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ON THE (2, 3)-CLOSURES OF IDEALS

Susumu ODA and Kex-icai YOSHIDA

Let R be a Noetherian integral domain and let I be an ideal of R. Assume
that the integral closure R’ of R in its quotient field is a finite R-module. Let
R[t7!, It] denote the generalized Rees ring, where ¢ is an indeterminate. In [9],
it is shown that if R[¢7", It] is seminormal then I* is equal to the relevant
component (7%)*: = U{I™**:I"; { 2 1} for all kK € N (where N denotes the set
of integers = 1). But the converse statement are not necessarily valid. So it
seems natural to ask when R[#7", It] is seminormal. In this paper, we define the
(2, 3)-closure I’ of I in R, which has the following properties :

(a) I’ contains 7,

(b) Iis (2 3)closed in R (ie. a*€ I*, a° € I? (a € R) imply a € I) if and
only if I =1,

(¢) [I'is (2, 3)-closed in R,

(d) I is a reduction of I’, that is, I(I)" = (I')"*! for all large #,

(e) [ C I’ C I, where I, denotes the integral closure of /.

Our objectives of this paper are to investigate the relations among 7, I* and
I, to study the relations between the seminormality of R and (2, 3)-closedness of
divisorial ideals and to determine the seminormalization of the (generalized) Rees
ring.

Unless otherwise specified, let R be a Noetherian domain, let R’ denote the
integral closure of R in its quotient field K, let I be an ideal of X and let B be
an intermediate ring between R and R’ which is a finite R-module. Our
unexplained technical terms are standard and are seen in [4].

1. Definitions and Basic Properties of (2, 3)-Closures of Ideals. Let ¢
denote an indeterminate, and we call R[I¢] (resp. R[¢7, It]) the Rees ring (resp.
the generalized Rees ring) of R with respect to /. The ring R[¢7", It] is a subring
of the torus extension Kz = R[¢7', t] of R. After Mirbagheri and Ratliff [7], we
call the ideal I*: = U{I**': I'; i =2 1} the relevant component of I.

Let 24.():={e€ B; a*€ 1 a*= I3} and let s/, denote an R-
submodule of B generated by 4:(I). When I = R, we denote zR:, an R-module
generated by 24:(R) = {e € B; * € R, & € R}. We claim that sR: is an
R-subalgebra of B and /- is an ideal of sR.. Indeed, since sR: is an R-module
generated by 24.(R), for x. y € 24:(R), x+y € R is trivial. Next (xy)? =
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x*y? € R and (xy)® = x*v® € R imply xy € 24.(R). Since for any elements a
= Drax: and B = Dty: in sR: with x, y: € 84:(R), 71, t: € R, af is expres-
sed as a linear combination of x:y; over R, the above argument shows that R
is an R-algebra. Since s/: is an R-module generated by ?4«(R), for x,y €
BA.(I), x+y € sl: is trivial. For z € 24:(R), (zx)* = 2°x* € pl. and (2x)’ =
22x® € 5l.. So zx € 4.(I). By the same reason as above, we conclude that /-
is an ideal of sRs. Let 24¢(I): = 24:(1), sl = slo and sRs = sR:. Once zR; and
sl are defined, we put 24:ri(I): = 84.(sl;) = {a € B ; a® € (a,)?, &° € (s])}}
and let sl:+1 denote an R-submodule s(sl;): of B generated by 24:.«(7). It is
clear that 24.(1) C 84:,1.(I). Then by induction, we can easily see that sR:+1 is
an R-subalgebra of B and s/:+ is an ideal of sR:+1. Since B is a finite R-module,
the ascending chain of R-submodules of B :

ICBIOC eoe CBI{C"'

terminates, that is, there exists an integer N such that for all # = N slx = alan
= «++. Put &l ;: = gl for such n. When I = R, we employ the notation zR for
sl. When B = R’ (here R’ is assumed to be a finite R-module), we use the
notation I°*; for sl;, I"* for sI and R* for s;R. Moreover when B = R, we denote
ol by I:, sI by I'. We denote also I:+1 = (I:):. Note here that /; and I’ are
ideals of R by definition. Thus we obtain the following lemma.

