ON PERIODIC P. I. RINGS AND LOCALLY FINITE RINGS

Yasuyuki HIRANO

An element x of a ring R is called periodic if there exist distinct positive integers m, n for which $x^m = x^n$. Especially, x is called potent if $x^m = x$ for some positive integer m > 1. A ring R is called periodic if all elements of R are periodic. It is easily seen that a periodic ring R has the property that every element of R is expressible as a sum of a potent element and a nilpotent element. However it is not known whether a ring R with this property is periodic or not. On the other hand, by a result of the author and R is a R. I. ring in which every element is the sum of two idempotents, then R is periodic. In this paper, we shall prove that a R. I. ring R in which every element is expressible as a sum of two periodic elements, is periodic.

We shall next consider the local finiteness of a periodic P. I. ring. A ring R is said to be *locally finite* if any finitely generated subring of R is a finite ring. Let R be a periodic P. I. ring, and S a finitely generated subring of R. We shall show that the additive group of S is finitely generated and that some power of S is a finite ring. Consequently a P. I. ring R is locally finite if and only if R is periodic and the additive group of R is a torsion group. Using this, we shall give a characterization of a locally finite ring.

We begin with the following lemma.

Lemma 1. Let R be a ring. Then R is periodic if and only if all prime factor rings of R are periodic.

Proof. Suppose that all prime factor rings of R are periodic. For each $x \in R$, let $S(x) = \{x^n - x^{n+1}f(x) | n > 0 \text{ is an integer, } f(t) \in \mathbb{Z}[t]\}$, which is multiplicatively closed. By virtue of [3, Proposition 2], R is periodic if and only if $0 \in S(x)$ for all $x \in R$. Assume, to the contrary, that there exists $a \in R$ such that $0 \notin S(a)$. Then, by Zorn's lemma, we can find an ideal I of R which is maximal with respect to the property that $S(a) \cap I = \emptyset$. It is easy to check that I is a prime ideal of R. Hence R/I is periodic by hypothesis. But this contradicts the fact that $S(a) \cap I = \emptyset$.

A ring R is said to be of bounded index (of nilpotence) if there is a positive integer n such that $a^n = 0$ for any nilpotent element a in R. The least

116 Y. HIRANO

such integer is called the *index* of R. We shall show that a periodic ring of bounded index is a P. I. ring. Let G denote the symmetric group of degree n. The identity

$$s_n = \sum_{\sigma \in G} \operatorname{sgn}(\sigma) X_{1\sigma} X_{2\sigma} \cdots X_{n\sigma}$$

is called the standard identity of degree n.

Proposition 1. Let n be a positive integer and let R be a periodic ring of index n. Then R satisfies the polynomial identity $(s_{2n})^n$.

Proof. Let J denote the Jacobson radical of R, and x an element of J. Then there exist positive integers p, q such that $x^{\rho+q}=x^{\rho}$. By [4, Theorem 1.2.3] all elements of J are right-quasi-regular. Hence there exists $y \in R$ such that $(-x^q)+y+(-x^q)y=0$. Then $x^{\rho}=x^{\rho}+x^{\rho}(-x^q+y-x^qy)=(x^{\rho}-x^{\rho+q})+(x^{\rho}-x^{\rho+q})y=0$. This implies that J is a nil ideal. Let P be a primitive ideal of R. By [7, Theorem 2.3] $R/P=M_t(D)$ for some division ring D and some positive integer $t \leq n$. Since D is a periodic division ring, D is commutative by [4, Lemma 3.1.3]. Hence R/P satisfies the standard identity s_{2n} of degree 2n by [8, Theorem 1.4.1]. Since R/J can be embedded in the direct product of all primitive factor rings of R, R/J also satisfies the identity s_{2n} , in other words, $s_{2n}(a_1, a_2, \cdots, a_{2n}) \in J$ for all elements a_1, a_2, \cdots, a_{2n} in R. Since J is a nil ideal of index at most n, we have that $s_{2n}(a_1, a_2, \cdots, a_{2n})^n = 0$ for all $a_1, a_2, \cdots, a_{2n} \in R$. This completes the proof.

