ON THE (2, 3)-CLOSURES OF IDEALS

Susumu ODA and Ken-ichi YOSHIDA

Let R be a Noetherian integral domain and let I be an ideal of R. Assume that the integral closure R' of R in its quotient field is a finite R-module. Let $R[t^{-1}, It]$ denote the generalized Rees ring, where t is an indeterminate. In [9], it is shown that if $R[t^{-1}, It]$ is seminormal then I^k is equal to the relevant component $(I^k)^* := \bigcup \{I^{i+k} : I^i ; i \geq 1\}$ for all $k \in N$ (where N denotes the set of integers ≥ 1). But the converse statement are not necessarily valid. So it seems natural to ask when $R[t^{-1}, It]$ is seminormal. In this paper, we define the (2, 3)-closure I' of I in R, which has the following properties:

- (a) I' contains I,
- (b) I is (2, 3)-closed in R (i.e., $a^2 \in I^2$, $a^3 \in I^3$ ($a \in R$) imply $a \in I$) if and only if I = I',
- (c) I' is (2, 3)-closed in R,
- (d) I is a reduction of I', that is, $I(I')^n = (I')^{n+1}$ for all large n,
- (e) $I \subset I' \subset I_a$, where I_a denotes the integral closure of I.

Our objectives of this paper are to investigate the relations among I, I^* and I', to study the relations between the seminormality of R and (2, 3)-closedness of divisorial ideals and to determine the seminormalization of the (generalized) Rees ring.

Unless otherwise specified, let R be a *Noetherian domain*, let R' denote the integral closure of R in its quotient field K, let I be an ideal of R and let R' be an intermediate ring between R and R' which is a *finite* R-module. Our unexplained technical terms are standard and are seen in [4].

1. Definitions and Basic Properties of (2, 3)-Closures of Ideals. Let t denote an indeterminate, and we call R[It] (resp. $R[t^{-1}, It]$) the *Rees ring* (resp. the *generalized Rees ring*) of R with respect to I. The ring $R[t^{-1}, It]$ is a subring of the torus extension $R_R = R[t^{-1}, t]$ of R. After Mirbagheri and Ratliff [7], we call the ideal $I^* := \bigcup \{I^{i+1} : I^i : i \ge 1\}$ the *relevant component* of I.

Let ${}^{B}\mathcal{L}_{*}(I):=\{\alpha\in B\;;\;\alpha^{2}\in I^{2},\,\alpha^{3}\in I^{3}\}$ and let ${}_{B}I_{*}$ denote an R-submodule of B generated by ${}^{B}\mathcal{L}_{*}(I)$. When I=R, we denote ${}_{B}R_{*}$, an R-module generated by ${}^{B}\mathcal{L}_{*}(R)=\{\alpha\in B\;;\;\alpha^{2}\in R,\,\alpha^{3}\in R\}$. We claim that ${}_{B}R_{*}$ is an R-subalgebra of B and ${}_{B}I_{*}$ is an ideal of ${}_{B}R_{*}$. Indeed, since ${}_{B}R_{*}$ is an R-module generated by ${}^{B}\mathcal{L}_{*}(R)$, for $x,y\in {}^{B}\mathcal{L}_{*}(R),\,x+y\in {}_{B}R_{*}$ is trivial. Next $(xy)^{2}=$

 $x^2y^2 \in R$ and $(xy)^3 = x^3y^3 \in R$ imply $xy \in {}^B \Delta_{\mathfrak{x}}(R)$. Since for any elements $\alpha = \sum r_i x_i$ and $\beta = \sum t_i y_i$ in ${}_B R_{\mathfrak{x}}$ with $x_i, y_i \in {}^B \Delta_{\mathfrak{x}}(R)$, $r_i, t_i \in R$, $\alpha\beta$ is expressed as a linear combination of $x_i y_j$ over R, the above argument shows that ${}_B R_{\mathfrak{x}}$ is an R-algebra. Since ${}_B I_{\mathfrak{x}}$ is an R-module generated by ${}^B \Delta_{\mathfrak{x}}(R)$, for $x, y \in {}^B \Delta_{\mathfrak{x}}(I)$, $x + y \in {}_B I_{\mathfrak{x}}$ is trivial. For $z \in {}^B \Delta_{\mathfrak{x}}(R)$, $(zx)^2 = z^2 x^2 \in {}_B I_{\mathfrak{x}}$ and $(zx)^3 = z^3 x^3 \in {}_B I_{\mathfrak{x}}$. So $zx \in {}^B \Delta_{\mathfrak{x}}(I)$. By the same reason as above, we conclude that ${}_B I_{\mathfrak{x}}$ is an ideal of ${}_B R_{\mathfrak{x}}$. Let ${}^B \Delta_{\mathfrak{x}}(I) := {}^B \Delta_{\mathfrak{x}}(I)$, ${}_B I_{\mathfrak{x}} = {}_B I_{\mathfrak{x}}$ and ${}_B R_{\mathfrak{x}} = {}_B R_{\mathfrak{x}}$. Once ${}_B R_{\mathfrak{x}}$ and ${}_B I_i$ are defined, we put ${}^B \Delta_{i+1}(I) := {}^B \Delta_{\mathfrak{x}}(g_i) = \{\alpha \in B : \alpha^2 \in (g_i I_i)^2, \alpha^3 \in (g_i I_i)^3\}$ and let ${}_B I_{i+1}$ denote an R-submodule ${}_B (g_i I_i)_{\mathfrak{x}}$ of B generated by ${}^B \Delta_{i+i}(I)$. It is clear that ${}^B \Delta_i(I) \subset {}^B \Delta_{i+1}(I)$. Then by induction, we can easily see that ${}_B R_{i+1}$ is an R-subalgebra of B and ${}_B I_{i+1}$ is an ideal of ${}_B R_{i+1}$. Since B is a finite R-module, the ascending chain of R-submodules of B:

$$I \subset {}_{B}I_{0} \subset \cdots \subset {}_{B}I_{i} \subset \cdots$$

terminates, that is, there exists an integer N such that for all $n \ge N$ ${}_BI_n = {}_BI_{n+1} = \cdots$. Put ${}_BI := {}_BI_n$ for such n. When I = R, we employ the notation ${}_BR$ for ${}_BI$. When B = R' (here R' is assumed to be a finite R-module), we use the notation I^*_i for ${}_BI_i$, I^* for ${}_BI$ and R^* for ${}_BR$. Moreover when B = R, we denote ${}_BI_i$ by I_i , ${}_BI$ by I'. We denote also $I_{i+1} = (I_i)_{\#}$. Note here that I_i and I' are ideals of R by definition. Thus we obtain the following lemma.

Lemma 1.1. (i) ${}_{B}R_{i}$ is an R-subalgebra of B for all $i \in N$;

- (ii) $_{B}I_{i}$ is an ideal of $_{B}R_{i}$ for all $i \in N$;
- (iii) BI is an ideal of an R-algebra BR.

We call ${}_BI$ the (2, 3)-closure of I in B and I' the (2, 3)-closure of I in R. When $I = {}_BI$ (resp. I = I'), we say that I is (2, 3)-closed in B (resp. I is (2, 3)-closed in R). Since R is an integral domain, the ideal (0) is (2, 3)-closed. More generally it is obvious that any radical ideal is (2, 3)-closed in R by Proposition 1.4 below.

Hereafter in this section, we treat only the case B=R.

Proposition 1.2. The following statements hold:

- (i) (I')' = I', i.e., I' is (2, 3)-closed;
- (ii) for any ideal J of R satisfying $I \subset J \subset I'$, we have J' = I';
- (iii) $(I_0)^n \subset (I^n)_0$ and $(I')^n \subset (I^n)'$ for all $n \in \mathbb{N}$.

Proof. (i) By construction, $I' = I_m$ for all large $m \in \mathbb{N}$. Hence $(I')_{\sharp} = (I_m)_{\sharp} = I_{m+1} = I'$, which implies that (I')' = I'.

- (ii) follows from (i).
- (iii) Let $\alpha = a_1 \cdots a_n$ be an element in R with $a_i \in \mathcal{L}_0(I)$. Then $\alpha^2 = a_1^2 \cdots a_n^2 \in I^{2n}$ and $\alpha^3 = a_1^3 \cdots a_n^3 \in I^{3n}$ and hence $\alpha \in (I^n)_0$. Since I_0 is generated by $\mathcal{L}_0(I)$, any element in $(I_0)^n$ is a linear combination of products of n elements in $\mathcal{L}_0(I)$ over R. Thus by the preceding argument shows that $(I_0)^n \subset (I^n)_0$. Replace I by I_i in this inclusion and we get $((I_i)_*)^n \subset ((I_i)^n)_*$. So $(I_{i+1})^n = ((I_i)_*)^n \subset ((I_i)^n)_* \subset ((I_i)^n)'$, that is, $(I_{i+1})^n \subset ((I_i)^n)'$. Thus $(I_{i+1})^n \subset ((I_0)^n)' \subset (((I_{i-1})^n)')' \subset (((I_{i-1})^n)')'$ by (i), and consequently we have $(I_{i+1})^n \subset ((I_0)^n)' \subset ((I^n)_0)' = (I^n)'$. Since $I_m = I'$ for large m, we have $(I')^n \subset (I')$ for all $n \in N$.

Proposition 1.3. Let J be an ideal generated by the set $\{a \in R : a^k \in I^k \text{ for all large } k \in N\}$. Then $I' \subset J$, $I^* \subset J$ and $\sqrt{I} = \sqrt{I'} = \sqrt{I^*} = \sqrt{J}$.

Proof. Let J be the ideal generated by $\{a \in R : a^k \in I^k \text{ for all large } k \in N\}$. Then it is obvious that $I' \subset J$ because for all large k, k = 2m + 3n for some m, $n \in N$. Take $a \in I^*$. Then $a^k \in (I^*)^k = I^k$ for all large k by [8, (2.1)]. Hence $a \in J$. The second assertion follows from $\sqrt{I} = \sqrt{J}$.