Lemma 1.1. (i) sR: is an R-subalgebra of B for all i € N ;
(1) 8l: is an ideal of sR: for all i € N ;
(i) &l s an ideal of an R-algebra sR.

We call g/ the (2, 3)-closure of I in B and [’ the (2, 3)-closure of I in R.
When [ = 5 (resp. I = I'), we say that [ is (2, 3)-closed in B (resp. I is (2,
3)-closed in R). Since R is an integral domain, the ideal (0) is (2, 3)-closed. More
generally it is obvious that any radical ideal is (2, 3)-closed in R by Proposition
1.4 below.

Hereafter in this section, we treat only the case B = K.

Proposition 1.2. The following statements hold :
O IYy=1Ur, ie, I'is (2 3)closed ;
(i) for any ideal ] of R satisying I C J C I', we have J' = [';
@) ()" < (I™)e and (I C (I") for all n € N.

Proof (i) By construction, I’ = I for all large m € N. Hence (I'): =
(In)s: = Im+1 = I’, which implies that (') = I".
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(i) follows from (i).

(iii) Let @ = a1 -+ a» be an element in R with a: € 4(I). Then o® =
@l allE I and @® = a® - a.> € I*" and hence @ € (I™)o. Since I, is
generated by 4o(/), any element in (X)" is a linear combination of products of #
elements in 4o(/) over K. Thus by the preceding argument shows that (/)" C
(I™). Replace I by I; in this inclusion and we get ((1:):)" C ((Z:)")s. So (Li+1)"
= ((I):)" < ((1)™) s < (I, that is, ({141)" € ((£1)?). Thus (1;+1)* C ((Ii)")’
C (((Z=)™)Y < ((:-1)™) by (i), and consequently we have (Ji+1)" C ((L)") C
({(I™)o) = (I"). Since In = I’ for large m, we have (I')* C (I") forall # € N.

Proposition 1.3. Let J be an ideal generated by the set {a € R: a* € I*
for all lavge kE N}, Then I' C J I* C J and JT = VT = J/T* = JJ.

Proof. Let J be the ideal generated by {¢ € R ; a* € I* for all large & €
N}. Then it is obvious that I’ C J because for all large &, £ = 2m+ 3# for some
m,n € N. Take a € I*. Then a* € (I*)* = I* for all large £ by [8, (2.1)].
Hence @ € J. The second assertion follows from vI = /7.

Proposition 1.4. The following statements ave equivalent :
(@ I=1Itie, Iis (2 3)closed in R;
(b) ) T;
0 L=1;
d f€l’ € P(asER)imlyac L

Proof. (b) &= (c) is trivial because 1 is generated by 4,(I) over R.

{a) == (c) is trivial because / C [, C [".

(c)==(d) I is an ideal generated by 4«(J). Hence i’ € I, * € I* (a €
R)implyae dll) T LhC 1.

(d)== (c): We have only to show that 4o(I) C I since I, is an ideal
generated by (7). But this is given by the condition in (d).

(c)==(a): Iy = I yields that I; = [ for all 7 by the definition. So I’ = [;
= 1.

Recall that the infegral closure 1, of I in R is the set of elements x in R that
satisfy an equation of the form x"+ aix" '+ +++ +a» = 0, where a: € I, for i
=1, +++, n. Also recall that [ is said to be normal in case (/) = I for all
= 1. Itisshown in [7, p.34] that J C I=J, C I, and ([o)a = ..

In the following theorem, we summarize some basic properties of (2, 3)-
closures of ideals.
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Theorem 1.5. The following statements hold :

(i) I'Cla;

() () = (I")e for any P € Spec(R);

(i) I is a reduction of I', that is, I(I")* = (I')"*! for all large n;

(iv) 1 is (2 3)-closed in R if and only if so is In in Rn for each maximal ideal
m of R.

