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BIALGEBRAS AND GALOIS EXTENSIONS

Dedicated to Professor Takasi Nagahara on his 60th birthday
Atsusut NAKAJIMA

We shall work over a commutative ring k. A bialgebra B= (B, u, 5, A, ¢)
is simultaneously a k-algebra with multiplication x and unit 5, and a k-coalgebra
with comultiplication A and counit ¢ which are algebra morphisms. A
bialgebra B is called a left Hopf algebra if it has a morphism A: B— B
such that

(Zx}/\(xu;-)x:z; = ﬂ(/l@ Id)A(I) = E(J?) (IG B),~
where ® = ®y, Alx) = X iuxy ® X and Id is the identity morphism. A is
called a left antipode ([5].[10]). A right Hopf algebra is similarly defined.
A left and right Hopf algebra is a Hopf algebra in the usual sense ([12]).

Let S be a k-algebra. S is called a right B-comodule algebra if there
exists a k-algebra morphism es: S - S ® B such that (as ® Id)as =
(Id ® A)as and (Id ® e)as = Id. The k-subalgebra of invarianis is defined
by R=S,=1s € S|as(s) =s ® 1|. According to Y. Doi and M. Takeuchi
[4]. we call that S/R is a right B-extension. A left B-extension is defined by
using a left comodule algebra instead of the right. A right B-extension S/R
is called a right B-Galois extension if the morphism v: S ®; S—> S® B
defined by (s ® 1) = Zwsta ® &, is bijective, where as(t) = Jutoy ® ta).
Since B is a right B-comodule algebra with the structure morphism A and the
invariant k-subalgebra is B, = k, B/k is a right B-extension. Then by [3,
Cor.6], B is a right B-Galois extension if and only if B has the antipode
(that is, B is a Hopf algebra).

In this paper we consider a right B-Galois extension for a bialgebra B
which is not a Hopf algebra. In section 1, we discuss a relation of right and
left antipode of a bialgebra B to a right B-Galois extension. In section 2,
we assume that there exists a right B-Galois extension S/R. Under the
condition, we give some sufficient conditions that a bialgebra B becomes a
Hopf algebra. And in section 3, if B is a semigroup bialgebra which is
generated by a finite cyclic semigroup (not a group), then there does not exist
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38 A. NAKAJIMA

a right B-Galois extension and a right B* = Homy(B, k)-Galois extension
of k.

Throughout the following, we will fix the above notations and terminolo-
gies. All algebras, morphisms, ®, Hom, etc. are taken over k unless
otherwise stated and we freely use a sigma notation in the sense of M.

Sweedler [12].

1. The antipode and the morphism 7. We discuss a relation of a
right (resp. a left) antipode to a left (resp. a right) invertibility of 7s.

Theorem 1.1. Let B be a bialgebra and let ys be the morphism from
B® Bio B® Bdefined by y{x ® y) = 2 3xyay ® Y. Then

(1) B has a right antipode if and only if ys has a left inverse.

(2) If Bhas a left antipode, then ys has a right inverse.

(3) If ys is an isomorphism, then B has a left antipode and thus B has
the antipode.

Proof. (1) Let A be a right antipode. We define a morphism 8: B® B
— B® B by ﬂ(x® y) = me/\(ym) ® ya (o, y € B). Then

/37B(I® y) = %Iym/\()’rzx) ® ys = %IE()’(J ® yu=x® y,

and so B8y = Id.

Conversely, let 8: B® B— B® B be a left inverse of 5. Since g is
a left B-module morphism, we can set {1 ® x) = 2@ ® x. Byl ® x=
Byl ® x) = Xl TaXizn: ® Teni, We have

E(I) = mel’:zms (x:z:zz)-
(X),i

Define a morphism A: B—= B by Al(x) = Xlar:e(xz:). Then it is easy to see
that

,U(Id ® A)A(I) = Zxanx:'z:-ne (x{2;2i) = E(x)

X )i

Thus A is a right antipode.
(2) If Ais a left antipode of B, then the morphism 8: B® B—» B® B
defined by 8(x ® y) = X upxAlyn) ® yuo satisfies the relation 7,8 = Id.
(3) Assume that B is the inverse morphism of . For any f g€
Hom(B, B), we define morphisms

@, ¥: Hom(B, B) -» Hom(B, B)
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by
(_f (-T) Zx nf(l' 2)) and W(g) (15) = Zi:xlzg(xu).