If R is a periodic ring, each element x in R can be expressed in the form y+w, where $y^n=y$ for some n=n(y)>1 and w is nilpotent (e.g., see [2, Lemma 1]). However it is not known whether this property characterizes a periodic ring. On the other hand, by [6, Theorem 2], if R is a P. I. ring in which every element is the sum of two idempotents then, for any $x \in R$, x^3-x is nilpotent. Hence R is periodic by [3, Proposition 2]. We shall now prove the following

Theorem 1. Let R be a P. I. ring. If every element of R is expressed as a sum of two periodic elements, then R is periodic.

Proof. By virtue of Lemma 1, we may assume that R is a prime ring. Then, by [5, Theorem 1.4.2] the center C of R is nonzero. We claim that C is periodic. Let c be a nonzero element of C. Then, by hypothesis, there

exist $x, y \in R$ such that $c = x+y, x^m = x^n$ for some m > n > 0, and $y^p = x^p = x^p$ y^q for some p>q>0. Then $(c-y)^m=(c-y)^n$, and so $c^m-c^n=zy$ for some $z \in C[y](\subset R)$. If $c^m - c^n$ is nilpotent, then $c^m = c^n$, because C is an integral domain. Assume now that $c^m - c^n$ is not nilpotent. Then $e = y^{(p-q)q}$ is a nonzero idempotent and $y^q e = ey^q = y^q$. Therefore we have that $(c^m-c^n)^q(ae-a)=0$ for all $a\in R$. Let us put $L=\{ae-a\,|\,a\in R\mid$. Then Lis a left ideal of R, and as seen above, $(c^m-c^n)^qL=0$. Since $(c^m-c^n)^q\neq 0$ and since R is a prime ring, we obtain L=0, that is, e is a right identity of R. We can similarly prove that e is a left identity of R. Hence e is the identity of R. We shall now prove that the characteristic of R is nonzero. Assume, to the contrary, that the characteristic of R is zero. Then we may assume that R contains the ring Z of integers as a subring. By hypothesis, there exist two periodic elements $v, w \in R$ such that 3 = v + w. Obviously the subring $S = \mathbf{Z}[v, w]$ of R generated by v and w over **Z** is a commutative ring which is integral over Z. By [1, Theorem 5.10] there exists a prime ideal P of S such that $P \cap \mathbf{Z} = 0$. Consider now the factor ring $\overline{S} = S/P$. Then \overline{S} is an integral domain which is integral over **Z**. So, without loss of generality, we may assume that \overline{S} is a subring of the field C of complex numbers. In general, if a is a periodic element of C. then the absolute value |a|of a is either 0 or 1. Hence we have $3 = |\bar{v} + \bar{w}| \le |\bar{v}| + |\bar{w}| \le 2$, which is a contradiction. Therefore the characteristic of R is nonzero. Let F denote the prime field of C. Since x and y are integral over F, c = x + y is integral over F. Hence c generates a finite subring of C, and so c is periodic. Therefore we proved that C is a periodic field. By [8, Corollary 1.6.28], R is a simple P. I. ring. Hence, by Kaplansky's theorem [8, Theorem 1.5. 16], R can be identified with the matrix ring $M_t(D)$ over a division ring D which is finite dimensional over C. Then D is also periodic, and hence D is commutative. Thus we get C = D. Therefore $R = M_t(C)$ is periodic.

We shall next consider the finitely generated subrings of a periodic P. I. ring. Clearly a periodic P. I. ring need not be locally finite. For example, the subring

$$\begin{pmatrix} 0 & \mathbf{Z} \\ 0 & 0 \end{pmatrix}$$
 of $M_2(\mathbf{Z})$

is a finitely generated periodic commutative ring, but this is not a finite ring. We shall prove the following:

Theorem 2. Let R be a periodic P. I. ring and let S be a finitely gener-

118 Y. HIRANO

ated subring of R. Then the additive group S^+ of S is a finitely generated abelian group. Moreover there exists a positive integer n such that S^n is a finite ring. In particular, if S has an identity, then S is finite.