Proof. (i) Itisclear that /; C (/i-1)s by the definition. Hence In C (In-1)a
C (Iz-2) C +++ C I, by the preceding paragraph. Since I’ = I for all large #,
we have I' C ..

(ii) We prove ({:)p = (Ir); by induction on ;. Take afs € 4:Ir) C R (a
€ R,s € R\p). Then (a/s)* € ((Ip)i-1)* = ((Ii-1)r)* and (a/s)® € ((Ip)i-1)* =
((I.1)s) : so that afs € A:(I)Rr. Thus (Ir): = (I:)r. The converse is similar.
Since I = I’ for all large #, we have our conclusion.

(ili) We need to prove ;- is a reduction of I;. For this we have only to
show that 7 is a reduction of Lo. Put I, = (a1, ***, a-)R with a; € 4(I) and let
J = (a? +++. a,*)R. Then J is a reduction of (%) by [8, (2.8.2)], that is, J(£*)"
= (L»)"*! for all large »n. Since J C I? we have I(L)***' = I,***? for all large
n. Thus I(I)™ = L,™*! for all large m, which shows that [ is a reduction of /.
Similarly we can prove ;- is a reduction of I; for all Z, and since I, = I’ for a
large », I is a reduction of /'

(iv) is clear by (ii).

Proposition 1.6. Any intersection of ideals which are (2, 3)-closed in R is
also (2, 3)-closed in R.

Proof. We have only to show that NJ; is (2, 3)-closed in R for (2, 3)-closed
ideals J:. Since (NJ:)o is generated by (N /:), we need only to prove Zo(NJ:)
C NJ:.. Take @ € 4(NJ:). Then & € (N/:)* and &® € (NJ:)*. Since NJ: C
J: implies (NJ:)* € NJ# and (NJ:)? € NJ#, we have e* € N/ and @’ €
MJA3. Since J: is (2, 3)-closed in R, @ € J: thatis, @ € NJ:. Thus(NJ:)e = N/
By Proposition 1.4, N J: is (2, 3)-closed in R.

Proposition 1.7. Let b be an element in R. Then
(@) i Iis (2 3)-closed, then I b:={a € R; ab € I} is (2, 3)-closed ;
(b) of the ideal bl is (2, 3)-closed in R, then I is (2. 3)-closed in R.

Proof (a) First we prove that (I : zb)® C I*: zb® and (J : zb)* C I*: zb
Let I: b = (x1, *++, x-). Then (Z: £b)* (resp. (I : #b)®) is generated by {x:x;}
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(resp. {xix;xx}). So we have only to show that xix; € I?: zb® and xixxe € I3
#b%. Since xx;8% = (x:6)(x;0) € I-1 = I* and xuxxxb® = (x:0)(x;0)(x:b) € I,
Thus xx; € I?: zb* and xixxx € I': b®. Next take @ € (I : zb). Then we
may assume that a belongs to Jo(I : zb) since (I : zb)o is generated by (! :
#b). So @® € (I : xb)* and @® € (I : #b)’. By the previous argument, we have o’
€ I*: gb® and ¢® € IP: &b and hence o*b* € [* and o*b* € I°. Thus ab € I
because / is (2, 3)-closed in R, which implies that @ € I : zb. Therefore (I : zb)o
= I: gb. By Proposition 1.4, we conclude that 7 : zb is (2, 3)-closed in R.

(b) This is clear because (b : #b) = I and (a).

Corollary 1.7.1. If [ is (2 3)-closed in R, then any isolated primary
component q of I is (2, 3)-closed in R.

Proof. Letl =g N +-- N gr be an irredundant primary decomposition of
I. We may assume that ¢ = ¢:. Put p = vg. Then there exists an element x
Eq@N-+Ng\p. Thus I:px=(q:rx)="0N"N(gr: x) = q: #x.
Sinbe x & p, we have q1: »x = q1. Hence ¢ = ¢1 = I : px is (2, 3)-closed in R
by Proposition 1.7.

