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Introduction. Let R be a ring and d a derivation of R. The derivation
d is said to be integral if it satisfies a monic polynomial with coeflicients in
R [13]. A weaker condition was considered in [3] and [4], the so called con-
dition (F). A derivation d is said to satisfy the condition (F') on R if for ev-
ery a € R there exists a positive integer number m = m(a) such that d"(a)
..... d™ '(a). In this paper
a derivation of this type is said to be locally integral. A locally integral en-
domorphism of R is defined similarly. The purpose of this paper is to study
locally integral derivations and endomorphisms of commutative rings.

Throughout this paper K is a commutative ring with an identity and R is
a commutative K-algebra. In § 1 we give some basic facts concerning a lo-
cally integral K-derivation or K-endomorphism (K-mapping, for short) ¢ of R.
We collect here some properties of prime, o-prime and quasi-prime ideals.
This properties are easy and some of them are known for derivations, but we
include it here for the sake of completeness and to justify the convenience of

is contained in the ideal of R generated by a.d(a)

studying locally integral mappings.

In § 2 we consider K-mappings of finitely generated algebras and power
series rings, and we include several examples and contraexamples.

In § 3 we prove that the o-prime spectrum of R is a spectral space, when
o is locally integral (see [6]). It follows that in this case there exists a ring
S such that the topological spaces Spec,(R) and Spec(S) are homeomorphic.

1. Definitions and basic facts. Let R be a commutative K-algebra and
let o be either a K-derivation or a K-endomorphism of R.

An ideal I of R is said to be a o-ideal if o(I) C I. If T is a subset of
R. then we denote by (T') the ideal of R generated by T and by [T] the small-
est o-ideal of R containing T. When T = {a,,..., a,} is a finite set we write
simply (ai...., a,) and [a,..... a,] instead of ({ay..... an}) and [la,....,an{]. Itis
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clear that for ¢ € R we have [a] = (a,d(a), 6%(a),...).
The following is easy to prove

Lemma 1.1. Let a € R. The ideal [a] is finitely generated if and only
if [a] = (a.0(a),....c"(a)), for some natural number n.

The mapping o is said to be integral if there exists a finite set {aq, a:.....
an_, | of elements of R such that

o+ ap 0"+ a0+ a0’ = 0.

Denote by I(c) the set of all the elements a € R such that the ideal [a]
is a finitely generated ideal of R. By Lemma 1.1 we see that a € 1(¢) if and
only if there exists a natural number n and elements bq,...,bn-, in R such that

o(a)+bu_1o™ N a)+ -+ bola)+ba = 0.

We say that o is locally integral if 1(os) = R. Thus, if ¢ is integral,
then it is locally integral. Also if R is a Noetherian ring, then every o is
locally integral.

Locally integral derivations have already appeared in [4] and [3]. In
these papers a locally integal derivation is a derivation which satisfies the so
called condition (F') on R. This condition is very useful in those papers.

If I is an ideal of R, we denote by I# the biggest o-ideal contained in I.
Note that

Is=la€ l:0%a) € foralln=1}\.

A proper o-ideal P of R is said to be g-prime if AB C P for any o-ideals
A and B implies either A C P or B C P. This definition is standard when
o is a derivation (see [3],[4],[5].[7]). But if o is an automorphism of R
there are some other definitions which are used (see [1].[2],[14],[15]). We
have chosen here the above definition mainly to unify the exposition. But evi-
dent modifications can be introduced in order to get results in the other cases.

For example, if o is an automorphism of R an ideal I is said to be g-in-
variant if o(I) = I. A definition of o-prime ideals using o-invariant ideals
instead of ¢-ideals is used in [1] and [2]. Then we may say that o is locally
integral if the smallest o-invariant ideal of R containing a is finitely generated,
for every a € R. With this new approaching one can get similar properties
to those we will prove in this paper.

A proper o-ideal P of R is said to be quasi-prime if there exists a prime
ideal Q of R such that P = Q¢. Quasi-prime ideals of differential rings may
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be characterized in several useful ways and they play an important role in
differential algebra (see [8],(9],[10],[11],[12]).

It is not difficult to see that every quasi-prime ideal is o-prime and that
if R is a Noetherian ring these two notions coincide [11]. Also, it is well-
known that if o is a derivation, then there are ¢-prime ideals which are not
quasi-prime ([10],[5],{3]). It is easy to give an example when ¢ is an auto-
morphism too.

Now we prove the following

Proposition 1.2. Let P be a o-ideal of R. If o is locally integral, then
P is g-prime if and only if P is quasi-prime.

