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0. Introduction. In his papers [3] and [4], M. Chacron studied R-alge-
bras A satisfying the following condition:
(C) For each x,y € A, there exist f(X), g(X) € X?R[X] such that
[x— f(x). y—&(y)] = 0.
More generally, in [16]., W. Streb introduced the following condition :
(S) For each x, y € A, there exists f(X.Y) € K; such that [x, y] =
flx, y).
Recently, in [17], he gave a classification of non-commutative rings. In our
previous paper [14], the main results of [17] have been extended to algebras
as follows:

Theorem 0.1 ([14, Theorem 1.1]). Let A be a non-commutaiive R-
algebra (A = Z). Then there exists a factorsubalgebra of A which is of type
a). a)r. b), ¢), d), e) or f):

a) (R/m)m:(Rém R{)m

a)r R/m) = (3 2;2) where m is a maximal ideal of R.

), where M is a maximal ideal of R.

b) A non-commutative trivial extension T X M, where T is an R-alge-
bra generaied by one elemeni withoul non-zero zero-divisors, and M
is an irreducible bimodule over the R-algebra T and a faithful lefi
and right T-module.

c) A non-commutative division R-algebra.

d) A simple radical R-algebra without non-zero zero-divisors.

e) An R-algebra B generated by two elements in Anny(D{(B)) such thai
D(B) is the heart of B.

f) An R-algebra B generated by iwo elements such that D(B) is the
heart of B, D(B) C Z(B) and Anng(D(B)) is a commutative max-
imal ideal of B.

Theorem 0.2 ([14. Theorem 1.2]). Let A be a non-commutative R-
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algebra with 1. Then there exists a factorsubalgebra of A which is of type
a)', b)', ¢), d)', &) or f)':

a)' (R{)m 2;2 ), where m is a maximal ideal of R.

b)' A non-commutative trivial extension T X M, where T is an initegral
domain which is an R-algebra generated by one element together
with 1, and M is an irreducible bimodule over the R-algebra T and
a faithful left and right T-module.

¢) A non-commutative division R-algebra.

d)' A domain which is an R-algebra generated by 1 and a simple radical
subalgebra.

e)' An R-algebra B with 1 generaied by 1 and iwo elements in
Anng(D(B)) such that D(B) is the heart of B.

f)' An R-algebra B with 1 generated by 1 and two elemenis such that
D(B) is the heart of B, D(B) C Z(B) and Anng(D(B)) is a com-

mutative maximal ideal of B.

A commutative ring R with 1 is called an .4-ring if R is either a finitely
generated ring or a finitely generated S-algebra, where S/p is an algebrai-
cally closed field for any prime ideal p of S; R is called an #-ring if R is
a finitely generated S-algebra, where the quotient field of S/p is a perfect
field for any prime ideal p of S. Needless to say, every .4-ring is an &-ring.

Proposition 0.3 ([14. Proposition 1.6]). Let R be an .4-ring.
(1) Suppose that R is a finitely generated ring. If an R-algebra A is
of type b) (resp. b)'), then A is isomorphic to some

M) = {(5,6)

e f e Kl.

where K is a finite field with a non-trivial automorphism o.
(2) If R is not a finitely generated ring, then no R-algebra is of type
b) or b)\.

Let ( )) be an element of Ms{(K). and n a positive integer. Then

a B
0 ola
PR (8" (a(a")—a?((;fn()a)—a)"ﬂ) if o ¢ K°
(*) (O a(a)) o (a" na"“ﬂ')

0 o if « € K°
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This formula will be used repeatedly in the subsequent study.

Proposition 0.4 ([14, Proposition 1.7]). There exists no algebra of
type f) or )! over an P-ring.

Theorem 0.5 ([14, Theorem 3.6])., Let A be an algebra over an P-ring
R, and n a positive integer. Then the following conditions are equivalent:

1) A satisfies the identities [X™ Y"] = 0 and [X—X™ Y—Y"] =0
for some m > 1,

2) A satisfies (S) and the identity [X™, Y™] = 0.

3) A is a subdirect sum of R-algebras each of which has one of the
Jollowing types :

i) A commutative algebra.

i1) Mu(K)., where (| K|—1)/(|K°|—1) divides n.

In applications of the above results, we shall prove several commuta-
tivity theorems for algebras and rings, together with some related results.

Throughout the present paper, R will represent a commutative ring with
1, and A an R-algebra. As for notations and terminologies used without
mention, we follow [14].

We shall consider also the following conditions for a non-empty subset
M of A and a positive integer n:
(I'—M) For each x € A, either x € Z or there exists f(X) € X*R[X]

such that x—f(x) € M.

Qn) Ifx,y € Aand nlx, y] =0 then [x, y] = 0.

1. Condition (C) and commutativity theorems. In this section, we
study on the commutativity of algebras over an .4-ring satisfying (C).

In [3] and [4]. M. Chacron considered the subset @ = #'(A) of A
defined to be the set of all elements ¢ in A such that for each x € A there
holds [c, x—f(x)] = 0 with some f(X) € X?R[X]. Patterning after the

proof of [8, Corollary 1], we can easily see the following
Lemma 1.1. Suppose that an R-algebra A satisfies (C). If A is either
a division algebra or a radical algebra without non-zero zero-divisors, then

A=¢&.

Theorem 1.2. Let R be a commutative ring with 1 such thai every R-
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algebra B without non-zero zero-divisors satisfying the condition

(N) for each x € B, there exists f(X) € X*R[X] such that x—f(x) €
Z(B)

is commulative. If an R-algebra A satisfies (C), then D is a nil ideal.

Proof. We claim first that if A is either a division R-algebra or
a radical R-algebra without non-zero zero-divisors (satisfying (C)). then A
is commutative, In fact, let a and b be arbitrary elements of A, and x €
{(a, b)z. Since A = @’ by Lemma 1.1, there exist f(X). g(X) € X*R[X]
such that [, x—f(x)] = 0 and [b, x—f(x) —g(x—f(x))] = 0. Then A(X)
= f(X)+g(X—f(X)) € X*R[X] and [a, x—h(x)] = [b, x—h(x)] =0, and
so x—h(x) € Z({a. b)z). Hence, by hypothesis, {a, b)z is commutative.

Now, to our end, it suffices to show that if A is a prime R-algebra
satisfying (C) then A is commutative.

First, assume that A is semi-primitive. We may assume further that A
is primitive. Obviously, every factorsubalgebra B of A inherits (C), and
so N¥(B) is commutative. Hence, by the structure theorem of primitive
algebras (see, e.g. [14, Introduction]). A must be a division algebra, which
is commutative by the above claim.

