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ON PERIODIC P.I. RINGS AND
LOCALLY FINITE RINGS

Yasuyukt HIRANO

An element x of a ring R is called periodic if there exist distinct positive
integers m, n for which x™ = x". Especially, x is called potent if x™ = x
for some positive integer m > 1. Aring R is called periodic if all elements
of R are periodic. It is easily seen that a periodic ring R has the property
that every element of R is expressible as a sum of a potent element and a
nilpotent element. However it is not known whether a ring R with this
property is periodic or not. On the other hand. by a result of the author and
H. Tominaga [6], if R is a P. L. ring in which every element is the sum of
two idempotents, then R is periodic. In this paper, we shall prove that a
P. 1. ring R in which every element is expressible as a sum of two periodic
elements, is periodic.

We shall next consider the local finiteness of a periodic P. I. ring. A
ring R is said to be locally finite if any finitely generated subring of R is a
finite ring. L.et R be a periodic P. I. ring, and S a finitely generated subring
of R. We shall show that the additive group of S is finitely generated and that
some power of S is a finite ring. Consequently a P. I. ring R is locally finite
if and only if R is periodic and the additive group of R is a torsion group.
Using this, we shall give a characterization of a locally finite ring.

We begin with the following lemma.

Lemma 1. Lei R be a ring. Then R is periodic if and only if all prime
Jfactor rings of R are periodic.

Proof. Suppose that all prime factor rings of R are periodic. For each
x € R, let S(x) = {x"—x"""f(x)|n > 0 is an integer, f(¢) € Z[t]}, which
is multiplicatively closed. By virtue of [3. Proposition 2], R is periodic if
and only if 0 € S(x) for all x € R. Assume, to the contrary, that there
exists ¢ € R such that 0 & S(a). Then, by Zorn's lemma, we can find an
ideal I of R which is maximal with respect to the property that S(a) N I =
¢. It is easy to check that I is a prime ideal of R. Hence R/I is periodic by
hypothesis. But this contradicts the fact that S(a) N I = ¢.

A ring R is said to be of bounded index (of nilpotence) if there is a posi-
tive integer n such that a” = 0 for any nilpotent element @ in R. The least
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such integer is called the index of R. We shall show that a periodic ring of
bounded index is a P. I. ring. Let G denote the symmetric group of degree n.
The identity

Sn = ngn(ﬂ')an 20 Xno

OEG

is called the standard identity of degree n.

Proposition 1. Let n be a positive integer and let R be a periodic ring
of index n. Then R satisfies the polynomial identity (s,n)".

Proof. Let J denote the Jacobson radical of R, and x an element of J.
Then there exist positive integers p, ¢ such that x**? = x”. By [4, Theorem
1. 2. 3] all elements of J are right-quasi-regular. Hence there exists y € R
such that (—x?)+y+(—x%)y =0. Then x* = £+ x(—x'+y—x%y) =
(x®—x*") +(x—x*?)y = 0. This implies that J is a nil ideal. Let P be
a primitive ideal of R. By [7, Theorem 2. 3] R/P = MD) for some divi-
sion ring D and some positive integer ¢t = n. Since D is a periodic division
ring, D is commutative by [4, Lemma 3.1.3]. Hence R/P satisfies the
standard identity s,, of degree 2n by [8, Theorem 1.4.1]. Since R/J can
be embedded in the direct product of all primitive factor rings of R, R/J also
satisfies the identity s.n, in other words, s;«{a., az,+++,a:2) € J for all
elements a,, a;,++, @, in R. Since J is a nil ideal of index at most n, we have
that s.n{@., @z, <<+, asn)™ = 0 for all a,, as,-+-,asn € R. This completes the
proof.

If R is a periodic ring, each element x in R can be expressed in the form
y+w, where y” = y for some n = n(y) > 1 and w is nilpotent (e.g., see
[2, Lemma 1]). However it is not known whether this property characterizes
a periodic ring. On the other hand, by [6. Theorem 2], if R is a P. L. ring
in which every element is the sum of two idempotents then, for any x € R,
x°*—x is nilpotent. Hence R is periodic by [3, Proposition 2]. We shall now
prove the following

Theorem 1. Let R be a P. L. ring. If every element of R is expressed
as a sum of two periodic elements, then R is periodic.

