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WEYL’S TYPE CRITERION
FOR GENERAL DISTRIBUTION MOD 1
AND ITS APPLICATIONS

Masumi NAKAJIMA and Yuxkio OHKUBO

1. Introduction. Let (xs), n =1,2,..., be a sequence of real numbers,
let {u} denote the fractional part of the real number u and let ¥([a.b);t)
be the indicator function of the interval [a. b). A sequence (x,) is said
to be uniformly distributed (mod 1) if

Z.x[O ) lxal) =t

limoy 3
for each t € (0. 1].

In 1916, Weyl [13] has proposed the following necessary and sufficient
condition that a given sequence of real numbers is uniformly distributed
mod 1, which is now called Weyl's criterion for uniform distribution mod 1 :
The sequence (x») of real numbers is uniformly distributed (mod 1) if and
only if

N

llmL 2, e(vxn) = 0 for all integers v =+ 0,

N-o n=1
where e(u) = e?™*,

Schoenberg [12], in 1928, first generalized the concept of uniform
distribution (mod 1) to that of general distribution (asymptotic distribution)
(mod 1). He obtained many results including a generalization of Weyl's cri-
terion, Later, many mathematicians [6] have generalized Weyl'’s criterion
to general distribution (mod 1) and obtained various forms of generalized
Weyl's criteria. But these criteria did not have their sufficient form in
practice and in theoretical point of view. The first author found and proved
a very natural generalization of Weyl's criterion (Theorem 2} and it seems
very curious for the authors that this criterion has not been seen before in
any references. But among these references, only Helmberg [3] reached
the nearest point to this criterion, but his point of view and his concepts
were about numerical computations of integrals.

In this paper, we propose a new Weyl's criterion for general distribu-
tion (mod 1) and consider some generalized discrepancies. In general we
usually use the well-known Erdss-Turdn's theorem [2] and the LeVeque’s
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inequality [7] to estimate the discrepancies. So we give here generaliza-
tions of the Erdss-Turan's theorem and the LeVeque's inequality respectively
(Theorem 8, 9) in relation to Theorem 2.

A real-valued function u(x) defined on [0, 1] is called a distribution
Sfunction (mod 1) if u(x) is non-decreasing, left-continuous and satisfies u(0)
=0 and x(1) = 1. A positive Lebesgue measurable function w(x) defined
on [0, 1] that is equal to ¢'(x) a.e., is called the density function of u(x).
Let u(x) be a distribution function (mod 1). The sequence (x») is said to
be p-distributed (mod 1) if

llm—Z}([O x) :lxal) = plx) (1)

N+

for each x € (0, 1].

Schoenberg [12] proved that if u(x) is a continuous distribution func-
tion (mod 1), then the sequence (x») is w-distributed (mod 1) if and only if
for every real-valued continuous function f(x) defined on [0, 1], the following
relation holds :

lim - 32 flixal) = [ fx)dutx (2)

We remark that this result is valid if the sufficient condition is replaced by
the following condition: for every real-valued Riemann-Stieltjes integrable
function f(x) with respect to u(x). defined on [0, 1], the relation (2) holds.

2. Weyl’s type criterion. In this section we give a Weyl's type crite-
rion for g-distribution (mod 1). The next theorem is a preliminary result.

Theorem 1. Let u(x) be an absolutely continuous distribution function
(mod 1) with a positive Riemann-integrable density function w(x). Then. the
sequence (xn) is p-distributed (mod 1) if and only if for every real-valued
continuous function f(x) defined on [0, 1], the following relation holds :

~-.m “w(lxa)

Proof. It is well-known that since the function wu(x) is absolutely con-
tinuous on the interval [0, 1]. for every x € [0, 1],

wlz) = j;rur(t)dt.
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Then. we obtain

t flx) M fle) _
\ 1(x)d ulx) = 0 wix )%(x)dx—/;f(x)dx (4)

for every continuous function f(x) defined on [0, 1]. Suppose that the se-
quence (xn) is w-distributed (mod 1). Let f(x) be a real-valued continuous
function defined on [0, 1]. It follows from the remark of the result of
Schoenberg and (4) that

i L 3 fzal) b = [ 1

von N a2 wlxa)  Jo wlx)

