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G-STRUCTURES ON SPHERES

Yasvuyuki OZ AKI

1. Introduction. In this paper we consider the problem of determining
G-structures on the standard n-sphere S™ More precisely, let Gn denote
either the special orthogonal group SO(n), the special unitary group SU(n)
or the symplectic group Sp(n). Given a closed connected subgroup H of G»
we ask whether or not the principal bundle

Gn - Gp-1 > Gn+1/Gn (*)

admits a reduction of the structure group to H.

The problem has been solved in significant cases by Adams, Atiyah,
Todd. Walker, Steenrod, Leonard, Onder and Dibag. We extend the above
results using the classification of compact, connected Lie groups G which
act transitively and effectively on S”. We will consider the quaternionic,
complex and real cases of the problem separately.

First, we consider the quaternionic case. G, = Sp(n):

Sp(n) - Sp(n+1) » §*"*3 (1).

P. Leonard [16, Theorem I. C] has obtained a solution to the general case
for n == 11 mod 12 ; there is not a reduction to any subgroup H of Sp(n)
for n %= 11 mod 12. Moreover, Sigrist and Suter [21] obtained a final solu-
tion for H the standard subgroup Sp(n—k), 1 < k < n. Let cx be the k-th
quaternionic James number. In general we can find the integer k such that
ck|n+1 and ck+y ¥ n+1 for any n. Then the principal bundle (1) can be
reduced to Sp(n+1—k), and cannot be reduced to Sp(n—k) (see [22]).
We consider a subgroup H of Sp{n+1—%). then we have the following:

Theorem 1. For cx|n+1 and cxsr ¥ n+1. the principal bundle (1)
cannot be reduced to any proper subgroup H of Sp(n+1—k).

Note that, for k = 1. the condition cx|n+1 and cxs:1 / n+1 can be
rewritten as n = 23 mod 24 since ¢; = 1 and ¢c; = 24 (see [13]). Conse-

quently, Theorem 1 is a stronger result than the results of Leonard [16,
Theorem 1. C].

Second, we consider the complex case, Gn = SU(n):
SU(n) » SU(n+1) —» S+ (2).
189
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The results of Atiyah and Todd [3. Theorem 1.7] and also of Adams
and Walker [2, Theorem 1.2] completely solve the problem for H the
standard subgroup SU(n—%), 1 < k < n. P. Leonard [16, Theorem I, B]
has obtained a solution to the general cases for n even: there is not a
reduction to any subgroup H of SU(n) for n even.

Besides, if # is odd, T. Onder [20, Theorem 4.1] has obtained the

complete solution for H, the standard subgroup Sp(s), 1 < s < n;l .

Let bk be the complex James number. In general we can find the integer
k such that b;x|n+1 and bsx., £ n+1 for n odd. Then the principal bundle
(2) can be reduced to SU(n+1—2k), and cannot be reduced to SU(n—2k)
by [13. Theorem 1.4]. [2] and [3]. And then the principal bundle (2) can
be reduced to Sp(%_gk
a subgroup H of SU(n+1—2k), then we have the following:

) if and only if cx "ZLI by [20]. We consider

n+1
2

principal bundle (2) cannot be reduced to any proper subgroup H of SU(2q),
where 2q = n+1 —2k.

Theorem 2. For byi|n-+1 and bursr ¥ n+1, if cx / then the

Finally, we consider the real case. G, = SO(n):
SO(n) » SO(n+1) - §* (3).

J. F. Adams [1. Theorem 1.1] has obtained a complete solution for H
the standard subgroup SO(n—k), 1 £k < mn.

Also, P. Leonard [16. Theorem [. A] has obtained a solution to the
general cases for n even; there is not a reduction to any subgroup H of
SO(n) for n even unless n = 6 and H is SU(3) or U(3).

Besides, if n is odd, I. Dibag [8. Theorem I1I{ii), Proposition 3.2]
and T. Onder [19. Theorem 1.2, Lemma 3.1] have obtained a partial
solution for H = U(s) and Sp(k) respectively: For n=2m—1 >4, s >

2m4—1 , the principal bundle (3) admits a reduction to U(s) if and only
it vo(bu-s) = vz(m). And for n = 4m—3. there is no reduction to Sp(k)
for k = m—1, and for n =4m—1, m> 2. k> 4m8— the principal

bundle (3) admits a reduction to Sp(k) if and only if vi(cm-x) = vo(m).
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Generally, if n is odd, then we have n = 2°—1 mod 2% with some
integer a = 1. We consider all the cases by dividing into three parts, a =1,
a=2and a = 3.