Proof. Assume that P is g-prime and consider the family of ideals A of
R with As = P. If (A:)ico is a chain of ideals of this type and we put A =
Jico Ai, then P = Az follows since o is locally integral. Therefore there
exists an ideal @ of R which is maximal with respect to Q+ = P. It is easy
to see that Q is prime. The proof is complete because the converse is always
true.

If A is an ideal of R we denote by r(A) the radical of A, i.e., the inter-
section of all prime ideals of R containing A. The ideal A is said to be a
radical ideal (or semiprime) if 7(A) = A. Similarly, a o-ideal I is said to
be o-semiprime if I equals the intersection of all the g-prime ideals of R
containing I.

As an immediate consequence of Proposition 1.2 we obtain

Corollary 1.3. If o is locally integral and I is a o-semiprime (in par-
ticular, o-prime) ideal, then r(I)sx = 1.

For the next Corollary we need the following

Lemma 1.4. Let d be a derivation of R. Then every radical d-prime
ideal is prime.

Proof. First observe that if A is a radical d-ideal of R and x € R, then
the ideal (A:x) = |a € R:ax € Al is again a d-ideal. Assume now that P
is a radical d-prime ideal and for x,y € R we have xy € P. Therefore y €
(P:x)andso[y] C (P:x). Consequently x € (P:[y]), hence [x] € (P:[y])
and it follows that [x][y] € P. Thus either x € P or y € P and we are done.

Corollary 1.5. Assume that R contains the field Q of rational numbers
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and d is a locally integral derivation of R. Then every d-prime ideal of R is
prime,

Proof. Suppose that P is a d-prime ideal of R. It is well-known that
the radical r(P) is a d-ideal and, by Corollary 1.3, P = r(P)s = r(P).
Then P is radical and so prime, by Lemma 1.4.

2. Examples and Contraexamples. We begin this section with the fol-
lowing extension of ([3], Theorem 4.2). Note that in [3] the result was proved
‘for a differential ring and n = 1 (see Theorem 4.1).

Theorem 2.1. Let R =K[a,...,an] a finitely generated algebra over K
and ¢ : R — R either a K-derivation or a K-endomorphism of R. Then ¢ is lo-
cally integral.

Proof. Take any b € R and choose polynomials g, fi,....fa in K[X\,...,
X»]) such that b = g(a,,...,a,) and o(a;) = flai,....as), for i = 1,...,n. De-
note by k the smallest subring of K containing all the coefficients of the
polynomials g. fi,....fa, and by S the ring k[a,,....a,]. Then b € S and o(S)
C S. Put r =0/S. So r is locally integral since S is Noetherian. Thus
there exist an integer m and a finite set {by..... bn_i | of elements of S such
that

™)+ b 7™ (b) -+ bob = 0.
Now it is clear that b € 1(g).

The following example shows that a similar result does not hold for an
algebra which is not finitely generated.

Example 2.2. Let R = K[X,\, X,,...] a polynomial ring in infinitely
many indeterminates and let o be the K-derivation (or K-endomorphism) of R
defined by 0(X,) = Xpo. forn = 1. Then [X,\] = (X1, X,,...) is not finitely
generated and so ¢ is not locally finite.

Now, let R be the power series ring K[[X,,....X»]] and d a K-derivation
of R. If K is a Noetherian ring, then d is locally integral. Also, if K is a
ring of characteristic a prime integer p, then d is integral ([13], Theorem
4.1) and so d is locally integral. It is natural to ask whether d is always lo-
cally integral. The following example shows this is not true even for n = 1.
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Example 2.3. Let K= Z[Y,, Y,,...] a polynomial ring in infinitely many
indeterminates over the ring of integer numbers Z. and put R = K[[X]]. Then

o . .
the derivation d = —< is not locally integral.

oX
Proof. Put f= 2.7, Y. X* € R. We show that f & 1(d).
Observe that

d™(f) = n! Vot ainYan X+ a2 Yo X2+,

for every n = 1, where a;n € Z.

Suppose that f € 1(d). Then
d™Nf) = bof +bd(f)+---+ bd™(f).

for some by, by.....b, in R. Comparing the constant terms in the above equal-
ity we get

(n+1)! Yo = at Y14+ a, Y.
for some a,,...,a, in K. This is clearly a contradiction.

Next we will give a similar example as above for automorphisms. But
for this we need the following results which are also interesting by their own,

Let R be an algebra over the field of rational numbers Q andd: R » R
a derivation of R. We denote by S = R[[X]] the power series ring in one
indeterminate X. The derivation d can be extended to a derivation d*: S —
S by d*(Xmea:X?) = 2rod(a;)X’. Hereafter we denote d* simply by d.