Corollary 1.7.2. Assume that I has no embedded prime divisors. Let I =
a1 N+ N g, be an irredundant primary decomposition. Then I is (2, 3)-closed
m R if and only if q: is (2 3)closed in R for all i =1,+++, 7.

Proof. This follows from Proposition 1.6 and Corollary 1.7.1.

2. Seminormal Domains and (2, 3)-Closed Ideals. When R is (2, 3)-closed
in B, that is, ¢, @® € R for @« € B implies that ¢ € R, we say that R is (2,
3)-closed in B. When R is (2, 3)-closed in R’, we say that R is seminormal.

The following proposition asserts that the converse statement of Proposition
1.6(b) holds if R is seminormal.

Proposition 2.1. If R is seminormal and I is (2, 3)-closed in R, then bl is
(2, 3)-closed in R for any b € R.

Proof. Take a € 4(bI). Then a® € (b) and o® € (bI). So (a/b)? € I*
C R and (a/b)®* € I* C R. Since R is seminormal, a/b belongs to 2. Hence &
& b, which implies that &/ is (2, 3)-closed in R.

Corollary 2.1.1. Assume that R is seminormal. If I is (2, 3)-closed in R,
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any ideal | of R which is R-isomorphic fo I is (2, 3)-closed in R.

Proof Since Hom (I, J) C Homz(I, J)x® K = Hom (K, K) = K
(where K denotes the field of fractions of R), any R-isomorphism of [ into J is
the multiplication of an element « in K, that is, @ = J. Put @ = ¢/d with ¢, d
&€ R. Then ¢ = dJ. Since I is (2, 3)-closed in R, ¢ = dJ is (2, 3)-closed in R
by Proposition 2.1. Hence [ is (2, 3)-closed in R by Proposition 1.7 (b).

Remark. It is known and is not hard to see that R = R’ if and only if any
principal ideal of R is integrally closed, i.e., (bR)s = bR for all b € R.

The next proposition shows that the similar argument in the above Remark
is valid for (2, 3)-closedness.

Proposition 2.2. The following statements are equivalent :
(a) R is seminormal ;
(b) (aR) = aR for any non-unit a in R ;
(c) (aR) = aR for any element a in R ;
(d) (aR) is a principal ideal for any element a of R.

Proof. Note first that aR = (aR) & aR = (aR), by Proposition 1.4.

(a)== (b); Since R itself is (2, 3)-closed in R, aR is (2, 3)-closed in R by
Proposition 2.1.

(b)== (a): Take @ € R’ with @’ € R and ¢® € R. Put a = b/a with a,
b€ R. If aisaunitin R, then @ € R. Suppose a is not a unit in R. Then &°
€ @*R and b® € a®R, so that b € aR by the assumption. Hence @ = b/a € R.
We conclude that R is seminormal.

(c) & (b) and (b)== (d) are trivial.

(d)== (b): By Theorem 1.5, we may assume that R is a local domain with
the maximal ideal m. Let (aR) = bR and let x1, **+, xr be elements in Jo(aR)
which generates (aR) over R. Then there exist x; such that (eR) = x:R.
Indeed, take x; € (aR)Y\(aR) m. Then the image x: in (aR) /(aR)' m = bR/bm
~ R/m is a basis over the field R/m. From this, x;R+ bm = bR and hence x:R
= bR = (aR)’ by Nakayama’s lemma. Put x = x:. Since a € bR = xR, we
have @ = xc for some ¢ € R. Since x € A(aR), we have x* = a’r € a*R for
some » € R. Thus x? = x%c?» implies that ¢ is a unit in R. Thus (aR) = xR
= akR.

Relating to Proposition 1.7 and Propositions 2.1 and 2.2, we refer to the
example raised in [9].
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Example. Let R = k[ X2 X*] be a subring of a polynomial ring 4[ X] over
a field % and let 7 be an ideal X?R. It is easy to see that R is not seminormal
and that (X?)? € I? and (X*)* € I*; hence X® € I’ but X* does not belong to
1. Since I* = I, we have I* # I'. Moreover it is clear that (/™)' # I” for all
n € N because X?"*' & " but X' e (I").