Conversely, suppose that for every real-valued continuous function f(x)
defined on [0, 1], the relation (3) holds. Let A(x) be a Riemann-integrable
function defined on [0, 1] and let ¢ be a given positive number. By the defi-
nition of the Riemann-integrable function, there exist two step functions
hi(x) and h.(x) such that Ay(x) < h(x) < hy(x) for all x € [0, 1] and

[ theta) ~m(2)dz < o/3.

Then there exist two continuous functions fi(x) and f;(x) such that fi(x) <
hi(x) and hao(x) < fo(x) for all x € [0, 1] and

ﬂl(hl(x)—ﬁ(x))dx < ¢/3 and f(fz(x)—hz(x))dx < ¢/3.
so that
ﬂl(fz(x)—fl(x))dx < e

Hence, we have

[Mheydz—e < [ h@de— [ (he) —f@)ds
_ flfl(x)dx _ ll IV Z‘ f(lxn%)

N0 n=1 W ()xﬂ
1 & hlxal) _ 1 & fillza))
LT N 2 wllzal) = Hm 'v,?, (22D

= ['h@)dx = (@) —ha)drt [ )
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1
< e+/; h(x)dx,

so that the relation (3) holds for every Riemann-integrable function A(x).
Let f(x) be a real-valued continuous function defined on [0, 1]. Since the
function f(x)w(x) is Riemann-integrable, we have

ZL(%_&M ff(x ’W.’E)dl‘,

\-.oe N & w(ixal)

so that

lim 32 [z = [ @) dutx)

From the result of Schoenberg, it follows that the sequence (x») is w-dis-
tributed (mod 1).

The next corollary follows immediately.

Corollary 1. Let u(x) satisfy the same conditions as in Theorem 1.
Then, the sequence (xn) is p-distributed (mod 1) if and only if for every
complex-valued continuous function f(x) defined on R with period 1, we have

11m M ff(

Nooo N n—1 W {xn D

Now, we will show the next theorem: a generalization of Weyl’s crite-
rion.

Theorem 2. Let u(x) satisfy the same conditions as in Theorem 1.
Then, the sequence (xn) is u-distributed (mod 1) if and only if
1 & e( Vxn)

lim—== 2,

v+ N 2=t w(lxal)

=8oforall ve Z, (5)

where Omn =1 if m = n, Onn = 0 otherwise.

Proof. The necessity follows from Theorem 1. Conversely, we suppose
that the sequence (xn) posseses the property (5). Let f(x) be a complex-
valued continuous function defined on R with period 1. By the Weierstrass
approximation theorem, for any positive number ¢ > 0, there exists a trig-
onometric polynomial P(x), that is, a finite linear combination of functions
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of the type e(vx), v € Z, with complex coeflicient, such that

,Sup. |f(x)—Plx)| < e

Hence, we have

I g

=1 w(lxal)

|f x'l P(xn)l
=1 \-ar:cl N nz-:l w(] xal)
1an:1', v.P(xn) fP dx‘—l—f |P(1) —flx |dx

1
< 1
- Lirg N a=1 w(lxal)

lim

N-ox

+ lim

N-oo

+e=2¢

[_V_‘]-,

for any ¢ > 0. The last equality follows from (5) with v = 0. Therefore,
from Corollary 1, it follows that the sequence (a») is u-distributed (mod 1).

3. Applications. In this section we give some interesting applications
of Weyl's type criterion. Let (pn), n =1,2,3..... be a sequence of non-
negative real numbers with p, > 0 and put s = p1+p2+---+pn. Then the
sequence (x,) is (R, pn)-uniformly distributed (mod 1) if

. 1 N
lim— 2 pax([0. x) 1 xal) = x
N-x SN n=1

forall 0 <x=1.

