ON H-SEPARABLE POLYNOMIALS OF PRIME DEGREE

Dedicated to Professor Takasi Nagahara on his 60th birthday

SHÛICHI IKEHATA

In [3] and [4], the author has studied H-separable polynomials in skew polynomial rings. If the coefficient ring is commutative, the existence of H-separable polynomials in skew polynomial rings has been characterized in terms of Azumaya algebras and Galois extensions. However, if the coefficient ring is not commutative, we know few. In [8], we have studied on H-separable polynomials of degree 2 in skew polynomial rings of derivation type. In this paper, we shall study H-separable polynomials of prime degree in skew polynomial rings of automorphism type.

Throughout this paper, B will represent a ring with 1, and ρ an automorphism of B. Let $B[X; \rho]$ be the skew polynomial ring in which the multiplication is given by $bX = X\rho(b)$ ($b \in B$). A monic polynomial f in $B[X; \rho]$ with $fB[X; \rho] = B[X; \rho]f$ is called a separable (resp. H-separable) polynomial if $B[X; \rho]/fB[X; \rho]$ is a separable (resp. H-separable) extension of B. As to terminologies used in this note, we follow [3].

In this note, we shall prove that $B[X; \rho]$ contains an H-separable polynomial of prime degree p if and only if the center Z of B is a Galois extension over Z^{ρ} with some conditions (Theorem 2). We shall also prove that if $f = X^{\rho} - u$ is a separable polynomial in $B[X; \rho]$ with prime degree p, and p is contained in the Jacobson radical of B, then f is an H-separable polynomial in $B[X; \rho]$ (Corollary 5).

We shall use the following conventions:

Z = the center of B.

 $V_s(B)$ = the centralizer of B in S for a ring extension S/B.

 $u_r(\text{resp. } u_l) = \text{the right (resp. left) multiplication in } B \text{ effected by } u \in B.$ $B^{\rho} = |\alpha \in B| \rho(\alpha) = \alpha|, \ Z^{\rho} = |\alpha \in Z| \rho(\alpha) = \alpha|.$

First, we shall state the following

Lemma 1. Assume that there exist a positive integer n and an invertible element u in B such that $\alpha u = u\rho^n(\alpha) (\alpha \in B)$ and $\rho(u) = u$. Let l be a positive integer such that (l, n) = 1. If w is an element in B such that $\alpha w = 0$

 $w\rho^{l}(\alpha)$ (or $w\alpha = \rho^{l}(\alpha)w$) ($\alpha \in B$), then $\rho^{l}(w) - \rho^{j}(w)$ are contained in the Jacobson radical J(B) of B for all $i, j \geq 0$.

Proof. It is sufficient to prove $w - \rho(w)$ is contained in J(B). Since $w^2 = w\rho^l(w)$, we have $w(w - \rho^l(w)) = 0$. Then, we obtain

$$(w - \rho^{l}(w))^{3} = (w - \rho^{l}(w))(w - \rho^{l}(w))(w - \rho^{l}(w)) = (w - \rho^{l}(w))(-\rho^{l}(w))(w - \rho^{l}(w)) = -w(w - \rho^{l}(w))(w - \rho^{l}(w)) = 0.$$

Hence $(w-\rho^{l}(w))B=B(w-\rho^{l}(w))$ is a nilpotent ideal of B, whence $w-\rho^{l}(w)$ is contained in J(B). Since (l,n)=1, we can easily see the assertion.

Now, we shall prove the following theorem which is a partial generalization of [3, Theorem 2.2].

Theorem 2. Let p be a prime integer. Then, the following are equivalent:

- (a) $B[X; \rho]$ contains an H-separable polynomial f of degree p.
- (b) There exists an invertible element u in B such that $\alpha u = u\rho^{\rho}(\alpha)$ ($\alpha \in B$), $\rho(u) = u$, and Z/Z^{ρ} is a G-Galois extension, where G is the group generated by $\rho \mid Z$ of order p.

When this is the case, the set of all H-separable polynomials of degree ≥ 2 in $B[X; \rho]$ coincides with $|X^{\rho} - uc|c$ is an invertible element in Z^{ρ} .