Proposition 1.4. The following statements are equivalent:

- (a) I = I' i.e., I is (2, 3)-closed in R;
- (b) $\Delta_0(I) \subset I$;
- (c) $I_0 = I$;
- (d) $a^2 \in I^2$, $a^3 \in I^3$ $(a \in R)$ imply $a \in I$.

Proof. (b) \iff (c) is trivial because I_0 is generated by $\Delta_0(I)$ over R.

- (a) \Longrightarrow (c) is trivial because $I \subset I_0 \subset I'$.
- (c) \Longrightarrow (d) I_0 is an ideal generated by $\Delta_0(I)$. Hence $a^2 \in I^2$, $a^3 \in I^3$ ($a \in R$) imply $a \in \Delta_0(I) \subset I_0 \subset I$.
- (d) \Longrightarrow (c): We have only to show that $\Delta_0(I) \subset I$ since I_0 is an ideal generated by $\Delta_0(I)$. But this is given by the condition in (d).
- (c) \Longrightarrow (a): $I_0 = I$ yields that $I_i = I$ for all i by the definition. So $I' = I_i = I$.

Recall that the *integral closure* I_a of I in R is the set of elements x in R that satisfy an equation of the form $x^n + a_1x^{n-1} + \cdots + a_n = 0$, where $a_i \in I_i$ for $i = 1, \dots, n$. Also recall that I is said to be normal in case $(I^i)_a = I^i$ for all $i \ge 1$. It is shown in [7, p.34] that $J \subset I \Rightarrow J_a \subset I_a$ and $(I_a)_a = I_a$.

In the following theorem, we summarize some basic properties of (2, 3)-closures of ideals.

Theorem 1.5. The following statements hold:

- (i) $I' \subset I_a$;
- (ii) $(I_P)' = (I')_P$ for any $P \in \operatorname{Spec}(R)$;
- (iii) I is a reduction of I', that is, $I(I')^n = (I')^{n+1}$ for all large n;
- (iv) I is (2, 3)-closed in R if and only if so is I_m in R_m for each maximal ideal m of R.
- *Proof.* (i) It is clear that $I_i \subset (I_{i-1})_a$ by the definition. Hence $I_n \subset (I_{n-1})_a \subset (I_{n-2}) \subset \cdots \subset I_a$ by the preceding paragraph. Since $I' = I_n$ for all large n, we have $I' \subset I_a$.
- (ii) We prove $(I_i)_P = (I_P)_i$ by induction on i. Take $a/s \in \Delta_i(I_P) \subset R_P$ ($a \in R$, $s \in R \setminus p$). Then $(a/s)^2 \in ((I_P)_{i-1})^2 = ((I_{i-1})_P)^2$ and $(a/s)^3 \in ((I_P)_{i-1})^3 = ((I_{i-1})_P)^3$; so that $a/s \in \Delta_i(I)R_P$. Thus $(I_P)_i = (I_i)_P$. The converse is similar. Since $I_n = I'$ for all large n, we have our conclusion.
- (iii) We need to prove I_{i-1} is a reduction of I_i . For this we have only to show that I is a reduction of I_0 . Put $I_0 = (a_1, \dots, a_r)R$ with $a_i \in \Delta_0(I)$ and let $J = (a_1^2, \dots, a_r^2)R$. Then J is a reduction of $(I_0)^2$ by [8, (2.8.2)], that is, $J(I_0^2)^n = (I_0^2)^{n+1}$ for all large n. Since $J \subset I^2$, we have $I(I_0)^{2n+1} = I_0^{2n+2}$ for all large n. Thus $I(I_0)^m = I_0^{m+1}$ for all large m, which shows that I is a reduction of I_0 . Similarly we can prove I_{i-1} is a reduction of I_i for all I_i , and since $I_i = I'$ for a large I_i , I_i is a reduction of I_i .
 - (iv) is clear by (ii).

Proposition 1.6. Any intersection of ideals which are (2, 3)-closed in R is also (2, 3)-closed in R.

Proof. We have only to show that $\bigcap J_i$ is (2, 3)-closed in R for (2, 3)-closed ideals J_i . Since $(\bigcap J_i)_0$ is generated by $\Delta_0(\bigcap J_i)$, we need only to prove $\Delta_0(\bigcap J_i)$ $\subset \bigcap J_i$. Take $\alpha \in \Delta_0(\bigcap J_i)$. Then $\alpha^2 \in (\bigcap J_i)^2$ and $\alpha^3 \in (\bigcap J_i)^3$. Since $\bigcap J_i \subset J_i$ implies $(\bigcap J_i)^2 \subset \bigcap J_i^2$ and $(\bigcap J_i)^3 \subset \bigcap J_i^3$, we have $\alpha^2 \in \bigcap J_i^2$ and $\alpha^3 \in \bigcap J_i^3$. Since J_i is (2, 3)-closed in R, $\alpha \in J_i$, that is, $\alpha \in \bigcap J_i$. Thus $(\bigcap J_i)_0 = \bigcap J_i$. By Proposition 1.4, $\bigcap J_i$ is (2, 3)-closed in R.

