0, b, = 0 and so gn-,
= 0 which implies £ = 0. Incase m < n—1, we have r = 2J\22p'q; = p" 2022
P < p™p" " and bar = —gn-1 € A/M. According to Lemma 6(e) this is
possible only if 27224 "g; = 0. But then » =0, bxr = 0 and so gn_1 = 0.
Hence £ = 0. Therefore, it follows that b, & N for 1 < k£ < p".
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Thus, b, € Bj-, for every £, 1 < £ < p", which completes the proof of the
theorem.

Remarks 7. Now we shall comment on the assumptions of the theorem. It
is known [7, Theorem 1.2] that a cyclic p-extension always has a primitive
element, so we can assume # = 2. In [4, Lemma 2] (cf. also [2, Lemma 3]) it is
shown that condition (ii) is necessary for a cyclic 2%-extension to have a primitive
element. However, there are examples of a 3%-extension [2, Remark 2] and of a
2%.extension [2, Remark 3] which show that this condition is not necessary in
general. But if condition (ii) does not hold, then there are extensions which have
no primitive elements : cf. e.g. the example of a 23-extension of Fy in [2, Remark
4]. On the other hand, in [8, Theorem 2.4] it is proved that every separable
extension of an LG ring R of degree d has a primitive element if and only if for
every M € Max(R), R/M has at least d elements. (A commutative ring R with
identity is called an LG ring if whenever a polynomial ¢ in R[X), *«+, Xn]
represents a unit over Ry, for each M € Max(R), then g represents a unit over
R)

Example 9 below shows that when condition (i) is not fulfilled, then there are
extensions which have no primitive elements. However, this condition is not
necessary in general : cf. Example 10 below.

In [2, Theorem 11] it is shown that if Max(A) = Maxo, then B/A has a
primitive element with trace 1. Taking an idea from the proof of this theorem
{cf. Lemma 3), we find a primitive element with trace 0 (cf. Lemma 4 and Lemma
2(c)), which is used in order to establish the main result.

Finally, note that using [5, Théoram 2.3] we may assume that p is a prime
natural number in the Jacobson radical of A.

Lemma 8. If # = 2 and B* C A, then BJA has no primitive element.

Proof Assume that B = A[z]. Then by Lemma 1l onehas 6(z)—z = a €
B*, so that a € A. Hence ¢*(z) = 2+ pa = z which contradicts Lemma 1.

Example 9. Let £ be an algebraically closed field of characteristic 2 and let
B = k[x, y] be the polynomial ring in 2 indeterminates. Let ¢ be the &-linear
endomorphism of B defined by o(x) = x+1, o(y) = x*+y+1. Then ¢ is an
automorphism of B and B is a cyclic 2%-extension of A = B which has no
primitive element.

Indeed, as y = o(y)—(0(x))? we have B = k[c(x), o(3)], therefore ¢ is an
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automorphism. Since ¢%(x) = x, 6*(y) = y+1 and o*(y) = y, the order of ¢
is 4.

Let N € Max(B). Then N = (x—a, y— b) for some a, b € k and B/N =
k. Hence, o being k-linear, GH{(N) = Gz(N). Thus by [1, Theorem 1.3] Bisa
Galois extension of A if and only if Gz(N) = 1 for every N € Max(B). Suppose
that 6'(N) C N forsome 7,1 < i < 4. Then ¢'(x—a) = x+i—a € N, there-
fore i = 2. But 6*(y—b) = y+1—-b& N. Hence G:(N) = 1.

Note that Maxo = ¢ : if M = NNA € Maxo, then MB=N (cf. [7,
Theorem 1.8]), but this is a contradiction to Gz(IN) = 1. Thus condition (i) of the
theorem does not hold.

By Lemma 7, B/A has no primitive element.

Example 10. Let B = Fp[x] be the polynomial ring with ¢ = p*. Let r be
an automorphism of Fy of order p and let @ € F, be such that trir(a) = 1.
Define the automorphism ¢ of B by olr, = r and o(x) = x+a. Then B has a
primitive element over A = B‘?, although |Max(A)\Max,| = oo.

Indeed, since 0®(x) = x+1 and ¢®*(x) = x, the order of o is p°. As d'(x)
—x € Fyforl < i < p? for every N € Max(B) one has Gr(N) = 1, therefore
B is a Galois extension of A [1, Theorem 1.3], and by Lemma 1, x is primitive
for B/A.

I flx)=2XPax' €A with am +0, then flx)= c’(f(x)) = 2"
ai(x+1)'. Equating the coefficients of x™', one finds @n-1 = @m-14 mam, so
that m = 0 (p).

Now let N = (f(x)) & Max(B) and M = NN A. Note that M € Max, if
and only if Gz(N) = (0). But if Gz(N) = (o), then o(f(x)) = f(x)g(x) with
g(x) € B, which is fulfilled if and only if g(x) = 1, i.e. f(x) € A. Therefore, if
deg f(x)=0 (p), then f(x) & A and Gz(N) # (¢). Thus |[Max(A)\Max,| = co.
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