Next, assume that A is not semi-primitive. Now, let a € N*(J). where
J %= 0 is the Jacobson radical of A. For each x € aA, there exists f(X)
€ X?R[X] such that —xa+f(x)a = [a. x—f(x)] = 0. Then we have x*
= f(a)x, which implies evidently x> = 0. Combining this with xa = f(x)a,
we obtain xa = 0, namely ada = 0. We have thus seen that N¥(J) = 0.
Therefore, as is well-known, J has no non-zero zero-divisors. Hence J is
commutative by the above claim. Since J? C Z, we see that [A, A]J? =
[4, AJ?] = 0. Hence [A, A] = 0, namely A is commutative.

In view of [15, Proposition], we see that every .¥-ring satisfies the
hypothesis of Theorem 1.2. Therefore, combining Theorem 1.2 with [14,
Lemma 2.1], we readily obtain the following

Corollary 1.3. Suppose that an algebra A over an .¥-ring satisfies (C).

(1) N is a commutaiive ideal of A containing D, and [N, A]* = 0.

(2) Ca(N*) is a maximal commutative subalgebra of A.

(3) Ann([N*. A]) is the largest commutative ideal of A and is con-
tained in C.(N*).

(4) For any non-empty subset M of N, A/Ann([M, A]) has no non-

zero nil ideals.
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(5) Letc € N, x € A, k a positive integer. and p a prime number.
(i) Ifx*[c,x] = [c. x]x* =0 then [c. x] = 0.

(ii) Ifl[ec,x]x = O then [c,x] = 0.

(iii) If [e. px] = [c. x*]) = 0, then [c,x] = 0.

(iv) If the additive order of [c, x] is finite. then it is square-free.

The next proposition is the key result of this section.

Proposition 1.4. Let A be a non-commutative algebra over an .V-ring
R. Suppose that A satisfies (C).

(1) If R is a finitely generated ring, then there exists a factorsubal-
gebra of A which is of type a)i, a)r or My(K).

(2) If R is not a finitely generated ring, then there exists a factorsub-
algebra of A which is of type a), or a)r.

Proof. Since D C N by Theorem 1.2, A has no factorsubalgebras of
type ¢) or d). Further. by (C) and Proposition 0.4, 4 has no factorsub-
algebras of type e) or f). Hence the assertions are immediate by Theorem
0.1 and Proposition 0.3.

In virtue of Corollary 1.3 and Proposition 1.4, many early commuta-
tivity theorems for rings satisfying (C) are still valid for algebras over an
A-ring.

Now, in the following theorem, we shall generalize the conditions [12,
Theorem 2 1) and Theorem 3 4)] and the condition in [6, Lemma 3].

Theorem 1.5. Let A be an algebra over an .¥-ring R satisfying (C).
Then the following conditions are equivalent :

0) A is commutative.

1) For each ¢ € N* and x € A, there exist positive integers mi,...,
mr and k such that (my,..., ms)|2 and [c, x™ ], =0(i=1,..., 7).

2) For each c € N* and x € A, either [c, x] = 0 or there exist pos-
itive integers m, n, m', n’ and k such that mn = m'n' > 1, (m+m', mn—1)| 2,
x—x™ & N and [(™(x+c)™™ ((x+c)™x™)"]x = 0.

3) For each ¢ € N* and x € A, there exist positive integers m, n
and k such that mn % 1 (mod 4), [c,x—x™]x = 0 and [(x™(x+c)™™
((x+c)™x™™e = 0.

4) For each c € N* and x € A, there exist positive integers m, n and
k such that mn > 1, mn %= 2 (mod 8), [c. x—x™"]x = 0 and [(x™(x+c)™)™
((z+c)"x™)"x = 0.
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5) For each c € N* and x € A, there exist positive integers m, n and
k such that mn > 1, mn %= 6 (mod 8), [c, x—x™"]x = 0 and [(x™(x+c)™)",
((x+c)™™) ™k = 0.

Proof. Obviously 0) implies 1) —5).

1) = 0). In view of Proposition 1.4, it suffices to show that A has no
factorsubalgebras of type a);, a)r or M4(K).

(i) First, suppose that there exists a homomorphism ¢ of a subalgebra
of A onto (R/m )%, where m is a maximal ideal of R. Now let

s = (g 0) amd o0 =(7¢)

Then ¢ = [y, x], € N* by Corollary 1.3 (1) and

01
¢(c) = (0 O')'
But [c, x™]x # O for any positive integers m, k. Similarly, A has no factor-
subalgebras isomorphic to “(R/m).
(ii) Next, suppose that there exists a homomorphism ¢ of a subalgebra

of A onto M,(K). Let y be a generating element of the multiplicative group
of K, and choose x, y € A such that

=3 otn) 1=(00)
sy =(3 ) and e =(g o).
Since ¢ = [y, x]; is in N* by Corollary 1.3 (1), there exist positive inte-
gers mi,.... m; and k such that (m,..., m;)|2 and

0 = ¢([c. x™]x) = (aly™)— y™)*(o( 7)—7)2(8 é) (i=1,2.... r).

This means that y™ € K and hence y* € K° But this forces a contra-
diction (| K|—-1)/(1K°|—1)|2.

2) = 0). In view of Proposition 1.4, it suffices to show that A has
no factorsubalgebras of type a);, a)r or My(K).

(i) First, suppose that there exists a homomorphism ¢ of a subalgebra
of A onto (R/m)®, where m is a maximal ideal of R. Choose x, y € A and
ce€ N¥asin(i)ofl)=0). Then

#lc) = (8 é) and [c.x] #+ 0.
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There exist positive integers m, n, m', n’ and k such that mn = m'a’ and
H[(x™x+¢)™™ ((x+¢)™x™)"]x) = 0. But this is impossible. Similarly,
A has no factorsubalgebras isomorphic to ®(R/m ).

(i1) Next, suppose that there exists a homomorphism ¢ of a subalgebra
of A onto Ms{(K). Now, let ¥ be a generating element of the multiplicative
group of K, and choose x, y € A and ¢ € N* as in (ii) of 1) = 0). Since
[c, x] # O, there exist positive integers m, n, m', n', g, v and k such that
mn=mn >1,2=(m+m)u—(mn—1)y, x—x™ € N and [(x™(x+c)™)"
((x+¢c)™x™)"]x = 0. By a brief computation, we can easily see that

nn o ,},__ .)/mn
#lr—s™) = ( 0 o(r— 7’”"))’
([ (x+c)™™ (x+¢)"x™)"]x)
= (a(y") =7 W a(y™™) =y ™) a(y™) + ™)

(a(7™) +y™)" (7—0()'))(0 1

and

0 0)
provided 7" ¢ K%and ™ ¢ K°.

Hence y = ,},mnY and ,},211111 e Kc’(if 7,m+m' e K¢ then ),2 — 7(_m+m‘).u(.),mn—1)—-u
€ K°). Consequently, > = y*®® € K° which means that (|K|—1)/(|K?|
—1)|2. But this is impossible.

3) (4) or 5)) = 0). Suppose, to the contrary, that A4 is not commuta-
tive. Then, in view of Proposition 1.4, there exists a factorsubalgebra of
A which is of type a),, a)r or M(K).