Proof. Let t(S) denote the torsion submodule of the **Z**-module S. Then t(S) is an ideal of S and S/t(S) is torsion-free. Let x be an element of S/t(S). Then $x^{m+n}=x^m$ for some positive integers m,n. Then we can easily see that x^{mn} is an idempotent. Since $(2x^{mn})^{p+q}=(2x^{mn})^p$ for some positive integers p and q, we obtain a positive integer h such that $hx^{mn}=0$. Since S/t(S) is torsion-free, we conclude that $x^{mn}=0$. Thus S/t(S) is a nil ring. Since S/t(S) is also a finitely generated P. I. ring, there exits a positive integer n such that $(S/t(S))^n=0$ by [8, Proposition 1.6.34]. Hence we have $S^n \subset t(S)$. Let c_1, c_2, \cdots, c_m generate the subring S. Then $A=|c_{i_1}c_{i_2}\cdots c_{i_n}|1 \le i_j \le m|$ is a finite set, and hence there exists a positive integer k such that kA=0. Hence we have $kS^n=0$. Let B denote the set $|c_{i_1}c_{i_2}\cdots c_{i_p}|1 \le i_j \le m$, $1 \le p \le n|$. Then we can easily see that $kS=\sum_{b\in B} Zkb$.

Hence kS is a finitely generated **Z**-module. Let S' denote the ring S/kSand let us write $k = \prod_{i=1}^t p_i^{k_i}$ where the p_i are distinct primes and $k_i > 0$ for all i. Then, for each i, $S_i = |a \in S'| p_i^{k_i} a = 0|$ is a subring of S' and S' is the direct sum of S_1', S_2', \dots, S_t' . We shall show that S' is finite. To show it, it suffices to prove that S_i is finite for each $i=1,2,\dots,t$. Hence, without loss of generality, we may assume that $k = p^h$ for some prime p and some positive integer h. Let us set I = pS'. Then $I^h = 0$ and $p^{h-1}I = 0$. Then the ring S'/I is a finitely generated periodic algebra over $\mathbb{Z}/p\mathbb{Z}$ satisfying a polynomial identity. Hence S'/I is a finite dimensional algebra over $\mathbb{Z}/p\mathbb{Z}$ by [4, Theorem 6.4.3]. Let $S'/I = \{a_0 + I, a_1 + I, \dots, a_d + I\}$ where $a_0 = 0, a_1, \dots, a_d$ are elements of S'. Then we can choose elements b_1, b_2, \dots, b_d b_f of I such that $a_1, a_2, \dots, a_d, b_1, b_2, \dots, b_f$ generate S'. For any i, j with $1 \le a_1 + b_2 + \cdots + b_d$ $i, j \leq d$, we have a unique integer t(i, j) with $1 \leq t(i, j) \leq d$ such that $a_i a_j \equiv a_{t,i,j}$ modulo I. Similarly we have a unique integer s(i,j) such that $a_i + a_j \equiv a_{s(i,j)}$ modulo I. Let us now set $x_{ij} = a_i a_j - a_{b(i,j)}$ and $y_{ij} = a_i + a_j$ $a_{s(i,j)}$ for each $1 \leq i, j \leq d$. Let J denote the subring of S' generated by $x_{\alpha\beta}$, $y_{\mu\nu}$, b_{λ} , $a_{\gamma}x_{\alpha\beta}$, $a_{\gamma}y_{\mu\nu}$, $a_{\gamma}b_{\lambda}$, $x_{\alpha\beta}a_{\gamma}$, $y_{\mu\nu}a_{\gamma}$, $b_{\lambda}a_{\gamma}$ for $1 \leq \alpha, \beta, \gamma \leq d$, $1 \le \mu$, $\nu \le d$, and $1 \le \lambda \le f$. Then J is a finitely generated subring of I. Since $I^h = 0$ and $p^{h-1}I = 0$, J must be finite. We can now easily see that each element x of S' can be uniquely expressed in the form $a_i + z$, where $0 \le i \le d$ and $z \in J$. This implies that I = J. Therefore S' is a finite ring. Consequently S is a finitely generated **Z**-module. Since the additive group of S^n is a torsion group, S^n is a finite ring. In particular, if S has an identity, then $S^n = S$, and hence S is finite.