where (1 ® x) = X1 ® xu. By 736 = Id, we have
(1.1) 1®x= %p(1 ® x) qu?fun@-rzuz;

(X2iE

Then by (1.1),
(( W@) (f)) (1') = an@(f) (Iu) = 2 xlzxsz(-rzuz;) = f( )

X1iN

and so ys8 = Id implies ¥¢ = Id. Conversely if 8ys = Id, then
1®@x=47l ® x) = Z_xmx(zni ® Xz,

which shows that

(1.2) g(x) = [;L_I.:nx(zmg(x-:zyzi)-

Therefore

(07)(g)) (x) = Lz ¥(g) () = Tauwonglxan) = gla).
Now we define A: B— Bby A(x) = > ;e (x2,). and consider the morphism
#(A® Id) A in Hom(B, B). An easy calculation shows
(A ® 1d)A)(x) = Txnp(A® Id) Alxa) = ZixnTanie (T Zon
In(1. 2). if we take g = ¢, then
e(x) = (Z;k,‘ix“;.xiz,us(x(zm).
Thus
H(p(A® Id)A) (x) = L xaxanse (Xopi)xs = %‘.e(r:u)m)

X

=x= ;-’rme (-rm) = QD(E) (x)
Since V¢ = Id, we have u(A® Id)A = ¢. This shows that A is a left
antipode and by (1), A is itself a right antipode.

By Th.1.1, Bis a right B-Galois extension of k if and only if B has the
antipode. This was proved by Y. Doi and M. Takeuchi in [3, Cor. 6].
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By the similar proof to Th. 1.1, we have the following :

Theorem 1.2. Let B be a bialgebra and let py be the morphism from
B® Bio B® B defined by sy(x® y) = Alx)(1 @ y) = Y nxn ® xmy.
Then

(1)  Bhas a left antipode if and only if sy has a left imverse.

(2) If B has a right antipode, then gy has a right inverse.

(3) B has the antipode if and only if 5y has a two-sided inverse.

For finitely generated k-modules M and N, if f: M — N is an epimor-
phism, then by [11, Th.1], fis an isomorphism. Therefore by Th.1.1(2)
and Th. 1.2(2), we have the following result which was proved by J. A.
Green, W. D. Nichols and E. J. Taft in [5, Prop. 5].

Corollary 1.3. Let B be a left (or right) Hopf algebra. If B is a
Sfinitely generated k-module, then B is a Hopf algebra.

2. Quadratic bialgebras and Galois extensions. In[7], H. K. Kreimer
determined a Hopf algebra which is a free k-module of rank 2 as follows: Let
B be a k-bialgebra which is a free k-module of rank 2. Since ¢: B— kis a
k-module epimorphism, we have B= k & Ker(e). In general it is known that
M is a free k-module of rank 1 if and only if £ ® M is a free k-module of rank
2 (ef.[7, Lemma 1]). Hence there exists a free basis |1, 8} of B such that
Ker(e) = k6. Since ¢(8*) = ¢(8)* =0, > = q6 for some ¢ € k. And by
6=(e®1)A0) =1 @ )AB)., Alf) = 6® 1+1 @ 6+p(6 ® 8) for
some p € k. Moreover by A(8*) = A(6)* and §* = q8, we have

(2.1) p*¢*+3pg+2 = (pg+1)(pg+2) = 0.

If B has the antipode A, then by definition of A and #° = g8, there exists
h € k such that A(#) = h@ and (—h)(pg+1) = 1. Therefore

(2.2) B has the antipode if and only if pg+2 = 0.

Now we will discuss the following question. For a bialgebra B (not a Hopf
algebra) which is a free k-module of rank 2, does there exist a right
B-Galois extension of k?

Let S be a commutative B-comodule algebra with comodule structure
morphism a: S - S ® B. Let R= S, be the invariant k-subalgebra of S.
We assume that S is a free R-module with basis {1, x| and set x* = max+n
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(m,n € R). Noting that R is invariant under o, @ can be considered as an
R-module morphism. Then by (Id ® ¢)o = Id, we can set a(x) =x®1
+c(1® 8)+dxz® @) for some c,d € R. Since (¢ ® Hd)a=(ld® A)a

and o is an R-algebra morphism, we have

(2.3) cd = cp

(2.4) d* = dp

(2.5) cm = c’q+d’ng+2dn
(2.6) dm = d’mq+2(c+ cqd+dm)

Then, for the ordered basis |1 ® 1, x® 1,1 @ x, x® x} of S ®; S and
1®1,xr®1,1 ® §,x® 6] of S® B, the matrix representation of the
morphism ¥%: S®;S - S ® Bis given by

1 00 n

011 m
A= 0 0 ¢ dn

0 0 d ct+dm

and the determinant of A is ¢(c+dm

~

—d*n. Therefore
¥s is an isomorphism if and only if ¢(c+dm) —d*n is invertible in R.