For n = 2%—1 mod 2%*! with some integer a = 1, the principal bundle
(3) can be reduced to SO(n+1—(2a+J)), and cannot be reduced to SO(n—
(2a+J)) by [1. Theorem 1.1], where

J=1if a =0 mod 4
=0ifa=1or2mod4
= 2 if a = 3 mod 4.

And we consider a subgroup H of SO(n+1—(2a+J)). Fora=1 (n=
4m+1). there is a reduction to U{2m) by Steenrod [22]. Then we have
the following:

Theorem 3. If n =1 mod 4 (n = 1). the principal bundle (3) cannot
be reduced to a proper subgroup of SO(2q) except Spin(7) (when n = 9)
and Spin(9) (when n = 17) unless H is SU(q) or Ulq), where 2q = n—1.

For a = 2 (n = 8m+3), there is a reduction to U(4m) and Sp(2m)
by Steenrod [22]. By Lemmas 5.1 and 5.2, the principal bundle (3) can
also be reduced to SU(4m).' Sp(1) * Sp(2m) and U(1) * Sp(2m) where
* means Xz, the equivariant product, Z. C U(1) C Sp{(1) C Sp(2m). Then
we have the following:

Theorem 4. If n = 3 mod 8 (n # 3). the principal bundle (3) cannot
be reduced to a proper subgroup of SO(4m) except Spin(7) (when n = 11)
and Spin(9) (when n = 19) unless H is one of the subgroups U(2m).
SU(2m), Sp(m). Sp(1) = Sp(m) and U(1) * Sp(m). where 4m = n—3.

For a = 3 (n # 7), then the principal bundle (3) can be reduced to
U( n+1—(2a+J)

) if and only if 2a+J is even and v:(b;) < a—1 by [8].

2
where 2r = 2a+J. Moreover, for n = 4m—1. the principal bundle (3)
can be reduced to Sp( ntl —512a+J) ) if and only if 2e4+J = 0 mod 4 and

vo(ct) < a—2, where 4t = 2a+J by [19]. Then we have the following:

Theorem 5. If n = 29—1 mod 2%*" with some integer a =2 3 (n 3= 7).
Then the principal bundle (3) cannot be reduced to any proper subgroup of
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SO(n+1—(2a+J)) except G, (when n = 15) and Spin(9) (when n = 23).

We do not know whether or not the principal bundle (3) admits a reduc-
tion to Gz, Spin(7) or Spin(9) in Theorems 3. 4 and 5.

The paper is organized as follows. In Section 2, we recall results due
to Borel, Montgomery, Samelson and Yasukura on the classification of com-
pact, connected Lie groups G which act on S™ transitively and effectively
through the standard action of SO(n+1). We also introduce some notation
in Section 2. We prove Theorems 1, 2, 3. 4 and 5 in Sections 3. 4, 5. 6
and 7 respectively.

The results of this paper are based on the author's master dissertation
at Okayama University. The author wishes to thank Professor M. Mimura
for suggesting the problem and for many helpful suggestions, and also Dr.
N. Iwase for helpful suggestions for proof of Proposition 5.3 and for kind-
ness to read the manuscript during the preparation of this paper, and also
Professor H. Oshima for helpful conversations.

2. Notations. Compact, connected Lie groups G which act transitively
and effectively on S™ through the standard action of SO(n+1) are classified
as follows:

Theorem 2.1. Suppose that a compact, connected Lie group G which
acts transitively and effectively on S™ through the standard action of SO(n+
1). Then,

(a) for neven, G = SO(n+1) or exceptional group G, (n = 6).

(b) for nodd, G=SO0(n+1), SU(qg), Ulq) (where n = 2q—1); Sp(m),
U(1) * Sp(m), Sp(1) * Sp(m) (where n=4m—1); Spin(7) (n =7)
or Spin(9) (n = 15).