Proof. (b) \Rightarrow (a). By [3, Proposition 1.4], $X^{\rho}-u$ is an H-separable polynomial in $B[X; \rho]$.

- (a) \Rightarrow (b). By [4, Lemma 1], f is of the form $X^{\rho}-u$ such that u is invertible in B, $\rho^{\rho}=(u^{-1})_{l}u_{\tau}$, and $\rho(u)=u$. By [3, Theorem 1.1], there exist $y_{l}=\sum_{k=0}^{\rho-1}X^{k}c_{l,k}$, $z_{l}=\sum_{k=0}^{\rho-1}X^{k}d_{l,k}$ in $B[X;\rho]$ such that $\alpha y_{l}=y_{l}\alpha$, $\rho^{\rho-1}(\alpha)z_{l}=z_{l}\alpha$ ($\alpha\in B$) and $\sum_{l}y_{l}X^{\rho-1}z_{l}\equiv 1$. $\sum_{l}y_{l}X^{k}z_{l}\equiv 0$ (mod $fB[X;\rho]$) ($0\leq k\leq p-2$). Then we have
- (i) $\rho^{k}(\alpha)c_{i,k} = c_{i,k}\alpha, \ \rho^{p-1+k}(\alpha)d_{i,k} = d_{i,k}\alpha \ (\alpha \in B) \ (0 \le k \le p-1).$

Now, we note that

$$1 \equiv \sum_{i} y_{i} X^{\rho-1} z_{i} = \sum_{i} \left(\sum_{r=0}^{\rho-1} X^{r} c_{i,r} \right) X^{\rho-1} \left(\sum_{s=0}^{\rho-1} X^{s} d_{i,s} \right)$$

$$=\sum_{t}\sum_{r=0}^{\rho-1}\sum_{s=0}^{\rho-1}X^{\rho+r+s-1}\rho^{\rho+s-1}(c_{t,r})d_{t,s}.$$

Since $X^{\rho} \equiv u \pmod{fB[X; \rho]}$ and $\rho^{\rho} = (u^{-1})_l u_r$, comparing the constant terms of both sides, we obtain

$$1 = \sum_{i} u \rho^{\rho}(c_{i,0}) d_{i,1} + \sum_{i} u \rho^{\rho-1}(c_{i,1}) d_{i,0} + \sum_{i} u^{2} \sum_{j=2}^{\rho-1} \rho^{\rho+\rho-j}(c_{i,j}) d_{i,\rho-j+1}$$
$$= \sum_{i} c_{i,0} u d_{i,1} + \sum_{i} u \rho^{\rho-1}(c_{i,1}) d_{i,0} + \sum_{i} \sum_{j=2}^{\rho-1} u \rho^{\rho-j}(c_{i,j}) u d_{i,\rho-j+1}.$$

Next, we have

$$0 \equiv \sum_{i} y_{i} X^{i} z_{i} = \sum_{i} \sum_{r=0}^{\rho-1} (X^{r} c_{i,r}) X^{i} \left(\sum_{s=0}^{\rho-1} X^{s} d_{i,s} \right)$$
$$= \sum_{i} \sum_{r=0}^{\rho-1} \sum_{s=0}^{\rho-1} X^{l+r+s} \rho^{l+s} (c_{i,r}) d_{i,s}, \text{ for } 0 \leq l \leq p-2.$$

Then, comparing the coefficients of the term X^{l+1} of both sides, we see that

$$0 = \sum_{i} \rho^{i+1}(c_{i,0}) d_{i,1} + \sum_{i} \rho^{i}(c_{i,1}) d_{i,0} + \sum_{i} \sum_{j=2}^{\rho-1} u \rho^{i+\rho-j+1}(c_{i,j}) d_{i,\rho-j+1}.$$

Therefore, we have

$$1 = \sum_{i} (c_{i,0} - \rho^{i+1}(c_{i,0})) u d_{i,1} + \sum_{i} (\rho^{\rho-1}(c_{i,1}) - \rho^{i}(c_{i,1})) u d_{i,0}$$
$$+ \sum_{i} \sum_{j=2}^{\rho-1} u (\rho^{\rho-j}(c_{i,j}) - \rho^{i+\rho-j+1}(c_{i,j})) u d_{i,\rho-j+1}.$$