It is well-known that the derivation d induces an automorphism exp(d) : S

- S defined by exp(d)(f) = 2%, X d¥(f), for every f € S. We put exp(d)

i!

= ¢. We will keep these notations until the end of the proof of the following

Theorem 2.4. The derivation d is locally integral if and only if R C
1(0).

To prove the theorem we need a preparation. To avoid writing too much
we will give a sketch of the proof omitting several computations.

First, suppose that r is an automorphism of the ring R and denote by
R[t: r] the skew polynomial ring of automorphism type. It is clear that for
any monic polynomial A(¢) € R[#; 7] there exists a monic polynomial g(‘t) €
R[t: 7] such that k() = g(t—1). Therefore. for any a € R we have h(7)(a)
= 0 if and only if g{r—1)(a) = 0 (we will denote by 1 the identity mapping).
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So the following is clear. -

Lemma 2.5. a € 1(7) if and only if there exists a monic polynomial g(t)
€ R[t;r] such that g(r—1)(a) = 0.

Let f € § = R[[X]] and o= exp(d). We have (a—1)(f) = v
d’(f). Denote by As. the following rational number a

1

Jr4erds=T ]1!"‘]3!
Jizl

Asr =

By induction we easily get

Lemma 2.6. For any s =1, (c—1)%(f) = 2 7-s Asy X'd"(f), where
Asr € Q and Ass = 1.

We will need also the following

Lemma 2.7, Assume that a € R and d"(a)+ 2725 a,d(a) = 0, for some
given elements ao,...,an_, in R. Then for any integer m = n and elements c,,
.., Cm € R, there exist yo,..., Yo in R with 2,78 y.d'(a)+ 2 "0 c;d’(a) = 0.

Proof. If m=n it is enough to choose y;, = cpa;—c;, for i = 0,...,
n—1.
Since

d™(a) = — 3 (d(a)d(a)+ ad " (a)),
we see that for s > n there exist by,....bs_; in R with
d%(a)+ 3 bid(a) = 0.
Now the proof can easily be completed by induction.

Proof of Theorem 2.4. Assume that R C I(0) and take any a € R. By
Lemma 2.5 there exists a monic polynomial g(t) € S[t¢: o) with g(o—1)(a)
= 0. So, from Lemma 2.6 we get a relation of the following type

lgl /\mzdl(a)Xl+fn_l <l=§:_lAn—l.ldl(a)Xl)+

ot (5 Aud@)X ) +foa = 0,



LOCALLY INTEGRAL DERIVATIONS AND ENDOMORPHISMS 109

where fi = D50 1 X7, i =0,...,n—1(r;; € R). We get reoa = 0 and ri,d(a)
= —7rna. Hence it follows by induction that r,d*(a) = 2525 ci,d(a), for
every s = 1, where ¢; € R.

Take any u < n. Considering the coefficient of X™* in (1) and using an

induction argument we prove that for all s = u we have
s-1 )
ruod’(a) = 2 cusid¥a), where cyus; € R. (2)
=0

Now, consider the coefficient of X" in the relation (1) and use the rela-
tions (2) to substitute the terms of the form A;,7;d™a). We get a relation
of the type d™(a)+ b,_,d" (a)+---+byd(a)+ba = 0, where b; € R. This
gives a € 1(d) and so d is locally integral.

Conversely, assume that d is locally integral and take again any a € R.
Then there exist ao,...,a,_; in R such that

d"(a)+ %, aida) = 0. (3)
We have to find a solution for the following equation

(e—1)%a) +fri(o—1)""(a)+
-+ filo—1)a)+ foa = 0, (4)

where f; = 2)1',',-)(", i=0,..n—1(ry; € R).

We put r;; =0 for i+j<n, 1p-u = ap-1,..., Tin-1 = @, and 7Ton = @q.
So all the coefficients of X’ in the first member of (4) are zero, for 0 < j <
n. Finally, using (3). Lemma 2.7 and an induction argument we obtain all the
coefficients 7;; in order to get a solution for (4). The proof is complete.

Now we are in position to give the following

Example 2.8. Let R and d be as in Example 2.3 and let ¢ be the associ-
ated automorphism exp(d) : R[[Y]] = R[[Y]]. Then o is an S-automorphism
of the ring S[[X]], where S = K|[[Y]], since o(Y) = Y. By Theorem 2.4,

o is not locally integral.