Corollary 2.2.1. Assume that I is invertible and R is seminormal. Then
(I"Y =1I" for all nE N.

Proof. Note that R is seminormal if and only if Rr is seminormal for each
P € Spec(R) and that [ being invertible imples that [ is locally principal. So
our conclusion follows from Theorem 1.5(ii) and Proposition 2.2.

Corollary 2.2.2. Assume that R is a Dedekind domain. Then any ideal of
R is (2 3)-closed in R.

We denote by K the field of fractions of R, and R : ze denotes the denomi-
nator ideal {a € R; aa € R} of « € K.

Lemma 2.3. Assume that R is seminormal. Then for any element a in K,
the ideal R : ra is (2, 3)-closed in R.

Proof. Put @ = ¢/d with c,d € R (d +0). Then R: za = dR: xcR.
Since R is seminormal, dR is (2, 3)-closed in R by Proposition 2.2. Hence by
Proposition 1.6, R: ra = dR : rcR is (2, 3)-closed in R.

An R-submodule J of K is called fractional if »J C R for some » € R\{0).
Any ideal of R is a fractional ideal of R. We say that a fractional ideal J of R
is divisorial if R: x(R: «J) = J. It is known that J is divisorial if and only if
J is the intersection of principal fractional ideals of R. For ¢ € K, the denomi-
nator ideal R : re is divisorial ideal of R. Indeed, it is obvious that R: e =
¢'RNRifa*0and R: ra=Rif a =0.

We now extend Proposition 2.2 as follows.

Theorem 2.4. The following statements arve equivalent
(i) R is seminormal ;
(il) any principal ideal aR (a € R) is (2, 3)-closed in R : .
(iiiy any denominator ideal R : ra (@ € K) is (2, 3)-closed in R ;
(iv) any divisorial ideal of R is (2, 3)-closed in R.
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Proof. (ii)== (i) is shown in Proposition 2.2,

(iv)== (iii) == (ii) is clear because any principal ideal aR (¢ = 0) is R :
ra"'R and R : e is divisorial for any @ € K by the preceding argument.

()= (iv): Let I be a divisorial ideal of R ({ C R). Then 7 = N(a™'R
N R) for some a's € K. We may assume that I = (0) because (0) is (2, 3)-closed
in R. Since a'RN R=R: za, a'R N R is (2, 3)-closed in R by Lemma 2.3,
Hence I = N(e™ 'R N R) is (2, 3)-closed in R by Proposition 1.5.

Proposition 2.5. Let A be an integral domain containing R and let I be an
ideal of R. Assume that A is faithfully flat over R. If 1A is (2, 3)-closed in A,
then I is (2, 3)-closed in R.

Proof.  We have only to show that 4, = I by Proposition 1.4. For this we
must show that 4(I) C I. Take a € 4(I). Thena* € I* C (IAPand* € P
C (IA)? and hence @ € IA because IA is (2, 3)-closed in A. Since A is faithfully
flatover R,e € IAN R =1

We close this section by showing what happen when (/*)" = I* for some £
EN.

Proposition 2.6. Assume that I* = (I')* for some k € N. Then
@) IN)"=I*"=1TI" for all large n.
i) I cIr*

Proof. (i) By Theorem 1.5(ii), / is a reduction of I’. So for any i € N
withl < ¢ < k wehave I°(I)" = (I')"™* for all large r. For a large m, consider
the case » = mk. Then (I')** C ['(I)*™ C I'(I*))™ = I'(I*)™ = 1",
where we use Proposition 1.2 in the second inclusion. Since I C I’ implies 7*"*+¢
C (I')*™* we have (I')*™+ = [*"*! (1 £ { < k) for all large m. Thus (I')" =
I” for all large #.

(i) Since (I')* = (I*)" for all large n € N by (i), we have I’ C I'* by [8,
2.1)].