Noting (i), it follows from Lemma 1 that the elements $\rho^{\rho-1}(c_{l,1})-\rho^{l}(c_{l,1})$ and $\rho^{\rho-j}(c_{l,j})-\rho^{l+\rho-j+1}(c_{l,j})$ $(2 \leq j \leq p-1)$ are contained in the Jacobson radical of B. Thus $\sum_{l}(c_{l,0}-\rho^{l+1}(c_{l,0}))ud_{l,1}$ is invertible in B, and so in Z $(0 \leq l \leq p-2)$. Since $\rho^{\rho}=(u^{-1})_{l}u_{r}$, the order of $\rho \mid Z$ coincides with p. Therefore, Z/Z^{ρ} is a $(\rho \mid Z)$ -Galois extension by [1, Theorem 1.3 (f)]. The rest of the assertion follows from [4, Lemma 1 (3)] and [3, Proposition 1.4].

Now, we shall prove the following which is a partial generalization of [3, Theorem 2.2].

Corollary 3. Let p be a prime number, and B an Azumaya Z-algebra. Let $f = X^{\rho} + X^{\rho-1}a_{\rho-1} + \cdots + a_0$ be in $B[X; \rho]$ with $fB[X; \rho] = B[X; \rho]f$, 24 S. IKEHATA

and $S = B[X; \rho]/fB[X; \rho]$. Then, f is an H-separable polynomial in $B[X; \rho]$ if and only if S is an Azumaya Z^{ρ} -algebra. When this is the case, there holds that Z/Z^{ρ} is a G-Galois extension, where G is the group generated by $\rho \mid Z$ of order p, and $f = X^{\rho} + a_0$. Moreover, the centralizer of B in S coincides with Z.

Proof. Assume that S is an Azumaya Z^{ρ} -algebra. Since $S \supseteq B \supseteq Z^{\rho}$ and S_B is free, f is H-separable in $B[X; \rho]$ by [2, Theorem 1]. Then by $[4, Lemma 1], f = X^{\rho} + a_0$.

Conversely, we assume that f is an H-separable polynomial in $B[X; \rho]$. Since S/B is an H-separable extension and B is an Azumaya Z-algebra, it follows from [7, Theorem 1] that S is also Azumaya algebra over its center. Now, we shall prove $V_S(B) = Z$ and $V_S(S) = Z^o$. Put $x = X + fB[X; \rho] \in S$. Then, for any $y = \sum_{i=0}^{\rho-1} x^i d_i$ in $V_S(B)$, we have $\rho^i(\alpha) d_i = d_i \alpha$ ($0 \le i \le p-1$, $\alpha \in B$). Hence, for all $\alpha \in Z$, we have $(\rho^i(\alpha) - \alpha) d_i = 0$. Since Z/Z^o is a $(\rho|Z)$ -Galois extension and the order of $\rho|Z$ is p (Theorem 2), it follows from [1, Theorem 1.3] that the ideal of Z generated by $|\alpha - \rho^i(\alpha)| \alpha \in Z$ is equal to Z for $1 \le i \le p-1$. Hence we have $d_i = 0$ ($1 \le i \le p-1$), so $y = d_0 \in V_B(B) = Z$, and $V_S(S) = Z^o$ is now clear.

In [6], Nagahara proved that if $f=X^2-Xa-b$ is a separable polynomial in $B[X:\rho]$ whose discriminant $\delta(f)=a^2+4b$ is contained in J(B), then f is an H-separable polynomial in $B[X:\rho]$ ([6, Theorem 2]). In this case, the condition $\delta(f)\in J(B)$ implies $2\in J(B)$. In the prime power degree case, we shall prove the following

Theorem 4. Let $f = X^{\rho e} - u$ be a separable polynomial in $B[X; \rho]$. If p is a prime number, and p is contained in the Jacobson radical J(B) of B, then f is an H-separable polynomial in $B[X; \rho]$.

