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ON DOUBLE HOMOTHETISMS OF
RINGS AND LOCAL RINGS
WITH FINITE RESIDUE FIELDS

Dedicated to Professor Takasi Nagahara on his 60th birthday

Takao SUMIYAMA

In his paper [2], C. J. Everett gave a solution of Schreier’s extension
problem for rings. The detailed discussion on this subject will be found in
[6, §§52, 53].

Let R be a ring extension of I by A. If there exists a multiplicative
cross-section f: A = R, then R is determined as the Everett sum A+T
.corresponding to a certain couple of mappings [,]: AXA > Iandd: A -
DH(I) {Theorem1). In §§ 2 and 3, our attention will be restricted to the
case that R is a local ring with finite residue field. Theorem 1 enables us to
give some structure theorems for such local rings (Theorems 2 and 3).
Furthermore, we shall give a condition for such Everett sums or their unit
groups to be equivalent (Theorems 4 and 5).

1. Throughout this section, I will represent an associative ring. Let
E\(I) denote the right I-endomorphism ring of I, and Ey(I) the left I-endo-
morphism ring of I. Any element of E(I) and E,(I) will act on I from the
left. Let E'(I) be the abelian group E\(I) @ EJ(I) =\|f=("f)|f' €
E\(I), f* € E{I)|. Defining the multiplication on E'(I) by (f', f?)(g'. 8°) =
(f'g’, g*f?), we see that E'(I) forms a ring. An element f = (f', f*) € E(I)
is called a double homothetism of I if

(1) (fx)y = ={f'y)

(2) fif'x) = fi(f’x) (z,y € ).

We denote by DH(I) the set of all double homothetisms of I. Although DH(I)
is closed under addition, it is not necessarily closed under multiplication.
Given a € I, we define [a] = (d’, a*) by

a'x=ax and a’x = xa.

This [a] is called the inner double homothetism induced by a.
Two double homothetisms f = (f', f?) and g = (g', g°) are said to be
related if

(3) fYg’x) = g*(f'x)
13
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(4) fHg'z) = g'(f%) (x € I).

This property is symmetric and reflexive, but not transitive in general. Each
inner double homothetism of I is related to any double homothetism of I.
A set S of double homothetisms of I is said to be related if any two elements
of S are related.

In what follows, A will represent a ring with 1. Elements of A will be
denoted by a, 8, 7,..., and elements of I by x, ¥, z,....

Now, let [, | be a mapping of AX A to I such that

(5) [a8] =1[8 d]

(6) [apBl+la+p vl =[a p+7]+[8 7]

(7) [0,a] =[a0] =0(ap 7€ A).

Further, let d: a - do = (dg, d5) be a mapping of A to DH(I) such that

(8)  dayex+[o Blx = dox+dix

(9)  devsx+ala B8] = dox+dix

(10) dma = dad/s

(11) dM[a, 8]) = [ya. 78]

(12)  d¥{[e B]) = [y, B7]

(13)  daldix) = di(dax]

(14) dix=dix=0

(15) dix=dix=x(a,8€ A, xe I).

Such a couple ([, ], d) will be called an Everett couple (abbreviated E-couple)
for A and I. By setting <, > =0 in [6, § 52, Satz 112], we can easily
see that AX I forms a ring concerning the operations defined by

(16) (e x)+(B y) = (a+f, [a B +x+y)

(17) (e x)(B8 y) = (aB, dey+dix+xy).

This ring will be called an Everett sum (abbreviated E-sum) of A and I, and
denoted as A+ 1 (cf. [6, § 52]). Obviously, e = (1, 0) is the identity element
of A41, I is regarded naturally as an ideal of A+I, and the quotient ring
(A+1I)/I is naturally identified with A.

Conversely, let R be a ring with 1, I an ideal of R, and A= R/I.
Assume that there exists a multiplicative cross-section f: A — R, namely
S satisfying (1) flaf) = fla)f(8), (ii) f(0) =0 and (iii) nof = ids(n:
R - A is the natural homomorphism). Then we can define mappings [, | :
(0, f8) b [a. Bl of AXAtoTandd: a - dy = (d}, di) of A to DH(I) by

(18) [ 8] = fla)+f(B)—fla+RB)

(19) dex = fla)x

(20) dox = xf(a).

It is easy to see that ([, ], d) is an E-couple for A and I, so that we have an



ON DOUBLE HOMOTHETISMS OF RINGS AND LOCAL RINGS WITH FINITE RESIDUE FIELDS 15

Esum A+1 Let ¢: R— A+1I be defined by o(a) = (x(a), a—f(x(a))).
Then we see that ¢ is an isomorphism of R onto A-I which leaves every
element of I fixed and induces the identity mapping modulo 1.

