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A NOTE ON &MHP™) FOR n = 4

Norio IWASE*, Kex-icit MARUYAMA and SuicHiro OKAY*

Projective spaces are constructed for real, complex and quaternionic
numbers, classically. as based CW.complexes. We work in the category of
based CW-complexes and based mappings and denote by [X, Y] the homotopy
set of mappings from X to Y and by &(X) the group of all invertible ele-
ments in [X, X] with monoid structure by composition.

Problem. Determine the group &(FP") for F =R, Cor H. n > 1.

When n = 1, it is trivial, since FP' is a sphere of dimension dimg F
and we have

[FP' FP'] = End(Z) as monoids classified by the mapping degree,

where End(Z) = Z* with the monoid structure by multiplication. Thus
&(FP') = Aut(Z) = Z./2. where Z/m is the cyclic group of order m. So,
we may assume that n = 2,

In the real case, RP* is the k-skeleton of the Eilenberg-MacLane
complex RP* = K(Z/2,1) and we have the following split surjection of
monoids :

(0.1) [RP™ RP"] 3 End(Z/2) = 7./2".

Homotopical computations show that z7'(1) = (1+2Z)* and the natural
homomorphism &(RP™) — Aut(m(RP™) = Aut(Z) = Z/2 gives an isomor-
phism (see [1]).

In the complex or quaternionic case, the cells in FP" are concentrated
in even dimensions. Thus the restriction to FP" * of a self mapping of FP"
gives a monoid homomorphism r,: [FP" FP"] - [FP™ ' FP™']. Hence
we have ro(&(FP™) C &(FP™ ).

In the complex case, CP* is the 2k-skeleton of CP® = K(Z, 2) and

hence we have

(0.2) [CP™ CP" = End(Z) as monoids and &(CP™) = Aut(Z) = Z/2

*This research was partially supported by Grant-in-Aid for Encouragement of Young
Scientists A-02740039 from The Ministry of Education. Science and Culture.
** Professor Oka has died in 1984 and left some notes on this topic.
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164 N. IWASE, K. MARUYAMA and S, OKA

as groups.

Moreover r, gives an isomorphism of the monoids and the groups.

In the quaternionic case, unlike the above cases, HP* = BS® has non-
zero homotopy groups in any dimensions higher than 3. By an easy compu-
tation, one can show that

(0.3) &HP?)=7Z/2 and r2: Z/2 = €(HP?) » &HP') = Z/2

is trivial.

We shall show this in the proof of our result stated as follows :

Theorem 0.4***, (1) &HP?®) = Z/2XZ/2 and r; is surjective.
(2) &MHP*) = |1} or Z/2 and rs is injective.

This illustrates a difference from the real or complex case.

To explain our method, we need some notation. Let us denote by
Mapx(X, Y) the space of (based) mappings from X to Y and by C, = CA(X,
Y') the subspace of mappings homotopic to f in Map«(X, Y) (with the base
point f).

We denote by ix: HP* - HP™" the canonical inclusion for co > n = k
=1 and by px: Mapx(HP*, HP™) - Map«(HP* ', HP™) the restriction
fibration, which maps C,, to C,,_,. where f is the restriction to HP* of
a mapping f in Map«(HP" HP™").

The key lemma to Theorem 0.4 is given in § 2 and is stated as follows.

Lemma 2.1. If A is odd, then the restriction to HP' induces the fol-
lowing split surjection.

ﬂl(c_fn) - Hl(Cf,) =7Z/2.

Let px be the restriction of px to 5jk = (p2+-+px)” (Cy,) (with the base
point fx). Let us recall that when n = co and f is not null-homotopic, the
tower of fibrations {px! has the inverse limit C,(HP*, HP*) weakly equiv-
alent to SO(3) (see [2]) and that there is a homotopy spectral sequence
associated with a tower of fibrations | px|, namely,

Theorem 0.5. Let f be a self mapping of HP®. Then there is a un-

*** Professor Oka has shown the result (1) on HP?® and some similar result to (2) on

HP*.