(i) First, suppose that there exists a homomorphism ¢ of a subalgebra
of A onto (R/m)?, where m is a maximal ideal of R. Choose x, y € A and
c € N*asin (i) of 1) = 0). Then ¢([(x™x+c)™", ((x+c)™x™) ) + 0
for any positive integers m, n, k. which is a contradiction. Similarly, we
can see that A has no factorsubalgebras isomorphic to *(R/m),

(ii) Next, suppose that there exists a homomorphism ¢ of a subalgebra
of A onto My(K). Now, let 7 be an arbitrary element of K\K?°, and choose
x,y € A and ¢ € N* as in (ii) of 1) = 0). Let m, n, k be positive inte-
gers such that mp > 1, mn 3= 1 (mod 4) (mn == 2 (mod 8), mn = 6 (mod 8),
respectively), [¢, x—x™"] = 0 (Corollary 1.3 (5) (ii)), and [(x™(x+c)™7",
((x+¢)™c™)"]x = 0. Since

#le, x—x™"]) = (o(7) =7l aly—7r"") —(y— 7’"“)}(8 %))

we get y— ™" € K° Next, since
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$([(x™x+c)™™, ((x+c)"x™) k)
= (a()’m") _72mn)k+1(0_(7,m)_7m)(0,( ym)_'_.),m)—l(.y_ 0(7’))(8 (1))
provided ™ ¢ K¢,

we get 7*™" € K% Hence, by [12, Lemma 7], K = GF(9) and K? = GF(3).
Noting that K is the splitting field of

X(X*-D)(X*+1D)(X*-X-1)(X*+X-1),

mn

we can choose y such that y*+1 = 0. Since 7 is of order 4 and y—v
€ GF(3), we can easily see that mn =1 (mod 4). Next, choose 7 such
that y2—y—1 = 0. Since * is of order 4 and ¥*™" € GF(3), mn = 2k
with some k. Noting that y—(7*)* = y—y™® € GF(3), we can easily see
that £ = 1 (mod 4). so that mn = 2 (mod 8). Finally, choose ¥ such that
¥*+7y—1 = 0. Then we can easily see that mn = 6 (mod 8). But this is
impossible, in either case.

Corollary 1.6. Let A be an algebra over an A-ring satisfying (C), and
n > 1 an integer. Suppose that for each ¢ € N* and x € A, there exists
a positive integer k and a positive divisor m of n such that [(x™(x+c)™)™™,
(x+c)™x™)™¥ ], = 0 and [c, x—x"]x = 0. Then A is commutative.

Theorem 1.7. Suppose that an algebra A over an A-ring R satisfies
(C). Then the following conditions are equivalent :
0) A is commulative.
1) For each ¢ € N* and x € A, either [c, x] = 0 or there exist inte-
gers n > 1 and k > 0 such that
i) (n—1)[c.x] *+ 0,
ii) [c,x—x"]x =0,
i) [(x(14+e)*~x™1+4+¢c)" x]x =0, and
iv) [((1+c)z)*—(1+c)x™ x]k = 0.
2) For each ¢ € N* and x € A, either [c, x] = 0 or there exist inte-
gers n > 1 and k > 0 such that
i) x—x"e€ N, and
i) either [((1+c¢)x)"—(x(1+c)" x]x =0
or  [((T4e)x)™' —(x(1+c)™ " x]x = 0.

Proof. Obviously, 0) implies 1) and 2).
1) = 0). Suppose that there exist ¢ € N* and x € A such that [c, x]
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=+ 0. Then there exist integers n > 1 and k > 0 such that i)—iv) hold
good. Note that, by Corollary 1.3 (5) (ii),

ii) [c,x—x"] =0, i.e., [c,x] = [c., x"].
Since N is a commutative ideal by Corollary 1.3 (1), we see that cAc =
c*A = 0. Hence, by iii), iv) and ii), 0 = [(x(1l+¢))*—x™14¢)™ x]r—
((14c)x)"—(1+e)%™ xlk = (n—1)[[c, x™]. x]x = (n—1)[c. x]ks:, and
therefore {(n—1)[c, x] = 0 again by Corollary 1.3 (5) (ii). But this con-
tradicts i). Now, A is commutative by Corollary 1.3 (2).

2) = 0). By Corollary 1.3 (1), N is a commutative ideal, and so N?
C Z. Suppose that there exist ¢ € N* and x € A such that [c, x] =+ 0.
Then there exist positive integers n > 1 and k£ > 0 such that x—x" € N
(and so x2—x™' € N) and either

0 =[(1+c)x)"—(x(1+c)™ x]e = [[c. x"], x]k or
0=[(1+c)x)™"—(x(1+c D™ x]e = [[c. ™), x]x.

Since [c, x—x"] = 0 = [c. x*—x™"], we get [c. x]x+1 = 0 or [[c, x?], x]x
= 0. Thus we have seen that for each ¢ € N* and x € A, there exists
a positive integer k such that [c, x*]x+1 = 0. Hence A is commutative, by
Theorem 1.5 1),

Corollary 1.8 (cf. [12, Corollary 6]). Let A be a ring with 1. Sup-
pose that there exists a commutative subset M of A for which A satisfies the
following condition
(3—M)* For each x € A, either x € Z or there exist integers n > 1 and

k > 0 such that

1) x—x"e M,

2) [x™"—(xy)™ x]x = [y"x"—(yx)". x]x = 0 for all y € A,
3) forallc € M. (n—1)[c. x] = 0 implies [c, x] = 0.

Then A is commutatiive.

Corollary 1.9. Let A be a ring satisfying (I'—Ca(N)). Suppose that
for each ¢ € N* and x € A, there exist integers n > 1 and k > 0 such that
1) x is written in the form x = b+a where b" = b and a € N,

2) ((14+c)x)"—(x(1+e)™ x]s =0 or
((1+c)x)™ —(x(l+e)™', x]x = 0.
Then A is commulative.

Proof. By (I'=C4(N)), we can easily see that N is commutative,
Hence, by [2, Theorem 2], N is a commutative ideal, and A satisfies (C).
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Now, the commutativity of A is clear by Theorem 1.7 2).

Corollary 1.10 (cf. [6, Theorem 5 (1)]). Let A be a ring with 1, and
@ the intersection of the sel of non-units of A with the sel of quasi-regular
elements of A. Suppose that there exists an integer n > 1 such that

1) [x—x™ y—y"] =0 for all x. y € A,

2) (xy)*—x"y" € Z for all x, y € A\Q, and

3) (n—1)[c, x] =0 implies [c, x] =0 for all c € N* and x € A\Q.
Then A is commutative.

Proof. By the proof of 1) = 0) in the proof of Theorem 1.7, we can
easily see that [c.x] = 0 for all ¢ € N* and x € A\Q. Hence N* C Z,
and A is commutative by Corollary 1.3 (2).