Proposition 1.7. Let b be an element in R. Then

- (a) if I is (2, 3)-closed, then $I: Rb := \{a \in R ; ab \in I\}$ is (2, 3)-closed;
- (b) if the ideal bI is (2, 3)-closed in R, then I is (2, 3)-closed in R.
- *Proof.* (a) First we prove that $(I: {}_Rb)^2 \subset I^2: {}_Rb^2$ and $(I: {}_Rb)^3 \subset I^3: {}_Rb^3$. Let $I: {}_Rb = (x_1, \dots, x_r)$. Then $(I: {}_Rb)^2$ (resp. $(I: {}_Rb)^3$) is generated by $\{x_ix_j\}$

(resp. $\{x_ix_jx_k\}$). So we have only to show that $x_ix_j \in I^2$: $_Rb^2$ and $x_ix_jx_k \in I^3$: $_Rb^3$. Since $x_ix_jb^2 = (x_ib)(x_jb) \in I \cdot I = I^2$ and $x_ix_jx_kb^3 = (x_ib)(x_jb)(x_kb) \in I^3$. Thus $x_ix_j \in I^2$: $_Rb^2$ and $x_ix_jx_k \in I^3$: $_Rb^3$. Next take $\alpha \in (I: _Rb)_0$. Then we may assume that α belongs to $\Delta_0(I: _Rb)$ since $(I: _Rb)_0$ is generated by $\Delta_0(I: _Rb)$. So $\alpha^2 \in (I: _Rb)^2$ and $\alpha^3 \in (I: _Rb)^3$. By the previous argument, we have $\alpha^2 \in I^2$: $_Rb^2$ and $\alpha^3 \in I^3$: $_Rb^3$, and hence $\alpha^2b^2 \in I^2$ and $\alpha^3b^3 \in I^3$. Thus $\alpha b \in I$ because I is (2, 3)-closed in R, which implies that $\alpha \in I: _Rb$. Therefore $(I: _Rb)_0 = I: _Rb$. By Proposition 1.4, we conclude that $I: _Rb$ is (2, 3)-closed in R. (b) This is clear because $(bI: _Rb) = I$ and (a).

Corollary 1.7.1. If I is (2, 3)-closed in R, then any isolated primary component q of I is (2, 3)-closed in R.

Proof. Let $I=q_1\cap\cdots\cap q_r$ be an irredundant primary decomposition of I. We may assume that $q=q_1$. Put $p=\sqrt{q}$. Then there exists an element $x\in q_2\cap\cdots\cap q_r\backslash p$. Thus $I:_Rx=(q_1:_Rx)=\cap\cdots\cap(q_r:_Rx)=q_1:_Rx$. Sinbe $x\notin p$, we have $q_1:_Rx=q_1$. Hence $q=q_1=I:_Rx$ is (2, 3)-closed in R by Proposition 1.7.

Corollary 1.7.2. Assume that I has no embedded prime divisors. Let $I = q_1 \cap \cdots \cap q_r$ be an irredundant primary decomposition. Then I is (2, 3)-closed in R if and only if q_i is (2, 3)-closed in R for all $i = 1, \dots, r$.

Proof. This follows from Proposition 1.6 and Corollary 1.7.1.

2. Seminormal Domains and (2, 3)-Closed Ideals. When R is (2, 3)-closed in B, that is, α^2 , $\alpha^3 \in R$ for $\alpha \in B$ implies that $\alpha \in R$, we say that R is (2, 3)-closed in B. When R is (2, 3)-closed in R', we say that R is seminormal.

The following proposition asserts that the converse statement of Proposition 1.6(b) holds if R is seminormal.

Proposition 2.1. If R is seminormal and I is (2, 3)-closed in R, then bI is (2, 3)-closed in R for any $b \in R$.

Proof. Take $\alpha \in \Delta_0(bI)$. Then $\alpha^2 \in (bI)^2$ and $\alpha^3 \in (bI)^3$. So $(\alpha/b)^2 \in I^2 \subset R$ and $(\alpha/b)^3 \in I^3 \subset R$. Since R is seminormal, α/b belongs to R. Hence $\alpha \in bI$, which implies that bI is (2,3)-closed in R.

Corollary 2.1.1. Assume that R is seminormal. If I is (2, 3)-closed in R,

any ideal J of R which is R-isomorphic to I is (2, 3)-closed in R.

Proof. Since $\operatorname{Hom}_R(I,J) \subset \operatorname{Hom}_R(I,J)_R \otimes K = \operatorname{Hom}_K(K,K) = K$ (where K denotes the field of fractions of R), any R-isomorphism of I into J is the multiplication of an element α in K, that is, $\alpha I = J$. Put $\alpha = c/d$ with $c,d \in R$. Then cI = dJ. Since I is (2, 3)-closed in R, cI = dJ is (2, 3)-closed in R by Proposition 2.1. Hence J is (2, 3)-closed in R by Proposition 1.7(b).