A NOTE ON &(HP™) FOR n < 4 165

stable homotopy spectral sequence {(Es,., d")|, d": Els,y > Elstir.tsar—1, con-
verging to Eom—4s(Cr) (= Eom-4s(SO(3)) unless f is null-homotopic), whose
E'-term is given as follows :

E.gls,z = 7[5-1(51). it =0,
D}s,g = ﬂ't-As(Cfs(HPS, Hpm),fs), t=4s,
d«}s,z(g) = :‘:(SQO T 23 Q), t=>4sand t > 4,

where A is the mapping degree of fi and v; is the Brakers-Massey element
which generates ms(S°®) = Z/12.

Remark. (1) The first summand appearing in the expression of d'(£)
is nothing but the composition of £ with t—4s fold suspension of swvis, which
is the attaching mapping of the top cell of HP**'/HP*"' = §*° | Js,, e*s**
(see [6]). Thus d' is a homomorphism if t 4.

(2) diis given by the formula d}«(mv:) = +((1/2)m(m+2A—1)ws).
The last term is equal to £({1/2)(m~+ A)(m+ A—1)v3), since AA—1) =0
mod 24 (see Fact 2 in § 2).

(3) We do not determine the second differential, which would be de-
scribed in terms of Toda brackets.

On the degree A, the following fact has been known (see Sullivan [7]
and Mislin [3]).

Fact 1. The following three conditions are equivalent for an arbitrary
integer A.

i) The composition of the self mapping on S* of degree A with the
inclusion i,: S* = HP' S HP® is extendable to HP™.

1) The self mapping on S® of degree A is a loop mapping.

i) A= 0 or an odd square number.

We could not give a conjecture to Problem in general case, but the
following

Conjecture. (1) &(HP*Y) =1}
(2) The image of pxx: m(Cy) - m(C,,_,) is isomorphic to m(SO(3))
for all k = 2.

We will show Theorem 0.5 in a slightly stronger form in Section 1
(without assuming n = o0) and calculate the homotopy groups of C,, in Sec-
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tion 2, and in Section 3 we prove Theorem 0.4.

§ 1. Proof of Theorem 0.5. From now on, we fix a positive integer
n =2,

Let f» be in Map«(HP" HP"™). We denote by fi the restriction of fx
to HP” for £ < n and by A the mapping degree of the compression of f; into
HP'.

The cofibre sequence S**' —» HP*! & HP* — S** induces the fibre

sequence
(1.1) F(f) » Cs = Cyy, » Q* {(HP™),

where F(fx) = pa'(fi1) (with the base point fx) and hence F(fi) = C,.
Then F(fx) is homotopy equivalent to Q**(HP™), which acts on the total
space. Thus we obtain the following long homotopy exact sequence :

) Jrx

- 7{‘7( (fk)) — ﬂq(cf)c) i EQ(CJ');—.) >
(1.2) S, m(F(fx)) =

8wl FU) 2% m(C0) > m(Cn) D mon (P, g = 1,

]k* ﬂl(cfk) - ”l(cfk—l) hd

where jix: m(F(fx)) — Jro(Cf,;) is injective if ker jex = 0, and is surjec-
tive when & = 2, since Ef' = Cy, is connected.

Since HP*/HP* ' = §** coacts on HP*, F(fx) have the homotopy type
of F(*x) = Q**HP" where *, denotes the trivial constant mapping: HP* —»
HP™ This implies that 7(C,,) = na(F(£)) = ma+«(HP™) and mq(F(f)) =
o+ax(HP™) for 1 < k < n and ¢ = 0. We remark that the latter group is
isomorphic with 7g+x-1(S?), provided that 4m+2 = ¢q+4k.

Let us recall that the first differential d' is given by the composition
ank*: 7rq+4k(HP ) = ﬂq(F fk)) = Mg ka) — g~ l( (fk+l)) = 7[q+4):+3(HP")-
Then we obtain the following proposition by modifying the proof of [5, The-
orem 3.3].