Theorem 1.11. Let A be a ring with 1 satisfying (I'—N), and n > 1
an integer. Suppose that for each ¢ € N and x € A, there exists a positive
integer k such that

1) [c—c™ x—x"] =0,

2) (x(1+e)™=x™1+c)",

3) [((1+e)x)"™—(14+¢)%™ x]x = 0. and

4) [(x(l+e)™'—x™H1+c)™ x]x = 0.

Then A is commutative.

Proof. By1l). [c,x] =[c,x"] forall c € Nand x € A; in particular,
[c,c¢'] =0 for all ¢, ¢’ € N. Combining this with (I'=N), we see that A
satisfies (C), and N is a commutative ideal (Corollary 1.3 (1)). Then, by
2) and 3), we can easily see that (n—1)[c.x] = 0 for all ¢ € N* and
x € A. (See the proof of Theorem 1.7.) Now. let ¢ € N*, and x € A. Then
cAc = 0, and we see that

0= [(J:(]. +C))"H—In“(1+c)n+l,x]k
= [ 1+c)(l+c)—x™ (1 +c)™ x]x = [x"[(14¢)" x](1+c), x]s
= n[x"[c. x](1+c¢), x]x = n[x"[c, x]. x]x = nx"[c, x]x+1.

Hence we obtain nfec, x]k.n = 0. and so n[c, x] = 0 by Corollary 1.3 (5)
(ii). This together with (n—1)[c. x] = 0 implies that [c, x] = 0. There-
fore. Corollary 1.3 (2) shows that A is commutative.

Corollary 1.12 (cf. [5, Theorem 2.5)). Let A be a ring with 1 satis-
Jying (I'—N), and n > 1 an integer. Suppose that
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1) [c—c¢x—x"] =0 forallc € Nand x € A,

2) (xy)"=x"y" for all x. y € A\Q, and

3) (xy)"'—x™'y™' & Z for all x, y € A.
Then A is commutative,

Proof. By the proof of Theorem 1.11, A satisfies {(C), and for each
c € N* and x € A\Q, (n—1)[c, x] = 0 and nx™[c, x]; = 0. Further, if
ceN*andx € Q, then (n—1)[c. x] = —(n—1)[c, 1 —x] = 0 and n[c, x];
= —(1—2)"%n(l —x)"[c.1—x],} =0, by the above. Hence (n—1)[c, x]
=0 and nx"[c,x]. = 0 for all c € N*¥ and x € A. Then we can easily
see that [c,x], = 0 for all ¢ € N* and x € A. Now, A is commutative,
by Theorem 1.5.

Lemma 1.13 ([5, Theorem 3.1]). Lei A be a ring with 1, and n > 1
an integer. Suppose that
1) N is commutative,
2) (x—x™?* =0 for all x € A\N, and
3) any x € A\N may be writien in at most one way in the form x =
b+c where b" = b and ¢ € N.
Then A is commutative,

Proof. As is easily seen, A is a normal ring (i.e., every idempotent
is central) and satisfies (C). By 2), we see that A is of finite characteris-
tic. Hence, without loss of generality, we may assume that A is of charac-
teristic ¢ = p*, p a prime. Suppose, to the contrary, that A is not
commutative. Then, in view of Proposition 1.4 and [12, Lemma 8], there
exists a homomorphism ¢ of a subring of A onto M,(K). Let ¥ be a gener-
ating element of the multiplicative group of K,

=3 .00 =(0 o)
¢($) - (O 0(7) and ¢(C) - 0 0 L)
where we may assume that ¢ € N (see 2)). Let y € A\N. By 2), y*" =

2

2yn+1_:y .

mn-1)+2 _ mynﬂ__(m_l)yz’ and

so y" = m{y™ "™ '—y™)+y™ for any m > 1. In particular, (y9)" = y%.
By Corollary 1.3 (1), N is a commutative ideal of A and [¢, x] € N*. and so
(x+[c, x])? = x"+ 2 x'[c, x]x? "' = x%+[c, x9. Hence we have [c, x9]
=0, by 3). Accordingly,

An easy induction shows that y

B -G 4o
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namely 77 € K° Noting that the map a » o7 is an automorphism of K, we
have a contradiction K = K°.

Theorem 1.14. Let A be a ring, and n > 1 an integer. Suppose thai

1) N is commutative,

2) (x—x™? =0 for all x € A\N, and

3) any x € A\N may be written in at most one way in the form x =
b+c where b™ = b and ¢ € N.

Then A is commutative.

Proof. As is easily seen, A is a normal ring satisfying (C). Suppose,
to the contrary, that A is not commutative. Then, in view of Proposition
1.4 and [12, Lemma 8] there exists a homomorphism ¢ of a subring B of A
onto some Ms(K), and there exists a central idempotent ¢ € B such that

- (29)

According to Lemma 1.13, eB is commutative, which forces a contradiction
that Mo(K) = ¢(B) = ¢(eB) is commutative.

Theorem 1.15. Let A be a normal algebra over an A-ring satisfying
(C). Suppose that for each x € A\N, either x € Z or there exist positive
integers mi...., nr such that (ni,..., nr) has no factor of the form p'—1, p
any prime and t > 1, and that x—x"*' € N(i=1,...,r). Then A is
commutative,

Proof. Suppose that A is not commutative. Then, in virtue of Propo-
sition 1.4 and [12, Lemma 8], there exists a factorsubalgebra of A which
is isomorphic to some M,(K). Now, let ¥ be a generating element of the
multiplicative group of K. Then it is easy to see that there exist positive

integers m.,..., ny such that (n,,..., n;) has no factor of the form p'—1, p
any prime and ¢ > 1, and that y = y™*!, namely y* =1 (i =1,..., 7).
However, this forces a contradiction |K|—1|(ni.,..., ns).

The next generalizes [5, Theorem 3.2].

Corollary 1.16. Let A be a ring with N commutative. Suppose that for
each x € A\N there exist positive integers m, n such that (m, n)|2, x—x™’
€ N and x is uniquely expressible in the form x = b+c, where b™"' =b



COMMUTATIVITY THEOREMS FOR ALGEBRAS AND RINGS 83

and ¢ € N. Then A is commutative.

Proof. Note that N is a commutative ideal by Corollary 1.3 (1), and
that A is normal,

2. Further commutativity theorems. In this section, we shall prove
further commutativity theorems for algebras over an .#-ring or an #-ring,
together with some structure theorems.

Theorem 2.1. Let A be an algebra over an .A-ring R, and m > 1 an
integer. If A satisfies (S) and the identity (X+Y)"—X"—Y™ =0, then
A is commulative.

Proof. For any ring S with 1, neither S® nor 'S satisfies the identity
(X+Y)»—X™"—Y™ = 0. Therefore, [7, Proposition 2] enables us to see
that D € N. Hence, there exists no factorsubalgebra of A which is of type
a);, a)r, ¢) or d). Further, by (S) and Proposition 0.4, A has no factor-
subalgebra of type e) or f). Now, suppose that M,(K) satisfies the identity
(X+Y)"—X™"—Y™ = 0. Obviously, the map 7 of K defined by z(a) = o™
is an automorphism of K. Let ¥y € K\K? Then, by (*),

o= 7o =07(3 ) =5 o) —(§ oin) (0 0) =0

whence o(y™) = y™ follows. We have thus seen that K = «(K) C K¢,
which is a contradiction. Hence, in virtue of Theorem 0.1 and Proposition
0.3, A is commutative.