Each group has the unique orthogonal representation up to orthogonal automor-

phism, which is the standard inclusion map to SO(n+1).

By using this with Lemma 4.4 in [16]. we need only to treat the
standard inclusions if we consider the problem of the reduction of the struc-
ture group to the groups in Theorem 2.1.

This classification was firstly observed by F. Uchida and the proof of
the theorem appears in the paper of Yasukura [24 as Theorem 4.8 with
cohomogeneity = 1]. based on the results of Montgomery and Samelson
[18, Theorem I] and also on Borel [4, Theorem III], [5. Theorem 3].

The relations among these groups are as follows :
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le im
Sp(m) < U(1) * Sp(m) < Sp(1) * Sp(m)
(2.2) Nkn .o A jom Ngn
SU(2m) < U(2m) < S0(4m).

SUBB) < G < SO(7)

AN N\
(2.3) Spin(7) < SO(8)
N AN

Spin(9) < SO(16)

where the notation H < G means that H is a subgroup of G and maps are
all standard inclusions (see [24] and [25]). Note that Spin(7) is not con-
tained in SU(4) or Sp(2) for dimensional reasons and that U(1) * Sp(m)
and Sp(1) * Sp(m) are not contained in SU(2m) (see Propositions 2.32 and
2.53 in [25]). Finally, we remark that Spin(9) has the possibility to be
contained in SU(8) and Sp(4).

We will use the following notation to indicate the standard inclusion
maps: i7: Gn = Gnex, Jn: SU(n) » SO(2n), where G, = S0(n), SU(n)
or Sp(n). Note that j:nokn = gnoin®ie and jon = jnoin.

‘ By a subgroup of G» we will mean a closed connected subgroup.

If G is a Lie group, X a CW.complex and ¢ a principal fiber bundle
with structure group G over the suspension SX of X, then £ is classified
by a map ¢: X - G or its adjoint map ¢': SX - BG, where BG is the
classifying space for G (see [12]). We will speak of either map as a class-
ifying map for &.

In this paper, a|b means that a divides b. Finally, if p is a prime
integer and n an integer. then v,(n) denotes the highest power of p dividing
n.

3. Proof of Theorem 1. If the principal bundle (1) can be reduced to
subgroup H of Sp{n+1 —k), then H must act transitively and effectively on
Stn-k+3 — Sp(n+1—k)/Sp(n—k) through Sp(n+1—k) by Lemma 3.2
in [16]. By Theorem 2.1, H must be one of the groups Sp(n+1—%k) or
Spin(9) (when n =4, k£ =1). Note that Sp(n+1—k) is not proper sub-
group of Sp(n+1 —k), so we need only to consider about Spin(9).

Suppose that the principal bundle (1) with n = 4 can be reduced to
Spin(9). Let ¢: S' - BSp(4) be the classifying map of the principal
bundle (1) and let Bj: BSpin(9) -» BSp(4) be the classifying map induced
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from an inclusion map j: Spin(9) - Sp(4). Then there is a map
S 8" - BSpin(9) such that ¢ = Bjof. By applying ms on the fibration

s 5 BSp(4) - BSp(5), we get the following exact sequence of abelian
groups (see [7], [9]):

7 5 7 50,

where cx = Bjxo fx. Thus Bjx must be surjective. Let us recall that
ms(BSpin(9)) = Zasess + Zis + Zs + Z: (see [17]). Since the 2-primary
component of Zo: is Zizs and the 2-primary part of ms(BSpin(9)) is Zis +
Zs+7Z., we have the exact sequence at the prime 2 :

Bi:
Zis+Zs+7Z: l> 2 - 0,

where Bjx is the restriction of Bjx to the 2-primary component. Hence we
have that Bjx is not surjective. It is a contradiction. Consequently, we
deduce that the classifying map ¢ cannot factor through BSpin(9).
Therefore the principal bundle (1) cannot be reduced to Spin(9).