Proof. Since $fB[X; \rho] = B[X; \rho]f$, we have $\alpha u = u\rho^{\rho^e}(\alpha)$ ($\alpha \in B$) and $\rho(u) = u$. In virtue of [5, Theorem 3.1], u is an invertible element in B and there exists an element c in Z such that

$$c + \rho(c) + \rho^{2}(c) + \dots + \rho^{\rho^{e-1}}(c) = 1.$$

Then, we have $(\rho | Z)^{p^e} = 1_Z$. Let k be any integer such that $1 \le k \le p^e -1$. If $(k, p^e) = p^i (0 \le i \le e -1)$, then $k = lp^i$, where (l, p) = 1. We put here

$$d = c + \rho^{l}(c) + \rho^{2l}(c) + \dots + \rho^{l(\rho^{l-1})}(c) \ (\in Z).$$

Since
$$1 = \sum_{j=0}^{p^e-1} \rho^j(c) = \sum_{j=0}^{p^e-1} \rho^{ij}(c)$$
, we have
$$d + \rho^k(d) + \rho^{2k}(d) + \dots + \rho^{k(p^{e-i-1})}(d) = 1.$$

On the other hand, we obtain

$$\begin{split} 1 - p^{e-i} \rho^{k}(d) &= d - \rho^{k}(d) + \sum_{s=2}^{\rho^{e-i}-1} \{ \rho^{ks}(d) - \rho^{k}(d) \} \\ &= d - \rho^{k}(d) + \sum_{s=2}^{\rho^{e-i}-1} \sum_{j=1}^{s-1} \{ (\rho^{k})^{j-1}(d) - (\rho^{k})^{j}(d) \}. \end{split}$$

Since $p \in J(B)$, $1-p^{e-\iota}\rho^k(d)$ is invertible in B, and so in Z. Therefore we see that the ideal of Z generated by $|\alpha-\rho^k(\alpha)|\alpha\in Z$ coincides with Z and the order of $\rho|Z$ is equal to p^e . Hence by [1, Theorem 1.3], Z/Z^ρ is a $(\rho|Z)$ -Galois extension. Thus, f is an H-separable polynomial in $B[X;\rho]$ by Theorem 2.

Corollary 5. Let $f = X^{\rho} - u$ be a separable polynomial in $B[X; \rho]$. If p is a prime number and p is contained in the Jacobson radical J(B) of B, then f is an H-separable polynomial in $B[X; \rho]$.

We shall conclude our study with the following example which shows that in Theorem 4, if p is not prime power number, the assertion is not true.

Example. Let $B = GF(3^3)$ and ρ the automorphism of B of order 3. Then B is a Galois extension over GF(3), and so, there exists an element α in B such that $\alpha + \rho(\alpha) + \rho^2(\alpha) = 1$. If we put $c = 2^{-1}\alpha$, then we obtain $c + \rho(c) + \cdots + \rho^5(c) = 1$. Therefore, by [5, Theorem 3.1], $f = X^6 - 1$ is a separable polynomial in $B[X; \rho]$ with 6 = 0. Since the set of all H-separable polynomials in $B[X; \rho]$ is equal to $|X^3 - 1, X^3 - 2|$ ([3, Theorem 2.2]), f is not an H-separable polynomial in $B[X; \rho]$.

REFERENCES

- [1] S. U. CHASE, D. K. HARRISON and A. ROSENBERG: Galois theory and Galois cohomology of commutative ring, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [2] S. IKEHATA: Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), 17-18.
- [3] S. IKEHATA: Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ. 23 (1981), 19-32.
- [4] S. IKEHATA: Azumaya algebras and skew polynomial rings. II, Math. J. Okayama Univ. 26

(1984), 49-57.

- [5] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.
- [6] T. NAGAHARA: Some H-separable polynomials of degree 2, Math. J. Okayama Univ. 26 (1984), 87-90.
- [7] H. OKAMOTO: On projective H-separable extensions of Azumaya algebras, Results in Mathematics.14 (1988), 330-332.
- [8] H. OKAMOTO and S. IKEHATA: On H-separable polynomials of degree 2, Math. J. Okayama Univ. 32 (1990), 53-59.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
TSUSHIMA-NAKA, OKAYAMA-SHI, JAPAN 700

(Received January 19, 1991)