As an application of Theorem 2.1, we shall prove the next

Corollary 2.2 (cf. [18, Theorem 1]). Let m > 1 be an integer. Then
the following statements are equivalent :

1) Every ring with 1 satisfying the identity (X+Y)"—X"—Y™ =0
is commutative.

2) Either m =2 (mod 4) or p—1 Y m—1 for each prime factor p of m.

Proof. 1)=2). Ifm=2",1>1(resp. m =p'n, I >0, p an odd
prime, and p—1|m—1), then

35
0 a56d
00 «a

a, B. 7, & € GF(2) (resp. GF(p))
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is a non-commutative ring with 1 and satisfying the identity (X+Y)"—X™
—Y"=0.

2)=>1). Let Abe a ring with 1 satisfying the identity (X+Y)"—X™
—Y™=0. Then, in view of [7, Proposition 2], D is contained in N, and
so N is an ideal of A. Further, k" =k forallk € Z-1 (C A).

First, we consider the former case: m = 2n, n is odd. Obviously,
2=(1)"+(-1)"=(1-1)"=0. Let x,y € A. If n =1 then (x+y)?
= x’+y* implies that xy = yx, and A is commutative. We assume hence-
forth that n > 1. Then 1+x"=(14+x)"=(1+x*)"=1+x*+xh(x) +x™
with some A(X) € XZ[X]. and so x* = x*h(x). Hence x* = 0 for any
x € N. Now, noting that N is an ideal, we can easily see that N is com-
mutative. Further, noting that x—x?h(x) € N for all x € A, we see that
A satisfies (C). Hence A is commutative, by Theorem 2.1.

Next, we consider the latter case. Suppose, to the contrary, that A is
not commutative. Then, without loss of generality, we may assume that A is
subdirectly irreducible. As is easily seen, there exists a prime p such that
pA = 0. Now, for any x € N* we have (1+x)® =1+x™ and so mx =
0. Since 0 = D C N, this enables us to see that p is a factor of m. Re-
calling that k™ = k for any k € GF(p) (C A), we see that p—1|m—1,
which is a contradiction.

Now, we denote by W the set of all words in X, Y, namely products of
factors each of which is X or Y (together with 1). Further, by K{ (resp.
§) we denote the set of all f € R(X, Y)[X, Y]R(X, Y) (resp. f €
R[Y][X. YIR[Y]) each of whose monomial terms has degree =2 in Y
(together with 0).

Theorem 2.3. Let A be an algebra over an P-ring satisfying (S) and
the identity [X™ Y™ = 0. Suppose that for each x, y € A, there exist non-
negative integers s <t <u, €K/ (1 <i<u), w,weW(l<i<
u), and positive integers m;, n; (1 < i <u), L(s+1 <i < u) and k such
that

1) (n, min,,..., msns, lss1Msirfssrs.n., dumuny) =1,

2)  wilax, y)y™, x™]ewilx, y) = flx, y—x) (1<i<s),

3)  wilx, y)[(x™y™)™, xtwilx, y) = filx, y—x) (s+1 < i <t), and

4)  wilx, y)[(y™x™)™, x']xwilx, y) = filx, y—x) (t+1 < i <u).
Then A is commulative.

Proof. Suppose. to the contrary, that A is not commutative. Then, in
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virtue of Theorem 0.5, we may assume that A = M,(K), where a™ € K°
for all @ € K. Choose ¥ € K\K?, and put

= (g 0?7)) and y = (g 0(17'))'

Then there exist non-negative integers s <t <u, fiec K (1 <i <u),
wi, wi € W (1 < i < u) and positive integers m;, n: (1 < i < u), L (s+1
< i < u) and k satisfying 1) —4). Since both x and y are units and

__(01)
y=x=14 o)

we obtain [y™, x™ ], =0 (1 <i <s), [(x™y™)™ x"],=0(s+1 <i<1),
and [(y™ax™)™, %), = 0 (t+1 < i <wu). By making use of (*) in § 0, we
can easily see that y*™™ € K7 (1 <i<s) and y*™" € K (s+1 < i
< u). Hence y* € K%by (n, min.,..., msns, lss1Mssinsir, ..., lumuny) =1,
and so ¢(y) = —y: similarly ¢(7+1) = —(y+1). But this forces a con-
tradiction 2 = 0,

Corollary 2.4. Let A be an algebra over an S-ring satisfying (S) and
the identity [X", Y™] = 0. Suppose that for each x, y € A, there exist non-
negative integers r < s < t < u and positive integers m; > 1 (1 < i <r),
ne(r+1 < i < u) and k such that

(n, may e, Mry Rren,on, Bu) = 1,
[xt+y)™—y™ 2] =0(1 <i<r),

[y™, x™]x =0 (r+1 <i<s),
[(xy)™ x]e =0 (s+1<i<t) and
[(yx)™ x]k = 0 (1+1 < i <u)

Then A is commutative.

Proof. Replacing x by —x, we may assume that [(y—ax)™—y™ x]x =
0, and so [y™, x}x = [(y —x)™, x]x. Hence A is commutative by Theorem
2.3.

Theorem 2.5. Let A be an algebra over an $-ring satisfying (S) and
the identity [X™, Y™ = 0. Suppose that for each x, y € A, there exist pos-
itive integers m, k such that (m,n) = 1 and one of the following holds :
[xy)™ 2]k =0, [(yx)™ x]k =0 and [(x+y)™ x]x = 0. Then A is com-
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mutative.

Proof. Suppose, to the contrary, that A is not commutative. Then, in
view of Theorem 0.5, we may assume that A = M,{(K), where «” € K? for
all @ € K. Choose y € K\K?, and put

(54 o)

x (0 o(7) and y = 01/

Then there exist positive integers m, k such that (m, n) =1 and [(xy)™ x ]«
=0, or [(yx)™ x]Jx =0, or [(x+y)™ z]x = 0. As is easily seen,

ey )™ e = (o™ 7)ot —1=(] 3)

>, and

O -

[(yx)™, x]x = a(y)(a(ym)_7m)(a(7)_),)k-1(8
k10 1
aty)™ e = (ol+ 1"+ Do) =) 1),

Hence we see that y™ € K% or (y+1)" € K°. But this together with ™
(y+1)* € K®and (m, n) = 1 forces a contradiction y € K°.

By the above two results and [12, Corollary 2], we readily obtain

Corollary 2.6. Let A be an s-unital ring satisfying Q(n) (see the in-
troduction) and the identity [X™, Y"] = 0.

