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FIRST TWO TERMS IN A MINIMAL INJECTIVE
RESOLUTION OF A NOETHER RING

Dedicated to Professor Manabu Harada on his sixtieth birthday

Yasuo IWANAGA and Hipeo SATO

Let R be a ring and fix 0 > R = E, > E, —» ... a minimal injective
resolution of RR. R is said to be a ring with left dominant dimension = = if
the first n terms Eq, E, . ..., E,_, are flat. Hoshino [1] showed that the notion
of dominant dimension is right-left symmetric for a (left and right) noether
ring. Throughout the present paper we deal with noether rings. So the
dominant dimension of a noether ring R is denoted by dom.dim R. We should
remark that a noether ring R with dem.dim R 2 1 is nothing but a QF-3 ring
in the sense of Morita [8] and Sato [9], and that a noether ring with dom.
dim R 2 2 is artinian. (See [3, Proposition 7]).

The results above and their proofs suggest us that the first two terms
and E, are important in studying a noether ring R with dom.dim R =2 1. To
state more precisely, we introduce here a slightly stronger notion than that
of a cogenerator. A module W is called a finitely embedding cogenerator if
any finitely generated module is embedded into a finite product of copies of W,
or equivalently, into a direct sum of copies of W. The notion of finitely
embedding cogenerator coincides with that of a cogenerator over an artin
ring, but not in general.

In the previous paper [3, Theorem 10] we obtained the following result.

Theorem A. Let R be a noether ring with dom.dim R = 1. Then the
Jollowing conditions are equivalent.

(1) E, @ E, is a finitely embedding cogenerator.

(2) Every finitely generated uniform left R-module, which is torsion,
has a nonzero submodule V for which there exists an exact sequence

0->L->F—->V-0

with F finitely generated free and L reflexive.

(3) For every finitely generated uniform left R-module, which is torsion,
there exists a nonzero submodule V for which any finitely generated projective
presentation : F'— V has a kernel, which is a reflexive module. As for
torsion theory, we adopt here Lambek torsion theory.
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We did not give a proof in [3] that the condition (3) above is equivalent
to the other conditions (1) and (2). But it is immediate by Schanuel’s lemma.

Now we are interested in the condition (2) above. More generally, we
shall consider the property that, for each element U in a certain class @ of
modules, there exists a free presentation ' = U whose kernel is reflexive.
Let & be the class of all simple modules. Then we shall get the following,
which is a generalization of [3, Corollary 11].

Theorem B. Let R be a noether ring with dom.dim R 2 1. Then the
following conditions are equivalent.

(1) E, ® E, is a cogenerator.

(2) Every maximal left ideal is reflexive.

Recall the definition of right n-Gorenstein ring. A (left and right) noether
ring R is said to be a right n-Gorenstein ring if its right self-injective
dimension is at most m, that is, inj.dim Rz = n. A right n-Gorenstein ring
which is also left n-Gorenstein is called an n-Gorenstein ring in the present
paper.

Now let € be the class of all finitely generated left R-modules. Then
we shall get another characterization of right 1-Gorenstein ring for a noether
ring R not necessarily having the condition dom.dim R =2 1 (Proposition 3).

Next we shall characterize any indecomposable summand of E, ® E, as
follows.

Theorem C. Let R be a noether ring with dom.dim R 2 1. Then the
Sfollowing conditions for an injective indecomposable left module U are equivalent.

(1) U is isomorphic to an indecomposable summand of Ey ® E,.

(2) There exists a reflexive (irreducible) left ideal I of R with U=
E(R/I), the injective hull of R/I.
Further if R is artinian, then we can take I as a maximal left ideal.

This is a non-commutative version of the result by Matlis [7. Theorem 37],

Many of our results are closely related to reflexive modules. The key of
our proofs is to alter a characterization of reflexive modules in Masaike [6,
Corollary 3.2] into our setting.

We shall prove Theorem B in § 1, and Theorem C in § 2. Right 1-
Gotrenstein rings are characterized in terms of reflexive modules. In the final
section § 3, we shall investigate reflexive modules and right 1-Gorenstein
rings from the point of view of the properties in Theorem A, and we shall
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obtain another characterization of right 1-Gorensteon rings.

Throughout the present paper, R is a noether ring and we denote a fixed
minimal injective resolution of R by 0 = R —» E, - E, - .... As for torsion
theory, we adopt Lambek torsion theory and denote the corresponding torsion
radical by i. A

1. Proof of Theorem B.

Proposition 1. Let R be a noether ring and M a dense submodule of a
finitely generated free left module F. If M is reflexive, then F/M is embedded
into a direct sum of copies of E,/R. If every dense maximal left ideal is
reflexive, then E, ® E, is a cogenerator.