Summarizing the above, we state the following theorem.

Theorem 1. Let R be a ring withl, I an ideal of R, and A = R/I.
Suppose that there exists a multiplicative cross-section f: A — R. Then there
exists an E-couple ([, ],d) for A and I such that R is isomorphic to the E-sum
A+ I corresponding to ([, ], d).

2. In what follows, by making use of Theorem 1, we shall study on the
structure of local rings with finite residue fields. The first main theorem of
this section is stated as follows.

Theorem 2. Let M be a nil ring, and K= GF(p") (p a prime). If
([,].d) is an E-couple for K and M, then the E-sum K+ M corresponding to
([,1,d) is a local ring with radical M whose residue field is K. In particular,
if [a, B] =0, then K+ M is of characteristic p. Conversely, if R is a local
ring with radical M whose residue field is K, then there exists an E-couple
([,].d) for K and M such that R is isomorphic to the E-sum K+ M corre
sponding to ([, ],d). If furthermore R is of characteristic p, then there exists
an E-couple with [a, 8] = 0.

Proof. By definition, it is easy to see that K+M is a local ring with
radical M whose residue field is K. If [a, 8] = 0, then p(1,0) = (p,0) =0,
so K4 M is of characteristic p.

Conversely, let R be a local ring with radical M whose residue field is
K. Then, as is well-known, R is of characteristic p™. Let ¥ = v+M be a
#"-' = 1 4 x for some x € M.
As is easily seen, (1 4+x)? = 1 for some positive integer {. We put u = v*
whose multiplicative order is p"—1. Now, we can define a multiplicative
cross-section f: K- Rby f(#?) =4’ (1 £i<p"™—1) and f(0) = 0. Then
R is isomorphic to an E-sum K+M by Theorem 1. Henceforth, suppose
further that R is of characteristic p. Let R, = <u) be the subring of R
generated by u. Since the natural homomorphism z: R — K induces a homo-

generator of the unit group K* of K. Then v

morphism of R, onto K, so R, is a finite commutative local ring with radical
M, = M N R, whose residue field is K. Since K is separable over GF(p),
by Wedderburn — Malcev theorem [1, Theorem 72.19], R, = K' @ M, as
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abelian group, where K’ is a subfield of R,. Then we can define a multipli-
cative cross-section f: K > R such that f(a+8) = f(a)+f(g8). So(18)
becomes [a, 8] = 0.

In what follows, M will represent a nilpotent ring, and K = GF(p")
(p a prime). Let K+M be the E-sum of K and M corresponding to the E-
couple ([, ], d). Then (K+M)* is an extension of 1 +M by K* and is a
semidirect product of K* and 1+ M.

We shall say that an E-couple ([, ], d) is symmetric when dyx = dZx for
any ¢ € K and x € M. When this is the case, (K+M )* is the direct product
of K¥and 1+ M.

Given a prime p and positive integers k, r, there exists (uniquely) an
r-dimensional Galois extension GR(p"*", p*) of Z » = Z /(p*), which is called
a Galois ring of characteristic p* and rank 7 (see[3, Chapter XVI]). This
ring is a commutative local ring with radical (p) whose residue field is
GF(p"). Now, we are in a position to state the second main theorem of this
section.

Theorem 3. Let K+ M be the E-sum of K and the nilpotent ring M
corresponding to the E-couple ([, ], d). Let p* be the characteristic of K+ M.
Let N be the subring of M generated by {[a, 8] a. B € K|, and S ={(a, x) €
KiMlac K.z € N|.

(1) S is a subring isomorphic to GR(p"*", p*), and S = {(u, 0)> for any
generator u of K*.

(II) If S’ is a subring of K+ M isomorphic to GR(p*", p*), then there
exists aunit b € (K+M)* such that S' = b~'Sb (cf. [5, Theorem 8 (ii)]).

(M) The following are equivalent.

(i) S is the only subring of K4+M isomorphic to GR(p*", p").

(ii) ([, ], d) is symmetric.

(iii) (K+M)* is a nilpotent group (cf. [8, Theorem 2 (2)]).