Corollary 2.6.1. If I* is (2, 3)-closed, i.e., I* = (I*) for some k € N, then
I,

Proof. By Proposition 1.2, we have (I')* C (I*). So I* C (I* C (I*) =
I*, and consequently I’ = I'* by Proposition 2.6 (ii).

3. Generalized Rees Rings and (2, 3)-Closed Ideals. Throughout this sec-
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tion, we assume that the integral closure R’ of R is a finite R-module.

Let C = 27enCr be a graded domain with integral closure C’ in the domain
S~'C, where S donotes the set of all non-zero homogeneous elements in C. Then
the integral closure C’ is a graded domain 2senC’». After D. F. Anderson [1],
we say that C is almost seminormal if whenever x2, x* € C for homogeneous x
€ C’ with degx > 0, then x € C. It is known that the canonical homomor-
phism Pic(C,) — Pic(C) is an isomorphism if and only if C is almost seminormal
(cf. [1]). We also say that @ Z-graded domain L = X},ezL is almost seminor-
mal if whenever x?, x® € L for homogeneous x € L’ with deg x # 0, then x €
L, where L' = 2},ezL is its integral closure in the domain 7 'L with T the set
of all non-zero homogeneous elements in L. It is shown that C (resp. L) is
seminormal if and only if any homogeneous element @ € C’ (resp. L) with &7,
a® € C (resp. L) belongs to C (resp. L) (cf. [2]).

Proposition 3.1. The generalized Rees ring R[t™', It] is (2, 3)-closed in the
torus extension Rx = R[t, t™'] of and only if (I") = I" for all n € N.

Proof In order to prove that R[¢7!, It] is (2, 3)-closed in the torus extension
Tx = R[¢, t7'], we have only to show that any homogeneous element x in R[¢,
t7'] with 2% x® € R[t7", It] belongs to R[¢t™', It]. Take a homogeneous ele-
ment x in R[¢, t7!] with x% x* € R[+", It] whose degree is s. Then x* € I?5¢t?S
and x° € I°*t%, Putx = yt withy € R. Since y* € I* and y* € I*%, y € (I%),
C (I%) =1I°%. Hencex = yt € It C R[t7", It]. Conversely take y € 4:;(I") for
a fixed large ¢ such that (/”); = (I")". Then (yt™)? € ((I™):-))*t*", (yt")* €
((™):i-1)*#*". By induction we may assume that (/*);-1¢" C R[¢7", It]. Hence
yt® € R[+7}, It], which implies that y € I". Thus (I") C I*,

Remark. It is not hard to see that the statement in Proposition 3.1 is valid
for the Rees ring R[/t] in the polynomial ring R[¢].

By use of [2,Th.3], we know the following : the Rees ring R[/¢] is seminor-
mal if and only if R is seminormal and R[/¢] is almost seminormal.

Proposition 3.2. The following statements are equivalent :
(@) The generalized Rees ving R[t7', It] is almost seminormal :
b) R[t7Y, It] is seminormal ;
() R is seminormal and (I") = I" for all n € N,

Proof. (a) &= (c) follows from the fact that we have only to consider all
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homogeneous elements in the integral closure of R[¢~!, It] as remarked above.
(a) = (b): We need to prove that R is seminormal. Since any homogene-
ous component of negative degree is the form Rt~* (s > 0), almost seminor-
mality of R[¢7!, It] implies that R is (2, 3)-closed in R’. The converse implica-
tion is shown by the similar argument to that in the proof of Proposition 3.1.

The following Corollary is established for the Rees ring R[/¢] in [2].

Corollary 3.2.1. If R is seminormal and I is an invertible ideal of R, then
the generalized Rees ring R[t™', It] is seminormal.