Proof. By virtue of Lemma 1, we may assume that R is a prime ring.
Then, by [5, Theorem 1. 4. 2] the center C of R is nonzero. We claim that
C is periodic. Let ¢ be a nonzero element of C. Then, by hypothesis, there
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exist x, y € R such that ¢ = x+y, x™ = x” for some m > n > 0, and y* =
v? for some p > q¢ > 0. Then(c—v)™ =(c—y)" and so ¢®—c" = zy for
some z € C[y](C R). If ¢"—c"is nilpotent, then ¢™ = ¢", because C is
an integral domain. Assume now that ¢”—c" is not nilpotent. Then e = y*~ 97
is a nonzero idempotent and y%¢ = ey? = y°%  Therefore we have that
(c"—c")M(ae—a)=0foralla € R. Letusput L={ae—a|a €R|. Then L
is a left ideal of R, and as seen above, (¢™—c¢™)?L = 0. Since (¢"—c¢")7=%0
and since R is a prime ring, we obtain L = 0, that is, e is a right identity
of R. We can similarly prove that e is a left identity of R. Hence ¢ is the
identity of R. We shall now prove that the characteristic of R is nonzero.
Assume, to the contrary, that the characteristic of R is zero. Then we may
assume that R contains the ring Z of integers as a subring. By hypothesis,
there exist two periodic elements v, w € R such that 3 = v+ w. Obviously
the subring S = Z[v, w] of R generated by v and w over Z is a commutative
ring which is integral over Z. By [1, Theorem 5. 10] there exists a prime
ideal P of S such that PN Z = 0. Consider now the factor ring S = S/P.
Then S is an integral domain which is integral over Z. So, without loss of
generality, we may assume that S is a subring of the field C of complex num-
bers. In general, if @ is a periodic element of C. then the absolute value |a|
of a is either 0 or 1. Hence we have 3 = |#+w | < ||+ |w | < 2, which
is a contradiction. Therefore the characteristic of R is nonzero. Let F de-
note the prime field of C. Since x and y are integral over F, ¢ = x+y is
integral over F. Hence c generates a finite subring of C, and so c is periodic.
Therefore we proved that C is a periodic field. By [8, Corollary 1. 6. 28],
R is a simple P. L. ring. Hence. by Kaplansky's theorem [8, Theorem1.5.
16], R can be identified with the matrix ring M(D) over a division ring D
which is finite dimensional over C. Then D is also periodic, and hence D is
commutative. Thus we get C= D. Therefore R = M,(C) is periodic.

We shall next consider the finitely generated subrings of a periodic P. I.
ring. Clearly a periodic P.I. ring need not be locally finite. For example,
the subring

(O zZ
0 0

is a finitely generated periodic commutative ring, but this is not a finite
ring. We shall prove the following :

)of MAZ)

Theorem 2. Let R be a periodic P. I. ring and let S be a finitely gener-
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ated subring of R. Then the additive group S* of S is a finitely generated
abelian group. Moreover there exists a positive integer n such that S™ is a
finite ring. In particular, if S has an identity, then S is finite.

Proof. Let t(S) denote the torsion submodule of the Z-module S. Then
t(S) is an ideal of S and S/#(S) is torsion-free. Let x be an element of
S/t(S). Then x™*" = x™ for some positive integers m,n. Then we can
easily see that x™" is an idempotent. Since (2x™")**? = (2x™")* for some
positive integers p and q, we obtain a positive integer h such that Ax™" = 0.
Since S/#(S) is torsion-free, we conclude that x™" = 0. Thus S/t(S) is a
nil ring. Since S/t(S) is also a finitely generated P. I. ring, there exits a
positive integer n such that (S/t(S))" =0 by [8, Proposition 1. 6. 34].
Hence we have S" C #(S). Let ¢, ¢s,++, cn generate the subring S. Then
A=lcycy, - cin|1 £ i; £ m] is a finite set, and hence there exists a posi-
tive integer k such that kA = 0. Hence we have kS™ = 0. Let B denote the
set {cucn,-rc, |1 £ i;<m 1 <p=<n|. Then we can easily see that