4. Proof of Theorem 2. If the principal bundle (2) can be reduced to
a subgroup H of SU(n+1—2k). H must act transitively and effectively on
mtkel = SU(n+1—2k)/SU(n—2k) through SU(n+1 —2k) by Corollary
3.2 in [16]. By Theorem 2.1, H must be one of the groups SU(2q). Sp(q)
or Spin(9) (when n = 8), where 2¢ = n+1—2%.
By Onder (see [20]), the principal bundle (2) can be reduced to
Sp(q) if and only if ck|r+1, where 2r = n—1.
We now consider the principal bundle (2) with n = 8

SU(8) » SU(9) - S",

and a subgroup Spin(9) of SU(8). Suppose that the principal bundle (2)
can be reduced to Spin(9). Let ¢ be the classifying map of the principal
bundle (2). Then there is a map f: S' — BSpin(9) such that ¢ = Bjo /.
where Bj: BSpin(9) » BSU(8) is the adjoint inclusion map induced by an in-
clusion map j: Spin(9) — SU(8). By a quite similar argument in the proof of
Theorem 1, one can deduce that the classifying map ¢ cannot factor through
BSpin(9), since mo(BSpin(9)) = Z,+Z;+Z,+Z:+Z:+Z, (see [17)).
m(BSU(8)) = Zs: and m,( BSU(9)) = 0 (see [7]). Therefore the
principal bundle (2) cannot be reduced to Spin(9).
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5. Proof of Theorems 3. Suppose that n = 1 mod 4. If the principal
bundle (3) admits a reduction to a subgroup H of SO(n—1), then H must
act transitively and effectively on S™* = SO(n—1)/SO(r—2) through
SO(n—1) by Corollary 3.2 in [16]. So by Theorem 2.1, H must be one
of the groups SO(4m), SU(2m). U(2m), Sp(m), U(1) * Sp(m), Sp(1) *
Sp(m), Spin(7) (n =9) or Spin(9) (n = 17), where 4m =n—1. We check
one by one whether or not the principal bundle (3) admits a reduction to
above groups. Note that SO(4m) is not a proper subgroup, so there is no
need to consider the case for H = SO(4m).

The reduction to SU(2m) is possible by Theorem 24.4 in [22]. If
g =2 and n = 3, then there is an isomorphism of homotopy groups inx:
1 (SU(q)) = mn-1(Ulq)) induced by in: SU(n) - U(n). Then we recall

the following well known lemma.

Lemma 5.1. Let n =3 and k=n—2q =0. Ifq = 2. then the jfol-
lowing are equivalent :
(a) The principal bundle (3) can be reduced to SU(q).
(&) The principal bundle (3) can be reduced to Ulq).

Proof. Clearly (a) implies (b). We show that (&) implies (a). If
the principal bundle (3) can be reduced to U(q ), then there is a map f: S™!
— U{q) such that ¢ = i 0 jsof. where c: S™' - SO(n) is the classifying
map of the principal bundle (3). There is a map f': S™' - SU(q) such
that f = inof’, since there exists the isomorphism inx: mn-:(SU(q)) -
n-1({U(g)). So, there is a relation ¢ = &y 0jgo f', since jooiq = jo. This
means that the principal bundle (3) can be reduced to SU(q). Q. E.D.

By the assumption that n = 1 and n = 1 mod 4, we have 2m = 2. So
by Lemma 5.1. the principal bundle (3) can be reduced to U(2m).

Next we consider the reduction to Sp(m), U(1) * Sp(m) and Sp(1) *
Sp(m). If m =1, which shows n =5, then Sp(1) = SU(2), U(1) * Sp(1)
= U(2) and Sp(1) * Sp(1) = SO(4). Therefore the principal bundle (3)
admits a reduction to such groups and we need only to consider the case for
m = 2, which means that n 2 8. We recall the following lemma which is
proved by Leonard [16].

Lemma 5.2. For n =8 and r =n—4m = 0. If m = 2, then the
Jollowing are equivalent :
(a) The principal bundle (3) can be reduced to Sp{m).
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(b) The principal bundle (3) can be reduced to U(1) * Sp(m).
(¢) The principal bundle (3) can be reduced to Sp(1) * Sp(m).

Proof. Obviously (a ) implies (b ), and (4 ) implies (¢ ) by (2.2). So,
we are left to prove that (¢ ) implies (a).