Suppose d is a derivation of a ring R. Then we put Nil{d) ={a € R:
there exists n = 0 with d"(a) = 0|. It is easy to see that Ni{(d) is a subring
of R. The derivation d is said to be locally nilpotent if Nil(d) = R. Clearly
a locally nilpotent derivation is locally integral.

The fact that Nil(d) is a subring of R is a very useful fact concerning
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locally nilpotent derivations. There is a natural question to be risen : is
1(d) a subring of R when d is a derivation? We finish this section with two
examples showing that the elements a+b and ab are not, in general, in I(d)
when a. b € 1(d).

Example 2.9. Let K be a ring and R = K[X,, X,,...] a polynomial ring
in infinitely many indeterminates. Define the K-derivation d of R by d(X,) =
XoXna, forn=12..... Then X\, X, € 1(d) and X,+ X, £ 1(d).

Proof. 1t is clear that X,, X, € 1(d). Consider the sequence of elements
of R defined by e, = XWX+ Xu42), n=0.1,2..... First we prove

d(an,) = X7 ' av+(nXo+ Xnis)an—an,,, for any n = 0. (5)
In fact

d(an) = n X7 X Xo( X1+ X o) + XX X+ Xy 2 X as)
= Tlean‘l“X?H X2+X?Xn-2Xn+3
= nxzan"l'X;Hl au+Xn+san_X¥H(Xl+Xn+3)
= XTao+(nXo+ Xnis)an— tns.

Let A be the ideal of R generated by (a,. a;. a,,...). By (5), d(A) C A
and so [a,] € A. Also a; = (X, + Xs)ac—d(a,) € [as]. Therefore we easily
get A = [a,] using (5) and an induction argument.

Suppose [a,] is finitely generated. Then there exists n = 2 with [a,] =
{ao..... @n). Thus ap., = boao+---+ bnan for some b, € R, i =0,....n. Ap-
plying to this relation the K-homomorphism of rings @: R — K defined by
P(X,) =1, 9(X,) == P(Xpy2) = —1 and (X;) =0 for j = n+3. we
get the contradiction 1 = 0. Therefore X, + X, = a, & 1(d).

Example 2.10. Let Z, be the field of two elements and put R = Z,[X,.
X,....] the polynomial ring in infinitely many indeterminates. Let d be the
derivation of R defined by d(X,) = X, X,+1. d(X,) = X, X;4+1 and d(X,) =
Xnw, forn = 3. Then X, X, € 1(d) and X, X, & 1(d).

Proof. The elements X, and X, belong to 1(d) because for i = 1,2 we
have

dZ(Xi) == d(Xi«l)Xi+Xi+l d(Xt)-

We define a sequence as follows: a; = X, X., a; = X, + X, an = X2 X
4+ enXn. forn =3, where e =0if fnande, =1 if 2 |n.
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It is not difficult to check that for every n = 1 there exist b, € R and
s < n such that d(a,) = bpas+as.;. Therefore [a\] = (a;,q.....).

Suppose that [a] is a finitely generated ideal of R. Then there exists
n = 2 such that [a,] = (a1, as,....a,). We may assume 2 Y nand n=2/4+1 =
3. Therefore

zpe2 = C1O1F -+ Corp1lnya,

for some ci,..., Cz2;+; in R. Applying to this relation the ring homomorphism
@: R— Z, defined by @(X;:.1) = 1 and 9(X;) = 0 for j + 2141, we get the
contradiction1 = 0. So X, X, = a, & 1(d).

3. Spectral spaces. For any ring R we denote by Spec(R) the set of
all prime ideals of R. It is well-known that Spec(R) is a topological space
(with the Zariski topology) in which closed sets are of the form V(E) = | P
€ Spec(R) : P D E/|, and open sets are of the form D(E) = {P € Spec(R):
P 2 E|, where E is an arbitrary subset of R.

A topological space is said to be spectral [6] if it is T, and quasi-compact,
the quasi-compact open subsets are closed under finite intersection and form
an open basis, and every non-empty irreducible closed subset has a generic
point. For any ring R, Spec(R) is spectral. Moreover, if X is an spectral
topological space there exists a ring S such that X is homeomorphic to
Spec(S)([6], Theorem 6).

For a differential ring (R.d), a corresponding question has been consid-
ered in [9]. It is proved that Quas(R), the set of all quasi-prime ideals of
R with the evident topology, is spectral if R satisfies the ascending chain
condition on the so called g-radical ideals ([9]. Theorem 2.9).

The purpose of this section is to prove a result for (R, ¢), where ¢ is
either a derivation or an endomorphism which is locally integral, without any
further assumption.