Proposition 1.3. Let 1 < k+1 < n. The following equation holds in
Tq-sx+3(HP®). '

d](g) = ion Vq+4ki Ao [il. Q] fOT Q [S ]Tq+4k(HPn)-

Proof. Let Yy = S?XHP*. Then Y can be decomposed as | Yi-1 U
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HP*| U e **, Hence there is the co-action wuo: Y — Yy \V/ S97% of S+
on Yx with co-axes (Id. ¥), where Id denotes the identity of Y: and y; Y. —
S7*4k denotes the canonical collapsion which has degree 1,

We denote by pr:: Xi XX, —» X, the canonical projection to t-th factor
and by A: XXY - XXY/(XV Y) = XA Y the canonical collapsion.
Composing o with pra V tg44x. we get a mapping u: Yy > HP*\/ Sk
which is extendable to a mapping z: Y U HP**' - HP**'\/ §%* 4% by putting
ftlupr+1 = Iy the identity. Then 7 has the co-axes (pr.. ¥). where ¥ is the
extension of Y by putting Zlups+ = Ixs1.

We can now give a description of d'. namely, d'(£) = 9o () is
given as follows:

d'(2) = Ve(fe-1 V £) o zo B,

where £ is the attaching mapping of the top cell of Yyi, = {Y: U HP**'|
Use?****and V: HP"VV HP" - HP™" is the folding mapping.

Let us consider the composition e 8: S9+*%+3 5 HP*' \/ S9*** which
is in morar-s(HP* ' \/ S9***) = morurss(HPF') @ maran+3(STF) B Z[i.,
lq+4k].

The first factor is given by priozc8 = pr, o8 and pr. is extendable to
Yi+1 in which 8 has to be trivial. Thus pr,o o g = 0.

The second factor is given by pr.c o= Yo 8= y' o AopB. where y':
Z'HP* —» §9** is the mapping of degree 1. Here Ao g is nothing but the
attaching mapping of the top cell of Z7HP**!, which is known to be %k v.x)
= kvg+sx up to sign by [6]. Thus pro 2o B = kvg-ux.

To determine the third factor. we choose an integer ¢ so that the third
factor is c[ii. tq-4x]. Then o g is homotopic to c[i. tqs4x] in the space
Zk+| — HP"H-] \/ Sq+4k Ukyq_n; eq+4k<"4‘

Hence we have the relation us-ve+sx = Fcvg.sx+4 in the ring H*(Zy.,
Uetiyzao ot €745 * 2 Z). where u, is the element in dimension 4 corresponding
to the ring generator of H*(HP**'; Z). vq.4x is the element corresponding
to the generator of H****(S9"**; Z) and vq+4x+4 is the generator in dimen-
sion ¢+4k+4.

On the other hand, Y.y = 1Yy U HP**'| (s e?"**** has the integral
cohomology ring isomorphic to H¥*(HP**'; Z) @ H*(S?: Z) = Z[u]/(uk*?)
® A(vq), where vq is the element corresponding to the generator of H/(S?:
7).

There is the following homotopy commutative diagram of cofibre se-
quences.
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Sq+4k+3 ﬁ Yk U HP’&H—] —_ % Yk U HPk+lI Uﬂ eq+4k.»4 — Yk+l

1 ]

C[il lq+4k]
4k+3 ’
STk > L A Uc[il.lquk] eItk

Then the homotopy commutativity of the diagram yields a mapping w: Yis:
= Zrer Uclipie 774%* inducing an injection onto a direct summand in
integral cohomology, since the axis ¥ has degree 1. Hence we obtain the
following equation.

Ct)*(u.() = U4
wk(verix) = (deg Y)ul-ve = uf-vq

Then it follows that w*(us: ves4x) = uf*'- vq, which is a generator in dimen-
sion g+4k+4, and hence ¢ = +1. Thus d'(£) = Vko(frs: V £)%(0,
ikvq-z-u:, i[il, lq+4k:|) = -I_-Q*(k Vq+u:) :t[fkv'l Sy, Q] = ikﬁl/q“ki /\[il, Q].
This implies the proposition.