If the principal bundle (3) can be reduced to Sp(1) * Sp(m), then there
is a map f: S™' = Sp(1) * Sp(m) such that ¢ = i/ncgnof, where ¢ is
the classifying map of the principal bundle (3). Since we have an isomor-
phism of homotopy groups px: mn-1(Sp(1) X Sp(m)) = mn-1(Sp(1) * Sp(m))
induced by the double covering p: Sp(1)XSp(m) —» Sp(1) * Sp(m) and
since pogm = jamokmok (see [16, Lemma 7.5]), we have the following
homotopy commutative diagram:

S 7 SO(‘nT)

Nj i

£/ Sp(1) * Sp(m) &% SO(4m)
TP Tsz °knm

Sp(1) X Sp(m) — Sp(m),

where f': S™' - Sp(1) X Sp(m) is such that f =pof'. This gives us a
reduction to Sp(m) since ¢ = ifno jemoknokof'. Q.E.D.

Thus we need only to consider the reduction to Sp(m). If the principal
bundle (3) can be reduced to Sp(m), then there is a map f: S™ ' - Sp(m)
such that ¢ = ifnojomcknof. Let us recall that the principal bundle (3)
can be reduced to SU(2m), since 2|n+1 by [22, Theorem 24.4]. It fol-
lows that the principal bundle (3) is equivalent, in SO(n), with the principal
bundle

SU(2m) - SU(2m+1) -» S™ (2).

Let ¢': S™' — SU(2m) be the classifying map of the principal bundle (2),
then ¢ = ifnojimoc’. So, we have the following homotopy commutative
diagram:

S5 —5 5 SO(n)
c'J, Ti;ﬁn
SU(2m) — SO(4m)

Jom
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Now we consider the following homotopy exact sequence of the principal

bundle (2)':

(8™ D 2 s (SU2M)) = 70 (SU(2mA+1))-.

By the results of Theorem 10.4 of Chapter 7 in [12], if we take h: S" =

S™ to be a map representing a generator of m(S"), then 3([2]) = [¢']

and [c¢] is a generator of mn-i(SU(2m)) = Zim: by the fact that
- (SU(2m+1)) = 0.

So we can write [kmof] = blc'] in 7 (SU(2m)) with some integer b.

Proposition 5.3. If the integer b is defined as above, the order of
n-1(SU(2m)/Sp(m)) divides b.

Proof. Let g: S®™—> S™be a map such that [g] = b[A] in 7(S™), and
let & denote the principal bundle (2)'. And we define g*(€) = (E, p, S™
which is the induced bundle associated with £. It follows from the relation
a([g]) = ab[h]) = b3([h]) = blc'] = [kmof] that the classifying map of
g*(¢) is kmof. Therefore we have the following commutative diagram:

SU(2m) E—P gn
(%) lid lg lg
SU(2m) - SU(2m+1) - S™,

T

where g’ is a map induced from g. Note that g*(£) can be reduced to Sp(m)
since there exists a map f: S™' - Sp(m). So, the fiber bundle

SU(2m)/Sp(m) —» E/Sp(m) P> §»

has a cross section s: S™ » E/Sp(m) such that id = p’os. By the commu-
tativity of the diagram (*)’, we get the following commutative diagram:

SU(2m)/Sp(m) — E/Spim) —P— s~
(#x) lz’d lg" lg
SU(2m)/Sp(m) - SU(2m+1)/Sp(m) — S™ (2),

where the bundle map g" is induced from g' to the orbits. Then we have
that 7'os' = g if we define s’ = g"os. Consequently we have that 9'([g])
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= 0'([#os']) = 3" onx([s']) = 0 in the following exact sequence of homo-
topy groups which is associated with (2)":

et SUZmA+1)/Sp(m)) 5 2n(8™ D> rs (SU2Zm)/Sp(m))--.

Then, by the definition of g, the following relation holds: 0 = 9'([g]) =
o'(b[r]) = ba'([r]).

On the other hand, we consider the following diagram of the exact

sequence :
nn-l(SU(2m+1)) =0
. l
a ]
(8™ = aa i (SU(2m)/Sp(m)) > mai(SU(2m+1)/Sp(m)) s (SN =0
i U
Z sz!ﬁ,mn.zl J’

mn-2(Sp(m)) = Z.