Remark. It is known and is not hard to see that R = R' if and only if any principal ideal of R is integrally closed, i.e., $(bR)_a = bR$ for all $b \in R$.

The next proposition shows that the similar argument in the above Remark is valid for (2, 3)-closedness.

Proposition 2.2. The following statements are equivalent:

- (a) R is seminormal;
- (b) (aR)' = aR for any non-unit a in R;
- (c) (aR)' = aR for any element a in R;
- (d) (aR)' is a principal ideal for any element a of R.

Proof. Note first that $aR = (aR)' \iff aR = (aR)_0$ by Proposition 1.4.

- (a) \Longrightarrow (b): Since R itself is (2, 3)-closed in R, aR is (2, 3)-closed in R by Proposition 2.1.
- (b) \Longrightarrow (a): Take $\alpha \in R'$ with $\alpha^2 \in R$ and $\alpha^3 \in R$. Put $\alpha = b/a$ with a, $b \in R$. If a is a unit in R, then $\alpha \in R$. Suppose a is not a unit in R. Then $b^2 \in a^2R$ and $b^3 \in a^3R$, so that $b \in aR$ by the assumption. Hence $\alpha = b/a \in R$. We conclude that R is seminormal.
 - (c) \iff (b) and (b) \implies (d) are trivial.
- (d) \Longrightarrow (b): By Theorem 1.5, we may assume that R is a local domain with the maximal ideal m. Let (aR)' = bR and let x_1, \dots, x_r be elements in $\Delta_0(aR)$ which generates (aR)' over R. Then there exist x_i such that $(aR)' = x_iR$. Indeed, take $x_i \in (aR)' \setminus (aR)'m$. Then the image x_i in $(aR)'/(aR)'m \simeq bR/bm \simeq R/m$ is a basis over the field R/m. From this, $x_iR + bm = bR$ and hence $x_iR = bR = (aR)'$ by Nakayama's lemma. Put $x = x_i$. Since $a \in bR = xR$, we have a = xc for some $c \in R$. Since $x \in \Delta_0(aR)$, we have $x^2 = a^2r \in a^2R$ for some $r \in R$. Thus $x^2 = x^2c^2r$ implies that c is a unit in R. Thus (aR)' = xR = aR.

Relating to Proposition 1.7 and Propositions 2.1 and 2.2, we refer to the example raised in [9].

Example. Let $R = k[X^2, X^3]$ be a subring of a polynomial ring k[X] over a field k and let I be an ideal X^2R . It is easy to see that R is not seminormal and that $(X^3)^2 \in I^2$ and $(X^3)^3 \in I^3$; hence $X^3 \in I'$ but X^3 does not belong to I. Since $I^* = I$, we have $I^* \neq I'$. Moreover it is clear that $(I^n)' \neq I^n$ for all $n \in N$ because $X^{2n+1} \notin I^n$ but $X^{2n+1} \in (I^n)'$.

Corollary 2.2.1. Assume that I is invertible and R is seminormal. Then $(I^n)' = I^n$ for all $n \in \mathbb{N}$.

Proof. Note that R is seminormal if and only if R_P is seminormal for each $P \in \operatorname{Spec}(R)$ and that I being invertible imples that I is locally principal. So our conclusion follows from Theorem 1.5(ii) and Proposition 2.2.

Corollary 2.2.2. Assume that R is a Dedekind domain. Then any ideal of R is (2, 3)-closed in R.

We denote by K the field of fractions of R, and R: $R\alpha$ denotes the denominator ideal $\{a \in R : a\alpha \in R\}$ of $\alpha \in K$.

Lemma 2.3. Assume that R is seminormal. Then for any element α in K, the ideal R: $R\alpha$ is (2, 3)-closed in R.

Proof. Put $\alpha = c/d$ with $c, d \in R$ $(d \neq 0)$. Then $R : {}_{R}\alpha = dR : {}_{R}cR$. Since R is seminormal, dR is (2, 3)-closed in R by Proposition 2.2. Hence by Proposition 1.6, $R : {}_{R}\alpha = dR : {}_{R}cR$ is (2, 3)-closed in R.

An R-submodule J of K is called *fractional* if $rJ \subset R$ for some $r \in R \setminus \{0\}$. Any ideal of R is a fractional ideal of R. We say that a fractional ideal J of R is *divisorial* if $R: {}_K(R: {}_KJ) = J$. It is known that J is divisorial if and only if J is the intersection of principal fractional ideals of R. For $\alpha \in K$, the denominator ideal $R: {}_R\alpha$ is divisorial ideal of R. Indeed, it is obvious that $R: {}_R\alpha = \alpha^{-1}R \cap R$ if $\alpha \neq 0$ and $R: {}_R\alpha = R$ if $\alpha = 0$.

We now extend Proposition 2.2 as follows.

Theorem 2.4. The following statements are equivalent:

- (i) R is seminormal;
- (ii) any principal ideal aR ($a \in R$) is (2, 3)-closed in R;
- (iii) any denominator ideal $R: R\alpha \ (\alpha \in K)$ is (2, 3)-closed in R;
- (iv) any divisorial ideal of R is (2, 3)-closed in R.