When 1 < k+1 < n, the condition ¢ < 3 implies that 4n—4k—1 =
g = 0. In that case, mo+x(HP") = me+sx(HP®) and the latter group is
isomorphic to mgs.x-1(S?) by taking adjoints. Then we may assume that
n = oo without any loss of generality.

Since the adjoint of a Whitehead product is the Samelson product of
the adjoints up to sign, the adjoint of [ii, ad(£)] is (ad(i\), £) = (&, &) =
(t3, ) 0 Z°0 = v30 X° L, up to sign.

Thus we have obtained the following

Corollary 1.4. If ¢ < 3 or more generally An—4k—1 = q = 0, then
the following equation holds in mossx+2(S*):

dl(Q) = ikQOUqu—li;\VéOZzQ, for ¢ e ﬂq+4k—1(sa), q+4k > 4.

This completes the proof of Theorem 0.5.

§ 2. Homotopy groups of 6}‘2, Efa and 6,3. There is the following
well-known fact on the degree A of f;.

Fact 2. The following three conditions are equivalent Jor an arbitrary
integer A.
i) The composition of the self mapping on S* of degree A with the
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inclusion i1: S* = HP' & HP? is extendable to HP?.
ii) The self mapping on S* of degree A is an H-mapping.
iii) AA—1) = 0 mod 24.

One can show this by using the injectivity of suspension E: [X, S*] —
[XX. S*] and the following homotopy formula (see [9]) for any integer k and
composable elements « and B in the unstable homotopy groups of spheres:

(k)= = Kgoa) +( 5 )18, B ohate)—(*E 1108 81, B o mu(a)

where h; denotes the #-th Hopf-Hilton invariant.

From Fact 2, it follows that AA—1) = 0 mod 24. Thus A =1 when
fn is a homotopy equivalence. So, from now on, we make an additional as-
sumption that A is odd.

In this section, we consider homotopy groups only in dimensions < 3.
Hence Els,: = m-1s(F(fs)) = m-1(S?) for the dimensional reasons.

First we introduce the following information from the infinite term.

Lemma 2.1. If Ais odd, then the restriction to HP' induces the fol-
lowing -split surjection:

ﬂl(cfn) - ﬂl(cf,) = Z/2

Proof. The compositions with f; and f; induce the following commutative

diagram:
Ci,, — C;,(HP', HP™") «— C,,
Sz | Sis | Ah |
Cf" > Cf1 C;u,

where [ denotes the identity mapping of HP* k = 1.

Let us recall that m(C,,) = m(S®) = Z/2. The mapping AlL: induces
the multiplication by A in the homotopy groups, and hence an isomorphism of
m, since A is odd and m is isomorphic to Z/2.

Thus we may suppose that f, = I,. Let us recall that the action of
Aut(S®) on S?® is represented by the isomorphism ¢: RP® - Aui(S®) given
by #([g]){x) = gxg~! for g. x € S?. which is linear, leave the unit 1 fixed
and preserves metric and orientation, and hence can be identified with the
canonical action of 1 ® SO(3) C SO(4). Then the action induces that of
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SO(3) = Aut(S®) on HP™ which is represented by a mapping ¢»: SO(3)
- C;, € Ci;,(HP™ HP"). Then the mapping

: S0(3) & C.(HP', HP™ C C,(HP', HP®) = C.(S*, S%)

is given by the formula @,(g)(x) = g(x) for x € S°. Through the homotopy
equivalence C;,(S?% S = Cy(S% S§%) C Q(S°), we may regard ¢ as the
restriction to SO(3) of the J-mapping: SO —» Q(S"). Thus the homomor-
phism @i is an isomorphism and so is

bix: m(SO(3) £ m(Cu(HP™ HP™) > m(Co(HP', HP™),

since m(Ci(HP', HP™) = m(Ci(S® S?)). for the dimensional reasons.