Assume that R is a K-algebra o: R = R is either a K-derivation or a K-
endomorphism and consider Spec,(R), the set of all o-prime ideals of R. The
set Spec,(R) is always non-empty because every maximal o-ideal is o-prime.
If E is a subset of R denote

Vo(E) =1{P € Spec,(R): P D E}and
D,(E) =|P € Spec,(R): P 2 E|.

It is clear that Spec,(R) is a topological space in which closed and open
sets are of the form V,(E) and D,(E), respectively. We will prove the fol-
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lowing

Theorem 3.1. If o is locally integral, then Spec,(R) is a spectral space.
Combining this with ([6], Theorem 6) we have

Corollary 3.2. If o is locally integral, then there exists a ring S such
that the topological spaces Spec,(R) and Spec(S) are homeomorphic.

To prove Theorem 3.1 we start with the following

Lemma 3.3. If o is locally integral and x € R, then Dy(x) is a quasi-
compact open set, where D (x) = Ds(lx]).

Proof. Define ¢: Spec(R) — Spec,(R) by @(P) = P., for any P &
Spec(R). By Proposition 1.2 we know that @ is a surjective mapping. It is
easy to check that if E is a subset of R then @7'(D,(E)) = D([E]). So @ is
a continuons mapping. Since o is locally integral the ideal [x] is finitely gen-
erated and so the set D([x]) is quasi-compact. Hence D,(x) = @(D[x]) is
also quasi-compact.

Corollary 3.4. Let E be a subset of R. If o is locally integral. then the
set Dy(E) is quasi-compact if and only if D,(E) = D,(E,), for some finite
subset E, of R.

Proof. If E, = |xy,....2x5} is a finite subset of R, then D (E,) = U,
D,(x;) is quasi-compact by Lemma 3.3. The converse follows easily from
the equality Dy(E) = Uxer Do(x).

Lemma 3.5. Assume that o is locally integral. Then

(i) The space Spec,(R) is quasi-compact.

(ii) Quasi-compact open sets form an open basis of Spec,(R).
(i71) Quasi-compact open sets are closed under finite intersection.

Proof. (i) and (ii) follow from Lemma 3.3 since Spec,(R) = D,(1) and
Da'(E) = UxEE DO’(I)-

(iii) First note that every ideal of the form [a,,....a,] is finitely generated
since [ai,...,a,] = [a;]+---+[an] and o is locally integral. Suppose that
D, = D,(E;) are quasi-compact open sets, i = 1,..., n. By Corollary 3.4 we

may assume that E,.....E, are finite. So the ideal I = [E,].--[E,] is finitely
generated and D, N---N D, = D,(I) is quasi-compact.
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Lemma 3.6. If F is a non-empty irreducible closed subset of Specs(R),
then there exists a o-prime ideal P of R such that F = V,(P).

Proof. Since V,(E) = V,([E]) we may assume there exists a o-ideal
A of R with F = V,(A). Using the Zorn's Lemma it is easy to see that there
exists a o-ideal P such that F = V,(P) and P is maximal among the o-ideals
A with F = V_(A). Then P # R because F is non-empty. We show that P
is o-prime. In fact, let A and B be o-ideals of R such that AD P, B2 P
and ABC P. So F =V, (P) = V,(A) U V,(B). Since F is irreducible
either V,(A) = F or V,(B) = F and it follows that either A = Por B=PF.

Proof of Theorem 3.1. It is clear that Spec,(R) is T,. By Lemma 3.6
every non-empty irreducible closed subset has a generic point. The other
three properties hold by Lemma 3.5.

Finally, assume that R, and R; are K-algebras, o, : R, = R, and o, : R;
— R, are both K-derivations or K-endomorphisms and f: R, = R, is a ho-
momorphism of K-algebras with fo gy = a0 f. Denote by f: Spec,,(R;) —
Specq,(R,) the mapping defined by f(P) = f~(P), for all P € Spec,,(R.). It
is easy to check that f is a (well-defined) continuous mapping and that the in-
verse images of quasi-compact open sets are quasi-compact. Therefore, using
again ([6], Theorem 6) we have

Corollary 3.7. Under the above assumptions, if oy and o, are locally
integral then there exist rings S, and S, and a ring homomorphism h: S, =
S, such that the following diagram is commutative :

Speco(R2) b Speca(R))
|9 - [}
Spec(S.) = Spec(S,),

where the vertical arrows are canonical and h(Q) = h"Y(Q), for any Q €

Spec(S,).
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