Theorem 3. Let 8 be a positive irrational number. Let g(x) be a pe-
riodic function defined on R with period 2 6 and let g(x) satisfy the following
conditions : g(0) = 0, g(8) =1, g(6—x) = g(f+x) for all —§<x <6,
glx) is continuous and strictly increasing on [0, 6], and g{x) is differentia-
ble on (0, 8). Let G(x) be an inverse function of g(x). Then, the sequence
(g(n)) is wp-distributed mod 1. where u(x) = (1/8)G(x) for 0 < x < 1.
Furthermore, the sequence (g(n)) is (R, 8|g'(n)|)-uniformly distributed (mod
1).

Proof. For any Riemann-integrable function on [0, 1] and any positive
integer N, we have

+ 3 fem)h) =+ 2 /g
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i) - R Elelal) o

Since the sequence (n/(48)) is uniformly distributed (mod 1) (see [6], p.8)
and the function f(g(4 6x)) is Riemann-integrable on [0, 1], we obtain, by (6)

lim 32 f(lgtn)) = [ f(g(46x)dx

(f fﬂ +f) g(46x))dx = L+ 1, +J, say.

By the change of variable of the integral, we get
n ,
1= [ w6 wda.
Since the function g(x) is symmetric,
1/2
=] fe(26-460)dx.
Using the change of variable again, we have
L == [ fu)6)du.
48 Jo
Because of the periodicity of the function g(x), it follows that
J= [ Neta6e—20))ds
34 1
= (/:ﬂ +£/‘)f(g(40x—20))dx = Ji+J:, say.

Similarly, using the change of variable of integrals and the property of
glx): g(8—x) = g(8+x) for all — < x < 8, we obtain

Ji =-41—6fﬂlf(u)G'(u)du

and
= ﬁ,:f (g(40—46)ds = 55 [ /) Gu)du.

Hence, we get
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[ reaeenas = [ 1)k 6wz = [ o C))

Therefore, from the theorem of Schoenberg [12], it follows that the sequence
(g(n)) is p-distributed (mod 1), where u(x) = G(x)/6 for all 0 < x £ 1.
Since the density function of w(x) is w(x) = 1/(8g'(G(x)), by Theorem 2,
we obtain

l1m—NZ 0g'(G(g(n)))e(vg(n)) = oy for all v € Z.

Because of g(G(g(n))) = |g'(n)],

QEWZ Blg'n)|elvg(n)) = bvo. (7)

for all v € Z. In case of v = 0. (7) yields

Z:: 8lg(n) ~ Nas N — oo,

N
Putting sy = 2 8| g'(n)|. we have
n=1

N-

lnmfZ 6lg(n)|e(vgn)) =

for all v € Z\{0|. Therefore, according to Weyl's criterion (see [6], p.61)
it follows that the sequence (g(n)) is (R. 8|g'(n)|)-uniformly distributed
(mod 1).

Example 1. The function g(x) = |sinx| satisfies all conditions with
8= n/2. We define the distribution function (mod 1) u(x) = (2/x)arc
sinx. From Theorem 3 it follows that the sequence (|sinn|) is w-distrib-
uted (mod 1) and (R, (7/2)| cos n|)-uniformly distributed (mod 1).

By the same reasoning as in the proof of Theorem 3, we obtain the next
theorem,

Theorem 4. Let g(x) be a real-valued function with period 8, where
8 is a positive irrational number. Let g(x) satisfy the following conditions :
g(0) =0, g(#) =1, glx) is continuous and strictly increasing on [0, 1],
g(x) is differentiable on (0. 1), and g(x) has an inverse function G{x) on



208 M. NAKAJIMA and Y. OHKUBO

[0, 8). Then, the sequence (g(n)) is u-distributed (mod 1) and (R, 8g'(n))-
uniformly distributed (mod 1), where the distribution function (mod 1) u(x)
= (1/6)G(x).

We also state the following theorem without proof.