By the exactness at mn— (SU(2m+1)/Sp(m)) on the horizontal line,
7n-1(SU(2m+1)/Sp(m)) must be finite. Hence the injection zn_(SU(2m
+1)/Sp(m)) > 7n-2(Sp(m)) is trivial. So the group ms-,(SU(2m+1)/
Sp(m)) is itself trivial. Since 3'([h]) is the generator of ma-(SU(2m)/
Sp(m)) and b3'([h]) = 0, the order of zn—r(SU(2m)/Sp(m)) divides b.
Q. E.D.
Let us recall that [c] = [incjanoknof] = blifnojemoc’] in mar(SOR)).
and 1,(b) = 2 for m = 2. since 4 divides the order of 7a-,(SU(2m)/Sp(m))
= Zonamern. Now. [c] =0 mod 4 since 12(b) 2 2. Now, mn1(SO0(n)) =
Z: or Z,+Z, (see [15]), so [¢] = 0 in 7y (SO(n)). This means that the
principal bundle (3) is trivial. This is a contradiction. Therefore the
principal bundle (3) cannot be reduced to Sp(m). By Lemma 5.2, we have
that the principal bundle (3) also cannot be reduced to U(1) * Sp(m) nor
Sp(1) * Sp(m). Thus we have examined the existence of the reduction to
subgroup H of SO(n—1) except Spin(7) and Spin(9). Therefore Theorem

3 is completely proved.

6. Proof of Theorem 4. Suppose that n = 3 mod 8 and n = 3. By
Corollary 3.2 in [16]. if the principal bundle (3) can be reduced to sub-
group H of SO(n—3), then H must act transitively and effectively on S™*
= SO(n—3)/SO(n—4) through SO(n—3). By Theorem 2.1, H must be
one of the groups SO(4m), SU(2m), U(2m), Sp(m), U(1) * Sp(m),
Sp(1) * Sp(m), Spin(7) (n = 11) or Spin(9) (n = 19). where 4m = n—3.
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We consider whether or not the principal bundle (3) admits a reduction to
the above groups.

The reduction to SU(2m) and Sp(m) are possible by Theorem 24.4 in
[22]. So., by Lemmas 5.1 and 5.2, we have that the principal bundle (3)
also can be reduced to U(2m), U(1) * Sp(m) and Sp(1) * Sp(m). There-
fore we have determined whether or not there is a reduction to such groups
except Spin(7) (n = 11) and Spin(9) (n = 19). This completes the proof
of Theorem 4.

7. Proof of Theorem 5. Suppose that n = 2°—1 mod 2?*' with
a = 3. If the principal bundle (3) can be reduced to a subgroup H of
SO{n+1 —(2a+J)). then H must act transitively and effectively on S7~2¢* %
= SO0(n +1—(2a+J))/SO(n—(2a+J)) through SO(n+1—(2a+J)) by
Corollary 3.2 in [16]. By Theorem 2.1. according to the value of a; H
must be one of the following groups:
(a) SO(n—2a) or G: (when n = 15) for @ = 0 mod 4.
(b) SO(2q). SU(q) or U(q) for a =1 mod 4. where 2¢ = n+1—2a,
(c) SO(4t). SU(2t), U(2t)., Sp(t). Sp(1)*Sp(t), U(1) * Sp(t)

or Spin(9) (when n =23) for a =2 or 3 mod4. where 4 =

n+l— (2a+J).
This is the complete list of the subgroup Hof SO(n+1—(2a+J)) to which
the structure group can be reduced. By Dibag [8, Theorem II(ii).
Proposition 3.2]. the principal bundle (3) can be reduced to the subgroup

U( n+1 —(22a+J) ) if and only if 2a+J is even and v2(br) < a—1, where

2r = 2a+J. If we consider the reduction to U(2t) or Ulg), then we
only consider the case a =5 witha = O mod 4. or ¢« = 3 (n = 7). This
means that 2(2a+J) £ n+1. Now 1(bs) = a by [2] because a is
odd or ¢ = 2 mod 4, so the principal bundle (3) cannot be reduced to
U(q) and SU(q) (by Lemma 5.1), where 2¢g = n+1—2a. Therefore the
principal bundle (3) cannot be reduced to Sp(t) since n+1—2a <4t =
n+1—(2a+J). So the principal bundle (3) cannot be reduced to above
aroups except Gs and Spin(9).
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