Now we assume that S/k is a right B-Galois extension. Noting that (2. 3),

(2.4), (2.5) and the fact that c(c+dm) — d’n is invertible, we can easily
see that

cle+dm)—d’n= c’+cpm—d*n= c*+plc’qg+d’ng+2dn) —d’n
= ¢ (14+pq)+dnpg+dn
= (c’+d*n)(1+pq).

Therefore 1 +pg is invertible and by (2.1), pg+2 = 0. This means that B
has the antipode. These proves the following

Theorem 2.1. Let B be a bialgebra which is a free k-module of rank 2.
Let S be a commutative right B-comodule algebra with invariant k-subalgebra

R. If S/R is a right B-Galois extension which is a free R-module of rank 2,
then B has the antipode.

Using the localization, we have

Corollary 2.2. Let B and S be as in Th.2.1. If a right B-Galois

extension S/R is a finitely generated projective k-module of rank 2, then B
has the antipode.
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Next we consider a non-commutative quadratic extension. Let k be a
commutative ring generated by 1 and let S be a k-algebra with subalgebra R.
Assume that S is a free quadratic extension of R, that is, S= R & Rx and
x* = mx+n(mn € R), where {1, x| is a free basis. We set

xr = g(r)x+D(r) (r € R).

Then it is easy to see that ¢ is a k-algebra morphism with ¢(1) =1 and
D(st) = D(s)t+o(s)D{(t)(s,t € R). If S is a right B-comodule algebra
with structure morphism ¢: S - S ® B and S, = R, then «a is a left R-linear
morphism which is given by

alx) =x®14+cQ® 6+dx® 8 (c,d € R),

and the relation (2. 3) and (2. 4) are also satisfied in the same way as to the
commutative case. Since ¢ is a k-algebra morphism, we have the following

equations
(2.7) me = (1 +dg)D(c)+ld+o(d)+do(d)glnt+c’q,
(2.8) md = (1+dg)lc+olc)+DdN}+1d+ o(d)+da(d)glm,

(2.9) dD(r) = o(r)c—cr (r € R),
(2.10) do(r) = o(r)d (r € R).

Assume that S is a right B-Galois extension of R. Then 7: S ®: S —
S ® B is an epimorphism if and only if there exists elements r,, 71, 72, 75 In

R such that

(2.11) ro+rm =0,
(2. 12) r+r+rim =0,
(2.13) ric+rii D(c)+old)n} =1,
(2.14) red+ 73l o{c)+ o(d)m+D(d)| = 0.

Under these notations, we have the following

Theorem 2.3. Assume that there exists a right B-Galois extension S/R.
If one of the following assumptions satisfies, then B is a Hopf algebra.

(1) ¢ =0 and o is an epimorphism.

(2) ¢ is not a right zero-divisor in R.

(3) R has no right zero-divisors.

(4) d=p, ord=0.

Proof. In the following proof, we note that p and ¢ are in the center of
R and they are invariant under ¢ and D.
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(1) I ¢=0, then by (2.13), 7r50(d)n = 1. Since ¢ is an epimor-
phism, d is in the center of R by (2.10) and so ¢(d) is invertible in R.
Thus by (2.4), o(d) = p. By (2.7) and the fact that p and o(n) have left
inverse, we get pg+2 = 0, which shows that B is a Hopf algebra by (2. 2).

(2) If ¢ is not a right zero-divisor, then by (2.3) d = p. Using this
and (2. 8), we have

(2.15) (pg+1)ic+olc)+pm} = 0.
Since 7; is a monomorphism, (2.11), (2. 12), (2. 14) and
(2.16) ric+ 13l Die)+ o(d)nl =0

imply that 7o = v, = r, = r; = 0, and by (2. 14) and (2. 16), we get that
(2.17) pD(c)+p°n— o(c)c—pme is not a right zero-divisor.
Then noting that (2.7),(2.9) and (2. 17), we can prove that

(2.18) (pg+1){p*n+ olc)ec! is not a right zero-divisor.