kS = ZbEB Zkb
Hence &S is a finitely generated Z-module. Let S'denote the ring S/kS
and let us write k£ = II._, p}* where the p, are distinct primes and k; > 0
for all i. Then, for each i, S; ={a € S’|pf‘a = 0} is a subring of S" and
S’ is the direct sum of Si, S:,---,Si. We shall show that S’ is finite. To
show it, it suffices to prove that S; is finite for each i =1, 2,---,¢. Hence,
without loss of generality, we may assume that & = p” for some prime p and
some positive integer h. Let us set = pS’. Then I* =0 and p"~'I=0.
Then the ring S'/I is a finitely generated periodic algebra over Z/pZ satisfy-
ing a polynomial identity. Hence S'/I is a finite dimensional algebra over
Z/pZ by [4, Theorem6.4.3]. Let S/I=1{ao+1I, ai+1---.ag+ I} where
ao =0, a;, -+, aq are elements of S’. Then we can choose elements b,, b, -+,
b, of I such that a,, a,---, aa, b1, bz.+--. b, generate S’. For any 7, j withl =
i, j=< d, we have a unique integer t(i,j) with 1 < #(i, j) = d such that
@a; = ars,; modulo I. Similarly we have a unique integer s(i, j) such that
a;+a; = asu.;; modulo I Let us now set x; = aa;— aps. ;s and y;; = ai+a;—
asq, for each 1 < i, j < d. Let J denote the subring of S' generated by
Xagy Yuvs ba. AvyXag, AyYuy. asz\- Xas Ay Yuy Qv b/\aY for 1 = 0~)8.- '}’g d,
1<y v=d, and1 < A< f. ThenJ is a finitely generated subring of I. Since
I"=0 and p"~'I= 0, J must be finite. We can now easily see that each
element x of S’ can be uniquely expressed in the form a;+ 2, where 0 £ i< d
and z € J. This implies that I = J. Therefore S’ is a finite ring. Conse-
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quently S is a finitely generated Z-module. Since the additive group of
S” is a torsion group, S™ is a finite ring. In particular, if S has an identity,
then S™ = S, and hence S is finite.

As an immediate consequence of this theorem, we obtain the following :

Corollary 1. Let Rbe a P. 1. ring. Then R is locally finite if and only
if R is periodic and the additive group of R is a torsion group.

A ring R is said to be of locally bounded index if every finitely generated
subring of R is of bounded index. Combining Corollary 1 with Proposition 1,
we obtain the following characterization of a locally finite ring.

Corollary 2. A ring R is locally finite if and only if R is a periodic
ring of locally bounded index and the additive group of R is a torsion group.

The following example due to Golod and Shafarevitch shows that a finitely
generated periodic ring with torsion additive group need not be finite.

Example 1. Let p be a prime number. By [4, Theorem 8. 1. 3], there
exists an infinite dimensional nil algebra A over Z/pZ generated by three
elements. Clearly A is generated by those three elements as a ring. Note
that those elements generate infinite subsemigroup of the multiplicative
semigroup of R.

As another corollary of Theorem 2, we obtain the following

Corollary 3. Let R be a P. I. ring. Then the following statements are
equivalent :

(1) R is periodic.

(2) For any finitely generated subring S of R. there exists a positive
integer n such that 8™ is a finite subring.

(3) For any finitely generated subring S of R, there exists a finite
ideal I of S such that S/I is a nilpotent ring.

(4) The ideal t(R) =la € R|na = 0 for some positive integer n| is
locally finite and R/t(R) is a nil ring.

Proof. The implication (1) =>(2) follows from Theorem 2 and (2) = (3)
is obvious.
(3) =(1). Let x be an element of R, and S denote the subring of R
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generated by x. Then there exists a finite ideal I of S such that S/I is
nilpotent. This implies that some power of x generates a finite subring. Hence
there exist distinct positive integers m, n such that x™ = x".
(1)<=>(4). Assume that R is periodic. By Corollary 1 ¢(R) is locally
finite. We also know that R/#(R) is a nil ring by the proof of Theorem 2.
Conversely, suppose that (4) holds, and let x be an element of R. Then
some power of x generates a finite subring of R, and hence x is periodic.

A ring R is periodic if and only if each subsemigroup of R generated by
a single element is finite. If R is a commutative periodic ring, then all finitely
generated subsemigroups of R are finite. However Example 1 shows that this
does not remain valid for noncommutative periodic rings. Thus we have the
following

Conjecture. Let R be a periodic P. I. ring. Then all finitely generated
subsemigroups. of R are finite.
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