Proof. (ii) \Longrightarrow (i) is shown in Proposition 2.2.

- (iv) \Longrightarrow (iii) \Longrightarrow (ii) is clear because any principal ideal aR ($a \neq 0$) is R: $Ra^{-1}R$ and R: Ra is divisorial for any $\alpha \in K$ by the preceding argument.
- (i) \Longrightarrow (iv): Let I be a divisorial ideal of R ($I \subseteq R$). Then $I = \bigcap (\alpha^{-1}R \cap R)$ for some α 's $\subseteq K$. We may assume that $I \neq (0)$ because (0) is (2, 3)-closed in R. Since $\alpha^{-1}R \cap R = R$: $_R\alpha$, $\alpha^{-1}R \cap R$ is (2, 3)-closed in R by Lemma 2.3. Hence $I = \bigcap (\alpha^{-1}R \cap R)$ is (2, 3)-closed in R by Proposition 1.5.

Proposition 2.5. Let A be an integral domain containing R and let I be an ideal of R. Assume that A is faithfully flat over R. If IA is (2, 3)-closed in A, then I is (2, 3)-closed in R.

Proof. We have only to show that $I_0 = I$ by Proposition 1.4. For this we must show that $\Delta_0(I) \subset I$. Take $\alpha \in \Delta_0(I)$. Then $\alpha^2 \in I^2 \subset (IA)^2$ and $\alpha^3 \in I^3 \subset (IA)^3$ and hence $\alpha \in IA$ because IA is (2, 3)-closed in A. Since A is faithfully flat over R, $\alpha \in IA \cap R = I$.

We close this section by showing what happen when $(I^k)' = I^k$ for some $k \in \mathbb{N}$.

Proposition 2.6. Assume that $I^k = (I')^k$ for some $k \in \mathbb{N}$. Then

- (i) $(I')^n = (I^*)^n = I^n$ for all large n.
- (ii) $I' \subset I^*$.
- *Proof.* (i) By Theorem 1.5(iii), I is a reduction of I'. So for any $i \in N$ with $1 \le i \le k$ we have $I^i(I')^r = (I')^{r+i}$ for all large r. For a large m, consider the case r = mk. Then $(I')^{km+i} \subset I^i(I')^{km} \subset I^i((I^k)')^m = I^i(I^k)^m = I^{km+i}$, where we use Proposition 1.2 in the second inclusion. Since $I \subset I'$ implies $I^{km+i} \subset (I')^{km+i}$, we have $(I')^{km+i} = I^{km+i}$ ($1 \le i \le k$) for all large m. Thus $(I')^n = I^n$ for all large n.
- (ii) Since $(I')^n = (I^*)^n$ for all large $n \in \mathbb{N}$ by (i), we have $I' \subset I^*$ by [8, (2.1)].

Corollary 2.6.1. If I^k is (2, 3)-closed, i.e., $I^k = (I^k)'$ for some $k \in \mathbb{N}$, then $I' \subset I^*$.

Proof. By Proposition 1.2, we have $(I')^k \subset (I^k)'$. So $I^k \subset (I')^k \subset (I^k)' = I^*$, and consequently $I' = I^*$ by Proposition 2.6(ii).

3. Generalized Rees Rings and (2, 3)-Closed Ideals. Throughout this sec-

tion, we assume that the integral closure R' of R is a finite R-module.

Let $C = \sum_{n \in \mathbb{N}} C_n$ be a graded domain with integral closure C' in the domain $S^{-1}C$, where S donotes the set of all non-zero homogeneous elements in C. Then the integral closure C' is a graded domain $\sum_{n \in \mathbb{N}} C'_n$. After D. F. Anderson [1], we say that C is almost seminormal if whenever x^2 , $x^3 \in C$ for homogeneous $x \in C'$ with deg x > 0, then $x \in C$. It is known that the canonical homomorphism $\operatorname{Pic}(C_0) \to \operatorname{Pic}(C)$ is an isomorphism if and only if C is almost seminormal (cf. [1]). We also say that a \mathbb{Z} -graded domain $L = \sum_{n \in \mathbb{Z}} L_n$ is almost seminormal if whenever x^2 , $x^3 \in L$ for homogeneous $x \in L'$ with deg $x \neq 0$, then $x \in L$, where $L' = \sum_{n \in \mathbb{Z}} L_n$ is its integral closure in the domain $T^{-1}L$ with T the set of all non-zero homogeneous elements in L. It is shown that C (resp. L) is seminormal if and only if any homogeneous element $\alpha \in C'$ (resp. L') with α^2 , $\alpha^3 \in C$ (resp. L) belongs to C (resp. L) (cf. [2]).

Proposition 3.1. The generalized Rees ring $R[t^{-1}, It]$ is (2, 3)-closed in the torus extension $R_R = R[t, t^{-1}]$ if and only if $(I^n)' = I^n$ for all $n \in \mathbb{N}$.