Theorem 5. Let (xn) be a sequence in [0. 1) which is uniformly dis-
tributed (mod 1). Let ¢(x) be a differentiable increasing function on [0, 1]
with ¢(0) = 0, ¢(1) = 1. Then the sequence (J(xn)) is u-distributed (mod
1) and (R, ¢'((xn)))-distributed (mod 1), where u(x) is the inverse function
of ¢(x).

Example 2. The function ¢(x) = e*°82—1 = 2¥—1 satisfies the con-
ditions of Theorem 5. Let (xz) be a uniformly distributed (mod 1) sequence.
Then the sequence (2'*7') is u-distributed (mod 1) and is (R, (log 2)2%n')-
uniformly distributed (mod 1), where u(x) = log{x+1)/log 2 which is Gauss-
ian metric in continued fraction theory. By Theorem 2, we obtain

]imi 2 2Enle(2Wy = 0 for vE Z, v =+ 0.
N-+ oo Nﬂ=l

4. Some discrepancies. The following definitions of discrepancies can
be found in [3], [4] and [6]. Let N be a positive integer, let w = (xa),
n=1,2,...., N be a finite sequence of real numbers in [0, 1), and let p(x)
be a distribution function (mod 1) with a density function w(x). Then, the
discrepancy (mod 1) Dy(w ; u) is defined to be

Dy(w; u) = sup

0ga<dvsl

1 N
N [a. b) 2 xn) —(p(b) — pla))
and the starred discrepancy (mod 1) D¥(w ; 1) is defined to be

%g ([0, x) ; xa) — pulx)

D¥(w s p) = sup
<Xl

Furthermore, we introduce some other kind of discrepancies. We define the
p-discrepancy :

Evlw: w) = su
0sa<bsl

1 & xla, b); xn)
Ly dlabliad

n=1 ‘W(In)

and the starred u-discrepancy:
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1 X 0,x); xn
Bilw: w) = s | 3 LG ol

For an infinite sequence & = (x,), n =1, 2,.... of real numbers the dis-

crepancies Dy(€; u), D¥(E; n), Ex(€; w) and E¥(&; w) are meant to be

the discrepancies of the initial segment formed by the first N terms of &,

respectively.

The next relations between the discrepancies and the starred discrep-
ancies is well-known: Dn(€; 1) < 2D¥(€; p) and Ex(€; w) < 2E¥( € w)
(cf. [6]). On the other hand, we will get the relations between Dn(£; u)
and Ex(€; w). We need the two Lemmas which are some generalizations of
Koksma’s inequality [5] and found in the slight different forms in [3].

Lemma 1 (analogue of Satz 9 in [3]). Let w(x) be the positive density
function of a distribution function (mod 1) u(x), and let f(x) be a real-valued
function on [0, 1] of bounded variation V(f). Then, for all N = 1, we have

n=1 %({xn

)11 13 1

< VIDES& w)+ /DI 1= Bor |-

Lemma 2 ([3], Satz 4). Let w(x) be a continuous distribution function
(mod 1) and let f(x) be a real-valued function on [0, 1] of bounded variation
V(f). Then, for all N =1, we have

L8 fland— [ Sw)dute)| < VHDAE 0

Applying Lemma 1 and 2, we get the relations between Dy(£: u) and
EN('S; W)-

Theorem 6. Let w(x) be a density function of an absolutely continuous
distribution function (mod 1) u(x), and suppose that w(x) is of bounded
variation V(w) on [0, 1]. Let £ = (x») be a sequence of real numbers and
let N be a positive integer. Then we have

Di(é; ) = (V(w)—i—ZOZgEIW(J:))EN(f; w).

Proof. Let 0 <a<b<1. Applying Lemma 1 with f(x) = x([a, b)
x)w(x), since f(1) = 0, we get
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|%2 2[a. b) 3 foeal) —(plb) — )
_1_2; Xa. b) : {xal) wllxal) —wa(x)dx'

‘N 1 u(ix,,})
- _1_ S {xn ’
B ' N azis (fxn!) f flx)dz ‘ = V() EnN(E; w). (8)
Since V(f) = V(x: w) < V(w)+2 Sup. w(x), from (8) we have

Dy(€: ) < (V(w)—i-Zozg}s)]w(x))EN(f; w).