As an immediate consequence of this theorem, we obtain the following:

Corollary 1. Let R be a P. I. ring. Then R is locally finite if and only if R is periodic and the additive group of R is a torsion group.

A ring R is said to be of locally bounded index if every finitely generated subring of R is of bounded index. Combining Corollary 1 with Proposition 1, we obtain the following characterization of a locally finite ring.

Corollary 2. A ring R is locally finite if and only if R is a periodic ring of locally bounded index and the additive group of R is a torsion group.

The following example due to Golod and Shafarevitch shows that a finitely generated periodic ring with torsion additive group need not be finite.

Example 1. Let p be a prime number. By [4, Theorem 8.1.3], there exists an infinite dimensional nil algebra A over $\mathbb{Z}/p\mathbb{Z}$ generated by three elements. Clearly A is generated by those three elements as a ring. Note that those elements generate infinite subsemigroup of the multiplicative semigroup of R.

As another corollary of Theorem 2, we obtain the following

Corollary 3. Let R be a P. I. ring. Then the following statements are equivalent:

- (1) R is periodic.
- (2) For any finitely generated subring S of R, there exists a positive integer n such that S^n is a finite subring.
- (3) For any finitely generated subring S of R, there exists a finite ideal I of S such that S/I is a nilpotent ring.
- (4) The ideal $t(R) = |a| \in R | na| = 0$ for some positive integer n | is locally finite and R/t(R) is a nil ring.

Proof. The implication $(1) \Rightarrow (2)$ follows from Theorem 2 and $(2) \Rightarrow (3)$ is obvious.

(3) \Rightarrow (1). Let x be an element of R, and S denote the subring of R

120 Y. HIRANO

generated by x. Then there exists a finite ideal I of S such that S/I is nilpotent. This implies that some power of x generates a finite subring. Hence there exist distinct positive integers m, n such that $x^m = x^n$.

 $(1) \Leftrightarrow (4)$. Assume that R is periodic. By Corollary 1 t(R) is locally finite. We also know that R/t(R) is a nil ring by the proof of Theorem 2.

Conversely, suppose that (4) holds, and let x be an element of R. Then some power of x generates a finite subring of R, and hence x is periodic.

A ring R is periodic if and only if each subsemigroup of R generated by a single element is finite. If R is a commutative periodic ring, then all finitely generated subsemigroups of R are finite. However Example 1 shows that this does not remain valid for noncommutative periodic rings. Thus we have the following

Conjecture. Let R be a periodic P. I. ring. Then all finitely generated subsemigroups of R are finite.

REFERENCES

- M. F. ATIYAH and I. G. MACDONALD: Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass. 1969.
- [2] H. E. Bell: A commutativity study for periodic rings, Pacific J. Math. 70 (1977), 29-36.
- [3] M. CHACRON: On a theorem of Herstein, Canad. J. Math. 21 (1969), 1348-1353.
- [4] I. N. HERSTEIN: Noncommutative Rings, Math. Assoc. America, Carus Monograph No. 15, 1968.
- [5] I. N. HERSTEIN: Rings with Involution, Univ. of Chicago, Chicago, 1976.
- [6] Y. HIRANO and H. TOMINAGA: Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (1988), 161-164.
- [7] I. KAPLANSKY: Topological representations of algebras, I, Trans. Amer. Math. Soc. 68 (1950), 62-75.
- [8] L. H. ROWEN: Polynomial Identities in Ring Theory, Academic Press, 1980.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

(Received December 5, 1990)