Proof. In the sequel we denote the R-dual Homg(B, R) of left or right
R-module B by B*. Let M be a finitely generated reflexive left R-module.
Since R is a noether ring, M* is a finitely generated right R-module. Con-
sider an exact sequence of right R-modules: 0 » L » G - M* - 0 with G
finitely generated free. Then we have the following exact sequence of left
R-modules: 0 > M** > G* > L* Let P= G* and N = Coker(M** - P).
Then P is finitely generated free and N is torsionless because it is a submodule
of L*, Since M is reflexive, we have an exact sequence of left R-modules :

A
0->-M->P->N-90

such that P is finitely generated free and N is torsionless. Take the push out
of A: M = P and the inclusion map: M — F. Then we have the following
commutative diagram with exact rows and exact columns :

0 0
) )
0-M->P->N-90
) Lol
0> F->X->N-0
l 1
F/M =F/M
Ll
0 0

Since F and N are torsionfree, so is X. By injectivity, we have the following
commutative diagram with exact rows :
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0-P-> X - F/M -0
el g1l
0->P—->EP)->EP)P-0

Since F/M is torsion by assumption, the map : P — X in the above is an
essential monomorphism. Thus ¢ is a monomorphism and so is 8. This shows
the first part of our statement. For, P = R™ for some m > 0 and E(P)/P
= (E,/R)™.

For the latter part, let S be a simple module. Then S is torsionfree or
torsion. If S is torsionfree, then S is embedded into E,. If S is torsion,
then there exists 'a dense maximal left ideal I such that

0->I->R->S8-0

is exact. Since [ is reflexive by our assumption, it follows from the first half
of our statement that S = R/I is embedded into E,/R and so into E,. This
shows that E, @ E, is a cogenerator.

Proposition 2. Let R be a noether ring with dom.dim R = 1. Assume
that M is a finitely generated left R-module for which there exisis an exact
sequence : 0 > M = F — (E,/R)™, with F finitely generated free. Then M

is reflexive.

Proof. Let U= Coker(M — F). Take a pull back of the inclusion: U
= (Ey/R)™ and the map : E,™ — (E,/R)™ induced by the canonical projec-
tion: Ey = (E,/R). Then we have the following commutative diagram with
exact rows and exact columns :

0 0

\ l

0->R™=> X > U -0
I \ )

O%lei__)Eolm)_)(Eo/R)(m)_)O

The condition dom.dim R = 1 implies that E,™ is flat. Since X is finitely
generated, it follows from Lazard [5, Theoreme 1.2] that X is torsionless.
By taking a pull back of two maps X = U and F — U, we have an exact
sequence: 0 > M > R™ ® F > X— 0. Then M is reflexive by Masaike
[6, Corollary 3.2].

Proof of Theorem B. The implication (2) <> (1) is completed in Proposi-
tion 1. It remains to show the implication (1) => (2). Let I be a maximal
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left ideal of R and let S = R/I. By the assumption (1), S is embedded into
E, or into E,. Assume that S is embedded into E,. Then S is torsionless
and hence I is reflexive by Masaike [6, Corollary 3.2]. On the other hand,
assume that S is embedded into E,. Then S is embedded into E,/R because
S is simple and E/R is essential in E,, Our statement follows from Pro-
position 2.

2. Proof of Theorem C.

The implication (1) = (2) : Since U is uniform, U appears as a direct
summand of either E; or E,. Assume that U is embedded into E,. As is
well-known, there exists an irreducible left ideal I such that U= E(R/I).
Since E, is flat, it follows from Lazard [5, Theoreme 1.2] that R/I is
torsionless. Thus I is reflexive by Masaike [6. Corollary 3.2]. Next assume
that U is embedded into £,. Then U N (E,/R) is nonzero. Take a nonzero
element u in UN (E,/R). Then Ru = R/I for some left ideal I of R. By
Proposition 2, I is reflexive and obviously we see U= E(R/I).

The implication (2) = (1) : Let I be an irreducible left ideal which is
reflexive. Let V= R/I. If V is torsionfree, then V can be embedded into a
product @ of copies of E,. Since E, is flat and R is a noether ring, @ is also
flat. So V is torsionless by Lazard [5]. In other words, V is embedded into
a finite direct sum of copies of zR. Since V is uniform, V is emdedded into
#R. This implies U = E(V) G E,.