(1) Suppose that for each x.y € A, there exist non-negative iniegers
r < s <t<u and positive integers m; > 1 (1 <i<r), n{(r+1<:i<
u) and k such that |

(n, Miyeeey My, Nrer, ..., nu) =1,
[(x+y)mi—y™ x],=0(1 <i<r),

[y™, x™]x =0 (r+l <i<s),
[xy)™, x]e =0 (s+1 <i<t) and
[(yx)% x]x =0 +1<i<u)

Then A is commutative.

(2) Suppose that for each x, y € A, there exist positive integers m, k
such that (m,n) = 1 and one of the following holds: [(xy)™ x]x = 0,
[(yx)™ 2]k = 0 and [(x+y)™ x]x = 0. Then A is commutative.

Obviously, Corollary 2.6 generalizes [9. Theorem 1 (1)]. All the
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results of [13] except Corollary 1 hold still for algebras over an .4-ring.
([13, Corollary 1] is stated incorrectly; “A < #” should be read as “h <

7 (resp. r < 1)".) Especially, the proof of [13, Theorem 5] enables us to
see the following :

Theorem 2.7. Let A be a left s-unital algebra over a commutative ring
R. Let e Li(1 <i<r), let m (1l <i<r) be non-negative integers,
and let n; (1 < i < r) be positive integers and d = (ni,..., nr). If A satis-
fies Q(d) and the identities X™[X™ Y]—f(X, Y)=0(1 <i <), then

A is commutative.

We insert here an easy lemma.

Lemma 2.8. Let x. yi,..., yx be elements of a ring A such that [y:, v,]
=0 for all i, j.

(1) [--[x nl..... yel = [+-[x, Yoirr]s-ovr Yum] for any permutation w
onll,..., kl.

(2) If [---[x. m]u..o ye] =0, then [---[x, y"]..... y*] =0 for any

positive integers m,..., Nk.

Proof. (1) It suffices to show that [[a, y:], v;] = [[a, y;), y:] for any
a € A and any ¢, j. But this is clear.

(2) Obviously, [[---[x, m]...., yi_1], y&] = 0. Therefore, in view of
(1), we can get the assertion.

Proposition 2.9. Let A be a non-commutative subdirectly irreducible
algebra over an P-ring R satisfying (S).
(1) Suppose that A satisfies the identity

[ (XY™ —(Y™X™)", wi(X, YV)],..., we(X, Y)] =0,

where m, n, m', n' are positive integers with mn = m'n’ and each w; € W is
of length n; > 0. Then A is isomorphic to some Mo(K) and (|K|—1)/(|K°|
—1) divides one of the following numbers: m+m', 2mn, ni,..., ns.

(2) Suppose that A satisfies the identity

[-(XrYym)r—Xmrymn XM], . XP] =0,

where m, n, ni,..., nx are positive integers with n > 1 and each X; is either

Xor Y. If A has 1, then A is isomorphic to some My(K) and (|K|—1)/
(|K?| —1) divides one of the following numbers: m{in—1), mn, n,..., nx.
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Proof. (1) No M,(GF(p)), p a prime, satisfies our identity, as a con-
sideration of the following elements shows: X = ey, Y = ei1+ei.. There-
fore, by [7, Proposition 2], D C N. Hence, by [14, Lemma 2.1 (1)], N is
a commutative ideal of A. Letx € Aand ¢ € N*, and put @ = x+[c, x]x™,
b = x—x™[c,x] and d = (a™™)"—(b™a™)". Noting that cAc = 0, by
induction, we can easily see that a' = x'+[c, x']x™ and b’ = x*—x™[c, x']
for all positive integers /. It follows therefore that a™™ = x*™+[[c, x™],
Im+m’] and d™a™ = xzm" and so d = Z:iﬂz—olxzmi[[c’ Im], Im+m‘]x2m(n—1—t1.

Hence I:d. xzm] — ?;olxzmi[[[c. xm], xm+m']’ xzm]xzmln—l—n — [[[C, xm]’
2™ ™], x*™"], On the other hand, noting that d € N, we see that
0 = [.--[d, wi(a, b)]..... wila, b)] = [--[d, z™], ..., x™].

Therefore, by Lemma 2.8 (1), we obtain

= [.--[[d, x*™], x™],..., x™]

= [--[[[[c, x™]. x™*™], 2™, ™],..., x™].

Putting »n" = 2mn(m+m')n.-- nk, we have [¢, x"|xss = 0 by Lemma 2.8
(2), and hence [c, x™] = 0 by [14, Lemma 2.1 (5) (ii)]. We have thus
seen that x™ € C,(N*) for all x € A. Since C.(N*) is commutative by
[14, Lemma 2.1 (2)], A satisfies the identity [X™, Y™] = 0. Hence, by
Theorem 0.5, A is isomorphic to some Ms(K). Now, let ¥ be a generating
element of the multiplicative group of K, and put

_(r O ) _(0 1)
r—(o o(7) and c=lg o0/
Then

0 = [--[[[[e. x™]. x™™], x>, x™], ..., x™]
= (a(y™) =™ a(y™ ™) — 7™ ™) a(7*™") — ¥} a(y™) — 7™)
<(a(y™)—7™)c

implies that (| K|—1)/(|K°| —1) divides m+m', 2mn, n,..., or n.

(2) No (GF;)(p) 8?22;) p a prime, satisfies our identity, as a con-
sideration of the following elements shows: X = ei1, Y = ei2+e:.. There-
fore, A has no factorsubalgebras of type a)'. and hence A has no factorsub-
algebras of type a); or a), by [14, Lemma 1.4 (1)]. As is easily seen. no
algebra of type e) satisfies (S). Furthermore, by Proposition 0.4, there
exists no R-algebra of type f). Hence, in view of [14, Proposition 1.3 (2)].
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A is completely reflexive, i.e., xy = 0 implies yx = 0 for any x, y € A.
Also, in the same way as in the proof of (1), we see that D C N and N is
a commutative ideal of A. Letx € 4 and ¢ € N*, and put @ = x+[c, x]x™,
b =x—x"[c,x] and d = (b™a™)"—b™"a™". Then we can show that b™a™
= x*™ and b™"™" = x*™*"—x™[[c, x™"], ™" V]x™, and so d = x™[[c, x™"],
™™ Y]x™  On the other hand, by our identity, we have [-.-[d. x™],..., x™]
= 0. Therefore,

™[ [[[c. ™7, z™™ "], x™], ..., x™*]x™
— [[xm[[c .tmn], xmin—l}]xm. x"'] ..... x"k] = (.

Since A is completely reflexive, by [14, Lemma 2.1 (5) (i)]. we get
[---[[le. x™"], x™™ V], x™],.... x™] = 0. Now, the argument employed in
the proof of (1) enables us to see the assertion.

Lemma 2.10. Let [, m, n and k be positive integers. Let A = M4K)
and put t = (| K|—1)/(|K°] —1).