Proof. This follows from Corollary 2.2.1 and Theorem 3.2.
The seminormalization of R in B was defined by Traverso to be
s*R={x € B x/1 € Rp+J(Bp) for all P € Spec(R)},

where J denote the Jacobson radical. Equivalently, s* R is the largest subring C
of B containing R such that (i) Spec(C) — Spec(R) is injective and (ii) for all @
& Spec(C) the canonical map of residue class fields 2(Q N R)— £(Q) is an
isomorphism. R is called seminormal in B if R = z* R, and R is called seminor-
mal if it is seminormal in its integral closure R’. It is known that R is seminor-
mal in this sense if and only if R is (2, 3)-closed in R’ (cf.[3]). So our definition
of seminormality by use of (2, 3)-closedness is equivalent to the one defined here.

Lemma 3.3. Let s* R denote the seminormalization of R in B. Then sR C
8" R.

Proof. By induction on ¢, we shall show the following ;

(1) The canonical map Spec(sR:-1) — Spec(sR:-2) is injective (where sR- :
=R);

(2) For P & Spec(sR:-1), the canonical homomorphism of residue class
fields £(P N sR:-2) — k(P) is an isomorphism.

For this, we have only to prove the following special case:

(17 The canonical map Spec(szRo) — Spec(R) is injective ;

(27 For P < Spec(sRo), the canonical homomorphism of residue class
fields £(P N R)— k(P) is an isomorphism.

(1) : We may assume that R # sRo. Suppose PN R=Q N Rfor PE Q
€ Spec(sR)). Thereexists e € P, a & @ and ¢” € R (Indeed, we can take such
@ in 24,(R)). Hence e"€ PN R = Q N R; so that @ € Q, contradiction.
Thus P C Q. Similarly we get @ C P.
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(2): Since R/P N R — zRo/P is injective, the map k(P N R)— £(P) is
injective. Take a non-zero element @’ € (sRo/P)r. We may assume that a
preimage @ of @' in sR, is an element in 24o(R). Then ¢” € R for all large #.
Since @ & P implies " & P N R for all n. Thus o = a""'/a" € (R/P N
R)PnR- Thus (BRD/P)P C (R/P N R)PnR, which yields that k(P) = k(P N R)
Thus after repeating the above argument, we conclude that zR satisfies the
condition (i) and (ii) mentioned above. Since s*R is the largest subring of R’
satisfying the same conditions (i) and (ii), we obtain that R C sR C 3" R.

Traverso [10] shows that s*R has no proper subrings containing R and
seminormal in B.

Proposition 3.4. sR is the seminormalization of R in B, that is, sR = ™ R.

Proof. By the above remark by Traverso, we have only to show that sR is
seminormal in B because sR C s*R by Lemma 3.3. By the definition, there
exists # € N such that sRn, = sRrc1 = +++ = pR. If &% @® € sR = sR, for @
€ B, then @ € 24,+1(R). So @ € sRx+1 = s8R, as was to be shown.

We close this paper by determining the seminormatization of R[¢7}, 1t] and
R[1t].

Theorem 3.5. Let R be a Noetherian dowmain and let I be an ideal of R.
Assume that R’ is a finite R-module. Then the seminormalization of R[It] (resp.
R[t7, It]) in the integral closure R'[t, t7'] (vesp. in R'[t]) is R*[+7}, {(I)*¢t":
i > 0} (vesp. R*[{I)"t"; i > 0}]).

Proof 1t is clear that the integral closure of R[¢7}, It] (resp. R[1t]) is R'[,
t7'] (resp. R’[t]). By Lemma 3.3, R*[+7* {(Z))*¢%; ¢ > 0}] (resp. R*[{(JH)*¢t"; ¢
> 0}] is contained in the seminormalization of R[¢7!, It] (resp. R[It]) in R'[¢,
t7'] (resp. R’[t]). By the same way as in the proof of Proposition 1.2, we can see
that (77)* is (2, 3)-closed in R for all i € N. So R*[¢7},{(I")*t": i > 0}] (resp.
Re[{(IH)*¢t; i > 0}]) is (2,3)-closed in R[¢,¢7"] (resp. R[t]. Thus by the
Traverso’s remark mentioned above, we get our conclusion.
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