This implies the lemma.

Then by using the homotopy exact sequence (1.2), we obtain the fol-
lowing

Proposition 2.2. If A is odd, then dis:: Els;: — Elsise1 Is a zero
homomorphism when (4s,t) =(4,5),(8, 8),(8,9),(8,10) or (16, 16): an
isomorphism when (4s,t) = (4,6) or (12.13); and an injection when
(4s,t) =(12.12). At the prime 2, di: is a zero mapping if A is odd.

Proof. By [8]. there exist the following equations :

(2.3.1)  7svs = vins generates m(S*) = Z./2, ([8. (5.9)])
(2.3.2) v =0, ([8, Lemma 5.7])
(23.3) 0"”1/12 = 7]5267 mod 4(1/50'8')» ([8 (62)])
(2.3.4) néer =265 =0 mod 4, ([8, Lemma 6.6])
(2.3.5)  H({vsus) = ns s, ([8. P.75))
(2.3.6) H(uinser) = 4vsos, ([8. P.75))
(2.3.7) H(w) =", ([8, P.54])
(2.3.8) m{(S*:2) =0, ([8. Propositions 5.11])
(2.3.9) md(S?) =17Z/15,

(2.3.10) mi(S®) =Z/2-¢s, ([8, Theorem 7.1])
(2.3.11) m(S*) =Z/2 -1 ®ZL/2" pres, ([8, Theorem 7.2])

(2.3.12) mi(S*:2)=Z/4®ZL/2 esvis ®ZL/2" vies.

([8. Theorem 7.4])
(2.3.13) Em«(S*;2) =0, ([8. P.75])
(2.3.14) ms(S®) =Z/2 vips ®Z/2 vinses. ([8. Theorem 7.6])
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(2.3.15) ms(S°:;2) =Z/8 vsos ® Z/2- 15 s, ([8, Theorem 7.3])

where H: me(S?) = 7o(S?°"") and E: 7¢(S?) = mq+:1(S?*') denote the Hopf
invariant and the suspension homomorphisms in the EHP-sequence of James
[4].

By Corollary 1.4, Equation (2.3.1) implies that dis = 0.

Equations (2.3.1) and (2.3.2) imply that pfvs = nsvin: = 0. Hence
by Corollary 1.4, we obtain that dis is an isomorphism and that ds,s = 0,
since d'=d' = 0.

Equation (2.3.8) implies that di; = O at the prime 2.

Equations (2.3.1) and (2.3.9) imply that di s = 0 and Equations (2.3.8)
and (2.3.11) imply that di,.0 = 0.

By Corollary 1.4, Equations (2.3.10) and (2.3.12) imply that di..:. is
an injection to the subgroup generated by &3 v, + vses.

If di;.s is an isomorphism, then disy s = 0, since d'od' = 0. So we
are left to show that di.,13 is an isomorphism,

As in [8], Equation (2.3.13) implies that H: ms(S?) -» ms(S%: 2) is
injective. By [8. Proposition 2.2] with Equations (2.3.7), (2.3.3) and
(2.3.4), we have that

H(,Uzlllz) - H(lls)lllz = O"Hl/]z = 7)5251 = 26’5 = (0 mod 4,

Then by Corollary 1.4 with the equation Ho E = 0 and Equations (2.3.5)
and (2.3.6), it follows that, for (a, b) € ZXZ.

Hodapa+bmes) = aH(d' (1)) +bH(d (nse4))
= aH(Vé/ls'f-,tlsVlz)+bH(V§775£4+773€4V12)
= ai H(U:;#e)+H(/.13V12)%+b*H(U:;775€¢)+H(7]3€4U12)I
= a7]5/~ls+2asé+4bl150’a
= ansus mod 4.