Theorem 7. Let w(x) be the density function of an absolutely contin-
uous distribution function (mod 1) wp(x), and suppose that 1/w(x) is of
bounded variation V(1/w) on [0,1]. Let & = (xn) be a sequence of real
numbers, and let N be a positive integer. Then, we have

Ev(é; w) < (V(l/‘w)+20§g§11/w(;c))D~(f: .

Proof. Let 0 <a<b=1. Applying Lemma 2 with f(x) = x([a, b) ;
x)/w(x). We get

e d)sloal)
S

- H\,gmxnn— J1@aute)| = vinnue: .

1 > 1
& B M= [t

Since V(f) < V(l/w)+20§l;l‘[s)l(1/w(.r))< we get

Ev(é:w) = (V(l/W)+20§g;§)‘(1/w(x))01\-(§; ().

5. A generalization of Erdos-Turan’s theorem. We shall prove a gen-
eralization of Erdss-Turan’s theorem ([2]) to u-distribution. We follow the
method that Niederreiter and Philipp ([9]) used to prove the theorem of
Erdss and Turan.

Theorem 8. For any integer m = 1. any sequence w = |x:1, Xz..... Xn}
of real numbers and any positive density function w(x), we have
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EX(w; w)

= mil +%§1(7_ m}l—l ) —z%’g'l 'IT'EIV:JCC:I)) _(%2; W(%];Cn*) _1)’
+5‘ 11\' gl—IG-ll'_nl) 1|+2 %2 Hif;rjl) %’
Proof. We may assume that 0 £ x; <1 fori=1,2,....m. For 0 =

x=1. we set

Ralx )—ZL([OI—JC") N

w(xn)

and Ax{x) = (1/N)Rx(x). Here, we extend the function Ay(x) to R with
period 1. Let

Sy:ii(e(uxn)_ 1 +1)

N i\ wlxa)  wlxn)

for ve Z.. For v € Z\|0] we have

flA,v(x)e( dx = 'Vf Ra{ax)e(vx)dx

_ %f (ZM—NJ;)@( vx )dx

0 w(xn)
LZ‘, f ¥{(xn. 1] 1 x)e(vx)dx— fxe(ux)dx
N n=1 M o
1 & 1 1
7\7—7‘?:"1 u(xn) e( vx )dx 2 Tiv
1 1 e(ven) 1 )_ 11
B —2niv N n=|( w(xn) W(In) 2niy - — 2y Su- (9)

Let m be a positive integer, and let a be a real number that is deter-

mined later. Setting a, = ./; Ax(x)dx, by (9) we obtain

3 (mt1— | v|)el — va)

ve"m —2nxiv

= ui}' (m+1—|u|)6(—Ua)-/;l(AN(x)—ao)e(ux)dx

_ ﬁ‘(ﬂ,\.(x)_ao)(ui;(m.+1 - u|))e(u(x—a))>dx



212 M. NAKAJIMA and Y. OHKUBO

= -[;_a(AN(x‘Fa) —ao)(ug;ﬂ(m-}-l —] u|)e(ux))dx

1/2 -
- _[112(A~<x+a)—ao)mdx,

sin’ rx

where the prime in the sum indicates that v = 0 is deleted from the range
of summation. Hence, we have

2
’f (Av(z+a) )sm (m+1)7rxdx

sin’rx
<L 31—l (10)
2w vsTn IVI
We either have Ax(x,) = ¥ or Aw(xe+0) = E¥ for some x, € [0, 1),

where E¥ = E¥(w:; w) FlI‘St, we treat the first case. For xo—E¥ < ¢t
< xy, we have Ay(t) £ —E¥+xo,—t. Choosing a = xo—(1/2)E¥, we get