Proof. In order to prove that $R[t^{-1}, It]$ is (2, 3)-closed in the torus extension $T_R = R[t, t^{-1}]$, we have only to show that any homogeneous element x in $R[t, t^{-1}]$ with $x^2, x^3 \in R[t^{-1}, It]$ belongs to $R[t^{-1}, It]$. Take a homogeneous element x in $R[t, t^{-1}]$ with $x^2, x^3 \in R[t^{-1}, It]$ whose degree is s. Then $x^2 \in I^{2s}t^{2s}$ and $x^3 \in I^{3s}t^{3s}$. Put x = yt with $y \in R$. Since $y^2 \in I^{2s}$ and $y^3 \in I^{3s}, y \in (I^s)_0 \subset (I^s)' = I^s$. Hence $x = yt \in It \subset R[t^{-1}, It]$. Conversely take $y \in \Delta_i(I^n)$ for a fixed large i such that $(I^n)_i = (I^n)'$. Then $(yt^n)^2 \in ((I^n)_{i-1})^2t^{2n}, (yt^n)^3 \in ((I^n)_{i-1})^3t^{3n}$. By induction we may assume that $(I^n)_{i-1}t^n \subset R[t^{-1}, It]$. Hence $yt^n \in R[t^{-1}, It]$, which implies that $y \in I^n$. Thus $(I^n)' \subset I^n$.

Remark. It is not hard to see that the statement in Proposition 3.1 is valid for the Rees ring R[It] in the polynomial ring R[t].

By use of [2,Th.3], we know the following: the Rees ring R[It] is seminormal if and only if R is seminormal and R[It] is almost seminormal.

Proposition 3.2. The following statements are equivalent:

- (a) The generalized Rees ring $R[t^{-1}, It]$ is almost seminormal;
- (b) $R[t^{-1}, It]$ is seminormal;
- (c) R is seminormal and $(I^n)' = I^n$ for all $n \in \mathbb{N}$.

Proof. (a) \iff (c) follows from the fact that we have only to consider all

homogeneous elements in the integral closure of $R[t^{-1}, It]$ as remarked above. (a) \iff (b): We need to prove that R is seminormal. Since any homogene-

ous component of negative degree is the form Rt^{-s} (s > 0), almost seminormality of $R[t^{-1}, It]$ implies that R is (2, 3)-closed in R'. The converse implication is shown by the similar argument to that in the proof of Proposition 3.1.

The following Corollary is established for the Rees ring R[It] in [2].

Corollary 3.2.1. If R is seminormal and I is an invertible ideal of R, then the generalized Rees ring $R[t^{-1}, It]$ is seminormal.

Proof. This follows from Corollary 2.2.1 and Theorem 3.2.

The seminormalization of R in B was defined by Traverso to be

$$_{B}^{+}R = \{x \in B : x/1 \in R_{P} + J(B_{P}) \text{ for all } P \in \operatorname{Spec}(R)\},$$

where J denote the Jacobson radical. Equivalently, $_B{}^+R$ is the largest subring C of B containing R such that (i) $\operatorname{Spec}(C) \to \operatorname{Spec}(R)$ is injective and (ii) for all $Q \in \operatorname{Spec}(C)$ the canonical map of residue class fields $k(Q \cap R) \to k(Q)$ is an isomorphism. R is called seminormal in B if $R = _B{}^+R$, and R is called seminormal if it is seminormal in its integral closure R'. It is known that R is seminormal in this sense if and only if R is (2, 3)-closed in R' (cf.[3]). So our definition of seminormality by use of (2, 3)-closedness is equivalent to the one defined here.

Lemma 3.3. Let $_{B}^{+}R$ denote the seminormalization of R in B. Then $_{B}R \subset _{B}^{+}R$.

Proof. By induction on i, we shall show the following;

- (1) The canonical map $\operatorname{Spec}({}_{B}R_{i-1}) \to \operatorname{Spec}({}_{B}R_{i-2})$ is injective (where ${}_{B}R_{-1}$: = R):
- (2) For $P \in \operatorname{Spec}({}_{B}R_{i-1})$, the canonical homomorphism of residue class fields $k(P \cap {}_{B}R_{i-2}) \to k(P)$ is an isomorphism.

For this, we have only to prove the following special case:

- (1') The canonical map $\operatorname{Spec}({}_{\mathcal{B}}R_0) \to \operatorname{Spec}(R)$ is injective;
- (2') For $P \in \operatorname{Spec}({}_{B}R_{0})$, the canonical homomorphism of residue class fields $k(P \cap R) \to k(P)$ is an isomorphism.
- (1'): We may assume that $R \neq {}_{B}R_{0}$. Suppose $P \cap R = Q \cap R$ for $P \not\subset Q$ $\in \operatorname{Spec}({}_{B}R_{0})$. There exists $\alpha \in P$, $\alpha \notin Q$ and $\alpha^{n} \in R$ (Indeed, we can take such α in ${}^{B}\Delta_{0}(R)$). Hence $\alpha^{n} \in P \cap R = Q \cap R$; so that $\alpha \in Q$, contradiction. Thus $P \subset Q$. Similarly we get $Q \subset P$.