Thus we can assume that V is not torsionfree. Let W = #(V) = 0.
Since [ is reflexive, we see similarly as in the proof of Proposition 1 that
there exists an exact sequence: 0 — [ 4, P —> N - 0 with P finitely gene-
rated free and NV torsionless. Take a push out of A: I = P and the inclusion:
I—> R. Then we have the following commutative diagram with exact rows
and exact columns :

0 0

LAl
0—->1I-P->N->0

Lol
0> R->X->N->0

Lolu

V=V

L

0 0
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Since N is finitely generated torsionfree, so is X. Take a pull back of x and
the inclusion map: W — V. Then we have the following commutative diagram
with exact rows and exact columns :

0 0

N l
0-P->Y->W-90

| I 2

0 >P-oX->V-0

Since Y is torsionfree and W is torsion, P is essential in Y. Thus we have
the following commutative diagram with exact rows and exact columns :

0 0
! \

0-P-> Y - W -0
I S )

0—-P- E(P)-> EP)/P—-0
Therefore we have the following chain of monomorphisms :
WG E(P)/PC(E/R)" G E'™

where P = R'™ for some r > 0. Since W is uniform, we have a monomorph-
ism of W into E, and an extended monomorphismof U = E(W) into E,. This
completes the proof.

3. Reflexive modules and right 1-Gorenstein rings.

Let R be a right n-Gorenstein ring. Then Iwanaga showed in [2] that
E, ®...@ E, is a cogenerator without the assumption dom.dim R = 1, But it
is not known yet whether E, @...® E, is a finitely embedding cogenerator or
not even if n = 1. If R is a right 1-Gorenstein ring with dom.dim R =1 ,
then E, @ E, is a finitely embedding cogenerator by Theorem A.

On the other hand, the condition (2) in Theorem A is satisfied by a right
1-Gorenstein ring R without the assumption dom.dim R = 1. Furthermore
there exists an example of a noether ring with dom.dim R = 1, which satisfies
the conditions in Theorem A, but is not right 1-Gorenstein (See [3]). Con-
cerning these problems, we show the following. (Compare the condition (2)
below with that of Theorem A).
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Proposition 3. The following conditions are equivalent for a noether
ring R.

(1) R is right 1-Gorenstein.

(2) For any finitely generated left R-module X, there exists an exact
sequence

0-L->F->X-0
with F finitely generated free and L reflexive.

Proof. As is well-known, Jans [4] showed that the condition (1) is
equivalent to that any finitely generated torsionless left R-module is reflexive.
Thus the implication (1) => (2) is obvious. In order to prove the implication
(2)=> (1), it is sufficient to prove that every submodule K of a finitely
generated free left R-module G is reflexive. Let X = G/K. By assumption
there exists an exact sequence 0 = L = F — X — 0 with F’ finitely generat-
ed free and L reflexive. By Schanuel’s lemma, we have L & G = K ® F,
Since L, G and F are all reflexive, so is K.

In the sequel we let R a noether ring with dom.dim R = 1. In view of
our proof of Theorem B, the module E,/R plays an important role. More
precisely, we consider the property that E, @ (E,/R) cogenerates a certain
module B finitely. The property then makes a module related to B reflexive.
Also it is connected with 1-Gorenstein rings.

We mention here the following, as an immediate consequence of Proposi-
tions 1 and 2.

Proposition 4. Let R be a noether ring with dom.dim R=21 and M a
dense submodule of a finitely generated free left R-module F. Then M is
reflexive if and only if F/M is embedded inio a direct sum of copies of E/

Proposition 5. Let R be a non-singular noether ring with dom.dim R =
1. Then the following conditions are equivaleni.

(1) R is right 1-Gorenstein.

(2) Every finitely generated torsion left R-module is embedded into a
direct sum of copies of E./R.

Proof. (1) = (2): Let X be a finitely generated torsion left R-module.
Then we have an exact sequence 0 > M = F — X — 0 such that F is finitely

generated free. Since R is right 1-Gorenstein, it follows from Jans [4] that
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M is reflexive. Since X is torsion, M is dense in F. By Proposition 4, we
see that X = F/M is embedded into a direct sum of copies of Ey/R.

(2) = (1) : It is sufficient to show that every finitely generated tor-
sionless left R-module L is reflexive. L is embedded into a finitely generated
free module F, and thus let K be a complement of L in F and M = L & K.
Since R is a non-singular ring, M is dense in F. Now it follows from the
assumption (2) and Proposition 4 that M is reflexive. Therefore L is also
reflexive.

Next we mention the reflexivity of irreducible left ideals.
Preposition 6. Let R be a noether ring with dom.dim R 2 1 and I an

irreducible left ideal of R. If R/I is embedded into a direct sum of copies of
E, ® (E/R), then I is reflexive.

Proof. We have essentially shown in Proof of Theorem C. Let U=
R/I. Then U is uniform. By the assumption, U is embedded into either E;
or E/R. We can follow the proof of Theorem C to complete the proof of
Proposition 6.
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