(1) If A satisfies the identity [(X™Y™)"—(Y™X™)" X'|, =0, then
either i) t divides [, ii) t divides m, iii) t divides 2m and mK = 0 = nK,
or iv) t divides mn and nK = 0.

(2) If A satisfies the identity [(X™Y ™)t — Xmn+iymnen X1, — 0,
then either i) t divides I, ii) t divides m, iv) t divides mn and nK = 0, or
v) t divides m(n+1) and (n+1)K = 0.

(3) If A satisfies the identity [(X™Y™)"— Y™ X™" X!, = 0, then A
satisfies the identity [(X™Y™)™ 1 —Xmmvymn+i i, =0,

(4) Ifi) t divides 1, A satzsfzes the identity [XY—YX W' =0; if
ii) t divides m. A satisfies the identity [X™ Y™] = 0; if iii) t divides 2m
and mK = 0 = nK, A satisfies the identity (X"Y™)"—(Y"X™)" = 0; if iv)
t divides mn and nK = 0, A satisfies the identities (X"Y™)"—(Y™"X™)" =
0. (XmYm) —X™ Y™ — O and (XmYm)n—l ymm-nymn-n _ o

Proof. Let 7 be a generating element of the multiplicative group of K.
Obviously, t divides an integer » if and only if y" € K° Put

r= (g 0(1)'))’ Y= (g a?}'))’ b= (é i) and ¢ = (8 (1))

(1) Assume that A satisfies our identity and that y' & K7 and 7™ &
K° Then we can see that 0 = [(x™y ™)"—(y~"x™)" x‘]x = n(a(y™) —
YW o(y ™) —y ™) o(y") — ¥ (o(y)—7) 'c. which implies that 2K = 0.
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Now, we assume that y™" & K° and suppose, to the contrary, that y*™ &
K?. Then, by Proposition 2.9 (1), we have y*"* € K° Since y"" ¢ K°,
we have """ ¢ K° and so *™ & K° This forces a contradiction [(x™y?™)"
(yzm m ﬂ‘ xl]k — (o,( 73mn) — ,},37"71)(0,( 7217;) _ 72771)(0_( .r'ﬂl) . .},ﬂl)(a( 71) .
Yo (y*™) —¥*™)"Ya(y)—7) 'c #= 0. Hence y*™ € K° Further, we see
that 0 = [(y™b™)"—(b™y™)" y']x = —m(a(y™) — y™")(a(¥*) — ¥")*c, which
shows that mK = 0.
(2) Assume that A satisfies our identity and that y' & K7 and y™ &
K? Then, by Proposition 2.9 (2). we have y"" € K% or y™*" € K°.
Furthermore, we see that 0 = [(y = ™x™)™ ! —y v tignneti =1, = o(g(y™")
— 7 Y*a(y)—7)"'c. where a = (n+1)(a(y™)— ™) y "= (a(y™™") —
ymrt V) y=minel) - Therefore a = 0. If y™"*" € K then @ = 0 implies that
(n-l—l)K =0. If 7mn e K¢ then 0,( ),m(nen)_),m:ru-n — ,},mn(a(},m)~.},m) and
a = 0 imply that nK = 0.
(3) Noting that D* =0, for any d € D and u, v, w € A, we have
[udv, w] = ud[v, w]+uld. wlv+[u, wldv = u[d, w]v. Since (v u”')"
u™p™ = D we see that [ m m)n+l um(nﬂ)vm:nﬂ) 1] [u PPy ™
u™p ™) p® yt, = um (v ™) —u™™ ™" ut] ™ = 0.

(4) Let B= [(3 ﬁ’)

ring of A. If i) t divides /. then, for any u. v, w € A, w* € B and [u, v]
€ B imply that [[u. v], w'] = 0. If ii) t divides m, then u™ € B for all
u € A, and so [u™ v™] = 0 for all u, v € A.

Next. we assume that iii) ¢ divides 2m and mK = 0 = nK. Let

‘- (‘1 ofa)) and v = (8 a(ﬁi'))

be arbitrary elements in A. Since mK = 0, if «™ € B then u™ € Z, and
hence u™™ = v™u™. Suppose now that u™ ¢ B and v™ ¢ B. Since ¢°™ €
K? and o'*™ € K° we can easily see that a™ = '™ (mod K°\|0}), and so

e™ € K° Hence both #™v™ and v™u™ belong to B. Noting here that nK
= 0, we can easily see that (u™™)" = (v™u™)". We have thus seen that
(u™™)" = (v™u™)" for all u, v € A.

Finally, we assume that iv) t divides mn and nK = 0. Noting that «™"
€ K% for all ¢« € K and nK = 0, we can easily see that (¢#™™)* = (v™u™)"
= My — ™0 m% for all u, v € A. Furthermore, since t divides mn, we
have mn > 2, and hence m(n—1) > 1. Therefore, if either u € Nor v €
N, then (»™u™)* ' = 0 = ™™ ™0 If u ¢ N and v & N, then both u

a € K% g€ K, which is a commutative sub-
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m)n mn., . mn

and v are invertible, and so (u™™)" = u™™™" implies that (v™u™)"*! =

u™n- Uy eompleting the proof.

Following [10], we denote by @ the additive mapping of Z{(X, Y) to Z
defined as follows: For each monic monomial X,---X, (X; is either X or
Y). &(X;---X-) is the number of pairs (i, j) such that 1 < i < j < rand
X;=X, X;,=Y. It is easy to see that, for any f(X, Y) € Z{X, Y),
&(f(X, Y)) equals the coefficient of XY occurring in f(14+X, 1+7Y).
Now, let f(X, Y) € Z{X, V)[X, Y]Z(X, Y). Then f(1+X,1+Y) €
Z{X, V)[X,Y]Z{X. Y), and so there exists g(X, Y) € Ki(Z) such that
SA+X,1+Y) = ¢(f(X, Y)[X, Y]+g(X, Y).

Theorem 2.11. Let A be a ring with 1, and let m, n be positive inte-
gers. Then the following conditions are equivalent :
1) A satisfies Q(mn) and the identity [X™ Y™] = 0.
2) A satisfies Q(mn) and the identity (X™Y™)"—(Y™X™)* = 0.
3) A is a subdirect sum of rings each of which has one of the following
types :
i) A commutative ring.

i) Mu(K), where (| K|—=1)/(|K?| —1) divides m and mnK = 0.

Proof. Obviously, 1) implies 2).

2) = 3). Since ¢{(X™Y™)"—(Y™X™)") = m®n, there exists g(X, Y)
€ Ks(Z) such that (1 +X)*(1+Y)™")"—((1+Y)"(1+X)™)" = m®*n[X, Y]
+g(X, Y). Furthermore, by [10, Theorem] and Q(mn), there exists an
integer & such that (mn, k) = 1 and kD = 0. Hence, there exists an inte-
ger j such that [x, y]+jg(x, y) = 0 for all x, y € A, namely A satisfies
(S) as Z-algebra. Now, suppose that A has a subdirectly irreducible homo-
morphic image A’ which is non-commutative. Then, by Proposition 2.9 (1),
A’ is isomorphic to some MyK). Since kD(A') = 0, we have mnK =+ 0.
Hence, by Lemma 2.10 (1), (|K|—1)/(|K°|—1) divides m.