Let us assume that Hod'(aus+bmes) = 0. Then it follows that a = 0 mod
2 by Equation (2.3.15) and that axs = 0 by Equation (2.3.11). Hence
H(a-d'(us)+b-d'(mes)) = 4bvsos = 0 and 45 = 0 mod 8 by Equation (2.
3.15). Then by Equation (2.3.12), it follows that bnies = 0. Thus we
obtain that Hod},s is injective. Therefore by (2.3.11) and (2.3.14), so
is dizna: Z/2 ®Z/2 - 7Z/2 & Z/2. This implies that d' is an isomorphism.

Proposition 2.4. If Ais odd. then there is the following isomorphisms :
(1) mo(Cr,) = Z./2, ifn=2.
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(2) m(Cy) = Z/2, ifn>=2,
(3) wi(Cr) =0 0r 2/3, if n = 2.

For n = 2, the restriction to HP" induces the following split surjections:

(4) pox : m(Cr,) = m(Cy) = #,

(5) Dok : m(C;,) = m(C,,) = Z/2,

(6) P2k Jl'z(C_r,) 4 JTz(le) =0,

(7) pex: m(Cr3 2) » m(Cy ; 2) = Z/4.

Proof. Since F(f) = Ef,, the connecting homomorphism 3: .T[q(é_rl)
— 7¢-1(F(f:)) can be identified with di¢si: 7o(F(fi)) = Elqes = Ebger =
mq-1(F(f2)), which is a zero mapping when ¢ = 1 and an isomorphism when
q = 2 by Proposition 2.2. At the prime 2, we also have that d' is a zero
mapping when ¢ = 3 by Proposition 2.2. Then by (1.2) with £ = 2, we
obtain the following short exact sequences:

1(Cr,: 2) B 2(Cri2) 5 0
e (Fp) 2% 1(Cp) = 0
0 = m(Cs) B m(Cy) » 0
0 > m(F(A) 25 m(Cy) >+

By (2.3.8) and (2.3.1), m(Fy,) and m(F,,) are isomorphic to Z/3 and
Z./2, respectively. Also we have that m(Cy,) is isomorphic to Z/2. This
implies the proposition.

Proposition 2.5. If Ais odd, then there are following isomorphisms :

(1) 70(Cr) = Z/2XZ/2, ifn=3,
(2) m(Cr) =Z/20Z/20Z/2, ifn > 3.
For n = 3, the restriction to HP? induces the following surjections:
(3) P3x @ 7!'0(6_{3) 4 7[0(6_}'2) = Z/2,
(4) Pax © JT](CJS) - JZ'](C_rZ) = Z/Z,
(5) pax : m(Cr) » m(Cs,) =0 or Z/2,

where the lower sequence has a splitling.

Proof. By Proposition 2.4 (3) and (2.3.11), there are no non-trivial
homomorphism: m:(C,,) = m(F(f;)) = m2(S*®). From the proof of Proposi-
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tion 2.4 (2), the connecting homomorphism o: m.(E,,) — mo(S?®) can be
identified with dis: 7o(F(f2)) = Ess = El1 = m;(E;,) — mo(S?) and is
trivial by Proposition 2.2, Thus by Lemma 2.1 and the exactness of (1.2),
we obtain the following short exact sequences :

’3—*) 71'2(Cf3) PL*) ﬂz(cfz) -0,

0 = m(FA) 25 m(Cs) B m(Cy) 0,
0 - m(F(A) £5 m(Cr) — m(Cy,) > *.

where the upper sequence admits a splitting by Lemma 2.1 and the exactness
of the lower sequence means that the successive quotient of the middle set
by the action of the group in left-hand-side coincides with the set in right-
hand-side. Then Propositions 2.2 and 2.4 imply the proposition.