—Axx+a) =2 (1/2)E¥+x for |x| < (1/2)E¥

172 gin?
sin’(m+1) mx dx = m+1 , we obtain

sin®rx 2

Therefore, since f
0

_f (As(x+a)— )sm (m+1)7rxdx

sm nx

/2
_ _f Avlx+a) sin (m+1 sinfm+1)rx , f‘ sin(m+1) sinf(m+1)zx

sin® rx sin? nx

= —f Ax(x+a sin (m+1)7rx ———"—dx+a(m+1)

sm nx

(/2 EX i-1/21E% 12

—1/2BEY J2)EX sin? X
/2)EY 1 Ho% 1/2
sin{m+1) zx sin®(m+1) rx
Z[ - va"i-x)—(. 5 ) dx—ZEz?f —_——dx
—umER\ 2 sin’rx W2 EX sin® xx

+an(m+1)
(/21 EY 1/2 s02
- E*ﬁ : s‘—"(m—dx—zmﬁ siff(mt)me g0 ont1)

sin® rx /21 E% sin® rx
1/2 i 1/2 in?
sinf(m+1) 7x sin’(m+1) rx
= E;«kf ————"——dx—3E¥ —————dx+a(m+1)
sin® rx /21 E¥ sin® rx

m+1 1/2
=" E¥ eEx 4’

——dx+ac(m+1)

= Ef\'v‘—%+au(m+l) (11)
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From (10) and (11) we obtain

213

LS 1=y ISl s mAl g 3 L,
21 v="m [ v] 2 2
so
3 2271 1
L 4= —_——— -
Ei¥ = m+1 + ﬂlfg‘l( v m+1 )'SV| 2a,. (12)
Since

o= (¥ & - (v B8 2)

the desired result follows. Next. we treat the second case: Ax(xo+0) =
E¥ for some x, € [0,1). If xo+E¥ < 1, then we get the result in exactly
the same way as the first case. So, we assume that 1 < x,+ E¥. For xo

<t £1, then we have

Ax(t) = Av+1—t,

where 0 < Ay = E¥+x0—1 < Ax(1). Now, choosing a = (xo+1)/2,
get
x4 AL . A
Ax(x+a) 2 %—x for |x| < Enz AN-

Therefore, we have

/ T
[:/:(An(x+a)—ao)wdx

sinrx

we

(1/2)(ES — aW) (—1/24EY — ay! 1/2 s 2
= ([ +_/: +j )A;v(x—f-a)———sm (m+1)xx dx

—1/2ES - a%) 12 —1/2)EX - a) sin®rx
—ao('m+l)
{1/2)E} — A)) * ' P2f
> f (EA + A —-;r\' sin (?ngl-l)zrx dx
i~ 1/20E% — 8%} 2 / sin’ rx
(= 1/2)(E} — a%) 22
+f (An(x+a)+ay) Snimt e ;o
—1/2 sin® nx
1/2 n2(.
+ [ (Aata) +an SEEEDIE o1
1/2HEY — AN} sSin® rx

1/2 12
A'vf sin®(m+1) rx da

N fa2
1/21ER - a%) sin® rx
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> E¥+ Ay [V2E-2gin?(m+1) nx

- 2 i —1/2)E} — ay) sin’rx dx
2~ E¥+4) sinfmA DT 4 (mt1)
2HEY ~ A%) sSin” nx
oA [ sin*(m+1) zx
2A~f/z>i£*—4'\' sin®zx dx
1/2
> sin? m+l)7rx
- —4v) (f f/zxst a\) sin® zx dx
(R ) sivnt e,
0 /20E% - a3 sin® zx
o [V sinf(m+1)nx ,
N./;/Z)IEﬁ-AQI sin’rx dx—as(m+1)
= (Ef—an 2L _gpr—ay [ sintmdDax g
2 1 /2% — A% sin’ rx
1/2
—24[ Smsﬁ—t[i dx—ao(m+1)
= 2L (gr— a0 —3(Er-aY) AT p(m+1) —ao(m+1)
i /23EE —av) 4
= 2t E.*——( +2)An—i—ao(m+l)
2 " g 2 (n+2) A1) — S —a(m+1). (13)

where the last inequality is obtained by Ay < Ax(1). From (10) and (13),
we get

m—2|-4 E_:f—%(m+2)AN(l)— g —a(m+1) = %ug (m+1—| v]) IISy||
SO
rs—S +3i(i——)|s | +2a0+3A4x(1) (14)
Y7 m+4 =\ v v 0