(2'): Since $R/P \cap R \to {}_BR_0/P$ is injective, the map $k(P \cap R) \to k(P)$ is injective. Take a non-zero element $\alpha' \in ({}_BR_0/P)_P$. We may assume that a preimage α of α' in ${}_BR_0$ is an element in ${}^B\Delta_0(R)$. Then $\alpha'' \in R$ for all large n. Since $\alpha \notin P$ implies $\alpha'' \notin P \cap R$ for all n. Thus $\alpha' = \alpha''^{n+1}/\alpha'' \in (R/P \cap R)_{P \cap R}$. Thus $({}_BR_0/P)_P \subset (R/P \cap R)_{P \cap R}$, which yields that $k(P) = k(P \cap R)$. Thus after repeating the above argument, we conclude that ${}_BR$ satisfies the condition (i) and (ii) mentioned above. Since ${}_B^+R$ is the largest subring of R' satisfying the same conditions (i) and (ii), we obtain that $R \subset {}_BR \subset {}_B^+R$.

Traverso [10] shows that $_{B}^{+}R$ has no proper subrings containing R and seminormal in B.

Proposition 3.4. BR is the seminormalization of R in B, that is, $BR = B^{+}R$.

Proof. By the above remark by Traverso, we have only to show that ${}_BR$ is seminormal in B because ${}_BR \subset {}_B^+R$ by Lemma 3.3. By the definition, there exists $n \in N$ such that ${}_BR_n = {}_BR_{n+1} = \cdots = {}_BR$. If α^2 , $\alpha^3 \in {}_BR = {}_BR_n$ for $\alpha \in B$, then $\alpha \in {}^B\Delta_{n+1}(R)$. So $\alpha \in {}_BR_{n+1} = {}_BR$, as was to be shown.

We close this paper by determining the seminormalization of $R[t^{-1}, It]$ and R[It].

Theorem 3.5. Let R be a Noetherian domain and let I be an ideal of R. Assume that R' is a finite R-module. Then the seminormalization of R[It] (resp. $R[t^{-1}, It]$) in the integral closure $R'[t, t^{-1}]$ (resp. in R'[t]) is $R^*[t^{-1}, \{(I^i)^*t^i; i > 0\}]$ (resp. $R^*[\{I^i)^*t^i; i > 0\}$).

Proof. It is clear that the integral closure of $R[t^{-1}, It]$ (resp. R[It]) is $R'[t, t^{-1}]$ (resp. R'[t]). By Lemma 3.3, $R^*[t^{-1}, \{(I^i)^*t^i ; i > 0\}]$ (resp. $R^*[\{(I^i)^*t^i ; i > 0\}]$ is contained in the seminormalization of $R[t^{-1}, It]$ (resp. R[It]) in $R'[t, t^{-1}]$ (resp. R'[t]). By the same way as in the proof of Proposition 1.2, we can see that $(I^i)^*$ is (2, 3)-closed in R' for all $i \in N$. So $R^*[t^{-1}, \{(I^i)^*t^i ; i > 0\}]$ (resp. $R^*[\{(I^i)^*t^i ; i > 0\}]$) is (2, 3)-closed in $R'[t, t^{-1}]$ (resp. R'[t]). Thus by the Traverso's remark mentioned above, we get our conclusion.

REFERENCES

- [1] D. F. Anderson: Seminormal graded rings, J. Pure Appl. Algebra 21 (1981), 1-7.
- [2] D. F. Anderson: Seminormal graded rings II, J. Pure Appl. Algebra 23 (1982), 221-226.
- [3] D. L. Costa: Seminormality and projective modules, Lecture Notes in Math., Vol. 924, 400—412,

- Springer-Verlag, New York 1982.
- [4] H. Matsumura: Commutative Algebra, W. A. Benjamin, New York, 1970.
- [5] S. McAdam: Asymptotic prime divisors, Lecture Notes in Math., Vol. 1023, Springer-Verlag, New York, 1983.
- [6] A. MIRBAGHERI and L. J. RATLIFF, Jr.: On the relevant transform and the relevant component of an ideal, J. Algebra 111 (1987), 507—519.
- [7] M. NAGATA: Local Rings, Interscience Tracts 13, Interscience Publisher, New York, 1962.
- [8] L. J. RATLIFF, Jr and D. E. RUSH: Two notes on reduction of ideals, Indiana Univ. Math. J. 27 (1978), 929—934.
- [9] T. Sugatani and K. Yoshida: On the relevant transforms and prime divisors of the powers of an ideal, Bulletin of Okayama Univ. of Science, No. 25 (1990), 9-12.
- [10] C. Traverso: Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa 24 (1970), 585-595.

S. Oda Uji-Yamada High School Uraguchi Ise, Mie 516, Japan

K. Yoshida

Department of Applied Mathematics

Okayama University of Science

Ridai-Cho 1-1, Okayama 700, Japan

(Received August 29, 1991)