Thus by (2.15), pm = —c—o{c). Multiplying (2.7) by p and using (2. 9),
we get (pg+2)|p’n+o(c)c] = 0 and by (2. 18), pg+2 = 0.

(3) By (2), we may assume that ¢ = 0. If d = 0, then « is the identity
morphism and S is not a right B-Galois extension of R. If d #+ 0, thend = p
and by (2.9) D= 0. Since 7 is an epimorphism, rspn = 1 by (2.13).
Moreover by (2.7), (pg+2)pn = 0 and so pg+2 = 0.

(4) If d = p. then the result is clear by the proof of (2). If d = 0,
then by (2.7) and (2.13), we get ric+7:D(c) = (ry4+rsm—rscq)c = 1,
which shows that ¢ has a left inverse element. Thus by (2), B is a Hopf
algebra.

In [6], S. Ikehata got some results for an ideal generated by a single
polynomial in a skew polynomial ring and in [9], T. Nagahara studied many
type of skew polynomials of degree 2 in detail with respect to non-commutative
Galois extensions. And there are many papers for quadratic extensions and
skew polynomial rings. But in any cases it is not known that there exists a
quadratic free right B-Galois extension of R. Because our type of right B-
Galois extensions is beyond the scope of the recent work of quadratic
extensions and skew polynomial rings.

Question. Does there exist a free quadratic right B-Galois extension
of R?
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3. The case of finite cyclic semigroup. Let G be a finite cyclic semi-
group (not a group) with identity 1, that is,

G=11,0,0%....,6" " |¢"= o™ for some 1 < m< n—1}.

Let B = kG be a semigroup bialgebra with usual coalgebra structure A(¢) =
0® o and e(¢) =1, S a commutative right B-Galois extension of %, and
a: S—> S ® B a comodule algebra structure morphism. According to the
same method in [1, pp. 35—39], we can determine the structure of S as
follows : First, we can set that

n—1
G(S) =)® o' (s, 8 € S).
=0
Using the comodule structure of S, it is easy to see that
n—1 '
s=>s; and als) = 5; ® o
i=0

Weset S;=1{s€ Slals) =s® ¢°l. Then S; is a k-module and S = S,
@ ® Sy_y as a k-module and S, =k%. Since 5: S® S—>S® B is
an epimorphism, there exist s;, #; € S, such that

—1

n-1 R
55( 12 5 ® ti) = ,Zostfj ®d =18 0.

iJ=10 =

Therefore (3™ 2s,)t, = 1. By a(sit;) = a(s)e(t) = sit, ® o', s:t, are
contained in S;;; andsol1 € §, ¢ S, ®.--® S,_., because S, = S». This
contradicts to So N(S:1 D S, &---® S,_1) = 0. Thus there does not exist
a right kG-Galois extension of k for a cyclic semigroup G.

Next let B be the dual bialgebra of kG, that is, B= Hom(kG, k), S/k a
right B-extension and a: S - S ® B a comodule algebra structure morphism.
Then by the coalgebra structure of kG, G acts on S as a k-algebra morphism and

n-1

a(s) = Y o¥s) ® v,

i=0

where | v, ¥1,...,vn_1} are the ordered dual basis of B with respect to the
basis |1, o,..., 0™ 'l of kG (cf. [8, Example 1]). Assume that S/k is a right
B-Galois extension. Then 7%5: S® S— S ® B is an epimorphism and so
there exist s;, t; € S such that

T T n-1 .
')'S(Z})si &® ti) = tz_:" jZ:nSiO'J(it) ®v,=1& v.
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Therefore
T r
gsiti =1 and i_Z:,'staj(ix) =0

for any j=1,2,...,n—1. Since ¢" = ¢" and ¢ is a k-algebra morphism,
we have the following contradiction :

0= am( gsia"—mm)) = $10™s) 01D

= 5105 a"t) = o Hsete) = 0™1) = 1.
Thus S/k is not a right B-Galois extension. These prove the following

Theorem 3.1. Let G be a finite cyclic semigroup (not a group) and let
B be the semigroup bialgebra kG or (kG )* = Hom(kG, k). Then there does not
exist a right B-Galois extension of k.
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