Proposition 2.6. If Ais odd, then there are following isomorphism:
(1) 7(Cs) = 0 or /2, if n = 4.
For n = 3, the restriction to HP? induces the following injection:

(2) Pak . Jl’o(af‘) j ﬂo(Efa) % Z/2XZ/2,
(3) Im{pu: : m(Cf4) - 7T1(Cj,)l = Z/2

Proof. By Proposition 2.2, we obtain that 9 © jiax = disis: m(F(f))
- m(F(/)) is an isomorphism and hence 8: Z/2 ® Z/2 ® Z/2 = m(C,,)
- n(F(fi)) = Z/2 ® Z/2 is a split surjection with kernel isomorphic to
Z/2. Hence by the exactness of (1.2), we obtain the following (split) short
exact sequences:

0 - Imigj* : m(Cy,) - m(gf,)i - 7Z/2-0
0 - 7o(Cy,) = ker{d: m(Cy,) » m.(S?)} - *

From the proof of Proposition 2.5, the connecting homomorphism 2: ﬂo(afa)
- m(S?) can be identified with some extension of di,1,. Since dis.» is
injective and m(F(f;)) acts on m(éfz), at most two elements can exist in
the kernel of 8. This imply the proposition.

§ 3. Proof of Theorem 0.4. Let f be a self homotopy equivalence of
HP™ and let f; be the restriction to HP', 2 < m. Then by Fact 2, the
mapping degree of fi is 1. and hence &(HP™) is naturally identified with
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m)(an).

Let us assume that n = 2. Then Proposition 2.4 (1) implies that
&(HP?) = Z/2 as sets. Also Proposition 2.4 (4) implies that p.,x = 7.:
&(HP?) - &HP!) is trivial.

Let us assume that » = 3. Then Proposition 2.5 (2) implies that
&(HP?) = 7Z/2X7Z/2 as sets. Also Proposition 2.5 (3) implies that ps«
=r;: &MHP?) > £(HP?) is surjective.

Let us assume that » = 4. Then Proposition 2.6 (1) implies that
&(HP*) = # or Z/2 as sets. Also Proposition 2.6 (2) implies that p. =
re: EMHPY) - &(HP?) is injective.

A group with two elements is isomorphic to Z/2 the cyclic group of
order 2. Thus we have shown (0.3) and the part (2) of Theorem 0.4.

Let us recall that there are two possibilities for a group with four
elements; to be isomorphic to Z/4 or to Z/2XZ/2. So, we are left to de-
termine the (abelian) group extension

(3.1) 1 >7Z/2 - &HP?) » £(HP?) - 1.

Let ¢: S'™ — HP? be the attaching mapping of the top cell of HP*.
Let us recall that a is a fibration with fibre an H-space S*® and hence we
have the short exact sequence

ia*

ms(S"%) D ms(HP?) 25 7i(HP*) (= mi(SY),
with a splitting m(S*) = ms(S*) — ms(HP?).

Let 8: m(C1,) = ms(HP*) = m.(S?) be the connecting homomorphism
associated to the fibration C;, » C,, with fibre Q'*(HP*). Then 8 is given
by composition with @ from the right.

Let h: HP® - HP?® be an extension of the generator h, of &(HP?).
Then the composition ho a is in the group ms;(HP?). Hence we have

hoa=aat+ioX¢§,

for some integer a and an element &€ € m.(S?).

Since the restriction of A to HP' has degree 1. A is rationally homo-
topic to the identity mapping. Hence a has to be 1. Then we have that
hohoa is homotopic to a+2i;° X &, since h=i, = i,. Thus we obtain the
following equation:

(3.2) dhoh) =2¢
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On the other hand. h:ch, is homotopic to the identity. the homotopy
class of hoh lies in the image of jsx from m(F(I:)) = m(S?). Thus we
may suppose that hoh = ji(y) for some y € mi(S®). Then by (3.2), we

have that diz.(y) = 2&. where d' is the first differential : 7o (F(I;)) L%
~ 0
]TO(CI;,) - 71'14(83).

As was seen in the proof of Proposition 2,2, di.., is injective with its
image isomorphic to Z/2 generated by e;u+ vies which is not divisible
by 2. Hence 2¢& must be 0. which implies that y = 0. since di;,; is injec-
tive. This implies that h ok is homotopic to the identity mapping. Thus the
extension (3.1) is trivial.

This completes the proof of Theorem 0.4.
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