Consequently, by (12) and (14) we get

3 2 m /1
*g_ & 1
k3 +1+n§,(u +1)'S|+2Iao|+3|m(1|

Remark. We can also derive the following similar result by using
Berry-Essen’s type inequality due to Niederreiter-Phillip [9: Th.1], Elliot
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[1: Th.2] and Proinov [10: Th.1, 11: Th.3]:

4 12 12 1
EXw: w) = v —
Wi w) = m+1 Nn;l w(x ) ’1 N n;l w(xn)

PES(Lo )| g em

Ny m+1/| Ny wlxn)
N

QOur result is different from that of theirs in that we consider that 21 u(l )

n=1 w(xn

is not necessarily equal to N.
From Theorem 6 and the relation Ey < 2E¥, the following corollary
yields.

Corollary 2. Let u(x) be an absolutely continuous distribution function
(mod 1) with a density function w(x) which is of bounded variation on [0, 1].
For any integer m = 1 and any sequence w = |x1. x...., xn} of real num-
bers, we have

m L _1_ L e(l/.l'n)
DA(CU /1) = C( m—+1 +,,Z'1 v an=:1 ‘W(:In})
+(10gm) 1va'1 u,({i'n!) -1

1 : B2 _ i )
N :L::\ w(lxnl) 2 ’ ’
where the constant C only depends on w(x).
6. A generalization of LeVeque's inequality. We shall also give the

generalization of LeVeque's inequality [7]. Our proof is a modified form of
that of Kuipers and Niederreiter ([6]. p.111, Theorem 2.4).

Theorem 9. For any sequence w = |x:, Xxz,.... xy} C [0, 1] and any
distribution function u(x) with a positive density function w(x), we have

i: (vxn)_(li 1 _1)

A= wlxn) N 2= w(xn)

2

2]*—*
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Proof. The function Ry(x) is piecewise linear in [0, 1] and has only
finite many discontinuities at a1, x,,..., xx (see the definition of Rx(x) in the
proof of Theorem 8). We can expand Ry(x) into a Fourier series and we
have on the interval [0, 1] apart from the finitely many points,

oc

Ry(x) = 25 ave(wx),

Y=—ca

1
where a, = ,/; Ry(x)e( —vx)dx. Now, we have

ao=flR~(;c)dx=f (Z—-x—(x——n’l]—x—Nx)dx

(xn)
=n_l w(xn f X((xn, 1] : x)dx— Nf x dx
5 l—xn N & xn 1 1
n=1 "W(In) 2 - 1l=l( ’”"(l'n) W(xn) + ) <15)
and for v == 0, we have
ay, = flR.v(x)e(—ux)dx
—f ( A(xn. 1] 5 x) Nx)e(—ux)d.r
w(xa)
N
=3 f e(—ux)dx—Nflxe(—ux)dx
=1 w{xn) Jxn 0
__1 “'(e(—uxn)_ 1 ) N
2mriv ami\ wlxa) w(xn) 2 niv
1 al e(_an) _ 1 )
2 xiv ﬁ;n( w{xn) w(xn) t1).
By Perseval’s equality, we obtain
A e | 1)\
f R%(I)dl‘ (Zl( W(xn) w(-rn) + ))
1 & e(—vxn) 1 2
i P G e e e R | BT
We put
_ S _xa 1 1 =1 ,
Sy = Z_} ( e R + 2 ) and Ti(x) N (Rx(x)+ Sy)
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for 0 < x 1. The function Tx(x) is a piecewise linear function which
consists of straight line segments with a slope —1 and has only finite many
discontinuities x,..., xy, each of which has a jump by a positive number.
We can continue Ty(x) to Ta(x) with period 1 over R. Now, we have

_L‘] Tw(x)dx = L./- R‘v(x)dx-i-%s,v

- w2y e )
By ey T =

Therefore, there exist @ and 8 € (0, 1) with Ty(a) > 0 and Ty(8) < 0,
except the trivial case that x, = x; =---=xy = 0. We distinguish the
following four cases.