3)=>1). It is easy to see that A satisfies Q(mn). By Lemma 2.10
(4), A satisfies the identity [X™ Y™] = 0.

In [11], Y. Kobayashi investigated the following problem: Given an
integer n > 1, determine the structure of n(n—1)/2-torsion-free rings with
1 satisfying the identity (XY )"—X"Y™ = 0. He solved this problem, when
n is even ([11, Theorems 1 and 2]). The next theorem includes an answer
to this problem. Given a positive integer n, we put e(n) = n or n—1 ac-
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cording as n is even or odd.

Theorem 2.12. Let A be a ring with 1, and let m, n be positive inie-
gers. Put | = mn(n+1)/2.

(I) Iflis even, then the following conditions are equivalent :

1) A satisfies Q(I) and the identity [X™, Y™] = 0.

2) A satisfies Q(I) and the identity (X™Y™)"—Y™"X™" = 0.

3) A satisfies Q(l) and the identity (XmY™)"*! — XmntNymnst —

4) A is a subdirect sum of rings each of which has one of the following
types :

i) A commuiative ring.

i) MoK), where (| K| —1)/(|K° —1) divides m and K # 0.

(1) Iflis odd, then the following conditions are equivalent:

2) A satisfies Q(I) and the identity (X"Y™)"—Y™"X™" = 0.

3) A satisfies Q(1) and the identity (X™Y™)"+! — Xmnrvymintl —

4) A is a subdirect sum of rings each of which has one of the following
types :

i) A commutative ring.

i1) Mo(K), where (| K|—1)/(|K°| —1) divides m and {K + 0.

i) Mo(K), where (|K|—1)/(|K°|—1) divides me(n+1) and 2K =0.

Proof. (1) Tt suffices to show that 3) => 4) = 1).

3)=> 4). Suppose that A has a subdirectly irreducible homomorphic
image A' which is non-commutative. Since @((X™Y™)™+!_Xmrriymncl) —
—m*n(n+1)/2, the proof of 2) => 3) in Theorem 2.11 enables us to see
that A is isomorphic to some My(K) and /K + 0. (Apply Proposition 2.9
(2) instead of Proposition 2.9 (1).) Now, suppose that nK = 0 or (n+1)K
= 0. Then 2IK = mn(n+1)K = 0, and so 2K = 0. But this forces
a contradiction /K = 0. Hence, by Lemma 2.10 (2), (|K|—1)/|K°|—1)
divides m.

4) = 1). It is easy to see that A satisfies Q(/). By Lemma 2.10 (4),
A satisfies the identity [X™, Y™] = 0.

(II) By the proof of (I), this is almost clear.

The next includes a generalization of [1, Theorems 2 and 3].
Theorem 2.13. Let A be a ring with 1. Let m, n, m', n', m" and n’

be positive integers with m'n' = m'n’, and w, =1 (i =1,..., k) in W.
(1) Suppose that A satisfies Q(mn(n+1)) and the identities
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(XmY'm)n_ YmnXﬂm — (Yme)n_anYﬂm‘ and
[(X™Y™)"—(Y™X™)" wi (X, Y)],..., we(X, Y)] = 0.

Then A satisfies the identity [X™, Y™] = 0.
(2) Suppose that A satisfies Qmn(n+1)) and the identities

(XmYm)n+1_Xm(n+lj-Yﬂun+ll — (Yme)m-l_ Ymm+1}Xm’.n+11“ and
MX™Y™)"—(X™Y™)", wi(X, Y)...., we(X. Y)] =0,

where m' < m".
Then A satisfies the identity [X™ Y™] = 0.

Proof. (1) Suppose that A has a subdirectly irreducible homomor-
phic image A’ which is non-commutative. Since @(}(X™Y™)"—Y""X™"|—
{(Y™X™)*—X™Y™ ) = m®n(n-+1), by the same argument as in the proof
of Theorem 2.11. we can see that A' is isomorphic to some My(K) and
mn(n+1)K == 0. Now, let ¥ be a generating element of the multiplicative
group of K, and put

r= (g 0(17))’ r = (g 0?‘)’))’ b= (3) i) and ¢ = (8 é)

Suppose that Y™ & K° Then we see that 0 = {(y™™)"—b""y™"| —{(b™y™)"
—y™mp = m(n+1)(y™"—a(y™)c; hence y™ € K° Noting this fact,
we see that [(x™y ™)"—y "™ —{(y ""x™)"—x™"y """ = n(o(y™) —
YW a(y ™ —7 ™ (a(y)—7) 'c #+ 0. This contradiction shows that y" &
K° Hence, by Lemma 2.10 (4), A satisfies the identity [X™, Y™] = 0.
(2) Suppose that A has a subdirectly irreducible homomorphic image
A" which is non-commutative. Since @(}(X™Y™)"+!— Xmn-nymnsny_
j(ymxm)net— ymmeux i) — —mn(n+1), the proof of 2) = 3) in The-

orem 2.11 enables us to see that A’ satisfies (S) as Z-algebra. Further-
more, no

GF(p) GF(p) .
( 0 GF(p))" p a prime,

satisfies the identity (X™Y ™)™+ — X MmNy mntl) — (YR M)+l ymnsDxmintl)
as a consideration of the following elements shows: X = en, Y = eiz+ez..
Therefore, by the proof of Proposition 2.9 (2), 4’ is completely reflexive,
D(A') C N(A') and N(A’) is a commutative ideal of A. Now, let x € A" and
c € N¥A), and put a = x+[c, x]x™, b = x—x™[c, x] and d = (b™a™)"
—(d™a™)™. Then, we can see that b™a™ = x*™ and b™a™ = x"™'—
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™ ([c, x™]. x™ ™]x™, and so
d = x™(55 22 e, x™], ™™g - ),
Hence [d, x*™] = ™ [[[c, 2™], x™~™], x*™]x™. On the other hand, we
see that
0 =[---[d. wi(a, b)]...., wi(a, b)] = [---[d, x™],..., x™],

where n; is the length of w;. Therefore,

™[ [[[[e, x™T, ™™, 2™, x™], ..., x™]x™

= [---[[d, x*™], x™],.... x™] = 0.
Since A’ is completely reflexive, by [14, Lemma 2.1 (5) (i )], we have
(---[[[le, ™7, ™= ™). 2™™], x™]..... x™] = 0.

Then, the argument employed in the proof of Proposition 2.9 (1) enables
us to see that A' is isomorphic to some Ms{K). Moreover, by the same
argument as in the proof of Theorem 2.11, we have mn(n+1)K == 0. Hence,
we can get the assertion by the same procedure as in (1).
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