Case [: a+ Ty(a) =1 and S+ Ta(B) =2 0. In this case we have Ty(x)
= —x+a+Tila) for ¢ < x < o+ Ty(a). By the periodicity of T¥(x),
there exists 8 € [a, a+1] with T¥(8) = Tw(B). We also have | Tx)| =
x—pB—THp) for B+ THB) < x < . By the property of the graph of
Tw(x), the intervals [a, e+ Tx(a)] and [+ TH ). fi] can have at most

one point in common. Hence, we have

fTh(x dx—f T¥? x)dx—f T (x)dx

2 f ;/ﬁ:|+ T:{ﬂl)TN*Z(x)dI
_fa””"' —xtat T@) et [, (e—8i— THA)'dx
=§T§-(a)+§(— v 4) =+ ( Tia)+(—T(B8) (17)

Case II: a+ Tix(e) > 1 and 8+ Tw(B8) = 0. From the property of the
graph of the function Tw(x), it is evident that for « < x < a+ Ti(a)—T
=1, Tulx) = —x+a+Txla), where 0 < T' = Tule)+a—1 < Tu(1).

Now we have, as in Case I,

[ To)dz = [ @) 2 [ THa)dat *(x)dx

B+ T¥iBy)
a+ Tu{a— Ty(1)
2f (—x+a+ Twla)) dx-i—f (x—p—THH B ))dx

B+ THB,
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= _% T;(1)+% T,?(a)-f-%(—fm(ﬁ))
Hence, we have

LT +(~THp) S [ Tie)dz+ 3

3 Ti(1). (18)

Case IlI: a+Ti(e) <1 and B+ Ta(B) < 0. It is shown in the same
way as Case II that

(TH@) +(~THAN < [ Ti)dz—+ TH0) (19)

Case IV: o+ Tve) > 1 and A+ Ta(B) < 0. We have the next in-

equality in the same way.
Lt +(-1o = [ Ti@dz—+ A0+ T30, (20)
3 N N = 0 N 3 N 3 N .
Consequently, by (17), (18), (19) and (20), we have
L(Tia) +(~ THB)

< [ Ti)da— Mm( TH0), 0)+\’Iax( T3(1).0).  (21)

3

From a simple inequality r*+s* = (1/4)(r+s)* forany r =20, s =0
and (21), we obtain

S (Ta) = TW(B))
< [ Ti)dz— \lm( 5(0), 0)+Ma\(( T,e(1).o). (22)

Now, we can easily deduce that (22) holds even for all @ and 8 in [0, 1].
By the definition of Tw(x), we have

_1__( Ry(a) —Rx(8) )3
12 N

< f T%(x)dx—l\/lin(% TH(0). o) -I-Max(% T3, o)

for all @, 8 € [0,1]. Hence. we get
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1

12

El < f Té(m)dx-i-Max(% TH(1). 0)—Min(% T3(0). o) (23)

Now, we compute the right hand side of (23).

1 1 1
[ miaya= =1 [ Ri(@)dz+ 2 S [ Rulw)dz+— S
N SPPUR S Y 5 NS O NS I
T ON? Sit 2 7’N? E\ vt nz=:1 w(xn) w(xn) +1 N? S+ N? Sy
1 &1 |1 &felvan) 1 )l’
- 2x E‘] vi| N nz=:1( w(xn)  wlxn) +1

by (14) and (15). Combining this and (23), we obtain the theorem.

Remark. We note that some of results in this paper have been an-
nounced in [8] without proofs and the estimation of the trigonometric sum (1)
in [8] is incorrect, as for the correct form, see Example 1 in this paper.

Acknowledgement. The authors are thankful to the refree for his use-
ful and valuable comments and suggestions to improve this paper.
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