Proof. (1) Noting that M is a nilpotent ring whose characteristic is
a power of p, we can easily see that every finite subset of K+ M generates a
finite subring. Let u be a generator of K* and w' = (,0). Then <z is a
finite local ring with radical N' = M N <u"> whose residue field is K. By
the proof of [7, Theorem], {u> contains a unit u, of multiplicative order
p"—1 such that <u,> is isomorphic to GR(p*", p*). Let |N'|=p"(h = 0).
Then (<u'>)* is an abelian group of order p*(p"—1). Since both cyclic
subgroups (') and (u,) of ( <u'>)* have the same order p"—1, we have (v) =
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(u1). Hence <u’> = {u,> = GR(p*", p*). By (16).(17),(11) and (12), it is
easy to see that S is a ring containing <u'>. On the other hand, (0, [a, 8]) =
(a,0)+(8,0)—(a+p.0) € <u’>. This implies SC <u">, and so S= <u".

(IT) The ring S, generated by S’ U S is a finite local ring with residue
field K. As S' and S are isomorphic to GR(p*", p*), there exists a unit
b € S, such that S’ = b™'Sb by [5. Theorem 8 (ii)].

(M) (i) =>(ii). Suppose that dyx, + d5x, for some y € K and
xo € M. Let N, be the subring of M generated by | da(d}x,), [a. Bl]a. B €
Kl. Then R, = {(a,x)|a € K, x € N,| is a finite local ring with residue
field K. By [5, Theorem8(i)]. R, contains a subring isomorphic to
GR(p"", p*), which is unique by our assumption. Then, by [8, Theorem 2
(2)], R¥ is nilpotent. Let |N,| = p°. Then the order of R¥ is p*(p"™—1).
Since any finite nilpotent group is the direct product of its Sylow subgroups
and B= {(a,0)|a € K*| is a subgroup of order p"—1, R¥ is the direct
product of B and 1+ N,. Then

(7, dyxe) = (7,0)(1, x) = (1, x0) (7,0) = (7, dyx0).

which contradicts dyxs =+ d5xo.

(ii) = (iii). By the proof of [4, Lemma 1], we see that 1+M is a
nilpotent group. Hence (K+M)* is nilpotent as the direct product of K*
and 1 +M.

(iii) = (i). Suppose there exists a subring S' of K4+ M isomorphic to
GR(p*", p*). Then S’ U S generates a finite local ring S, with residue field
K. Since S¥ is nilpotent as a subgroup of (K+M)*, S’ = S by [8, Theorem
2(2)].

3. Throughout this section, K+M and K+ M will represent E-sums
corresponding to E-couples'v([ ,].d) and ([T], d), respectively. According
to [6, §52], K+M and K+ M are said to be equivalent (as ring extensions
of M by K) if there exists an isomorphism of K+ M onto K+ M which leaves
every element of M fixed and maps every class (@.0)+M of (K4+M)/M to
(a,0)+M of (KFIM)/M (a € K).;

Two groups (K+M )* and (K+ M )* are said to be equivalent (as group
extensions of 1 +M by K*) if there exists a group isomorphism of (K+ M )*
onto (KIM)* which leaves every element of 1+ M fixed and maps every
class (a,0)(14+M) of (KEM)*/(1+M) to (a.0)(1+M) of (KFM)*/

(14+M)(a € K*).
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Theorem 4. K+M and K+ M are equivalent if and only if there exists
a mapping A: K = M such that

(21) Me+p)—Ale)—A(B) = [T Bl —[a, A]

(22)  Alap)— Al(a) AR ) = dy(A(8) +d3 Ala))

(23) Aa)x = dax—dsx

(24) zAMa) = dix—dix(e.BE K. x € M).

When this is the case, | dalacx U |dalack is a related set of double homo-
thetisms of M.

Proof. If o: K+M - K¥M is an isomorphism which leaves every
element of M fixed and maps every class modulo M onto itself, we can write
ala,0) = (a, Ala)) for some mapping A: K - M. We can deduce (21)—(24)
from the fact that o is a ring homomorphism having the above described
property.

Conversely, suppose that A: K » M satisfies (21)—(24). Then o¢:
K+M - K¥M defined by o(a,x) = (a,x+ A(e)) is the desired isomorphism.

If K+M and K+ M are equivalent, then by (13), (24) and the definition
of double homothetisms,

di(dhx) = di{djx—xA(8)) = di(dbx)—(dhx) M(B) = di(dbx).

This proves the final assertion.

Theorem 5. (K+M)* and (KIM)* are equivalent if and only if there
exists a mapping u: K* - M such that
(25)  ulaB)—ula)u(p) = fo(u(ﬂ)):l-gﬁ(#(a)) _
(26) wla)(da-x)—(do-x) ule) = dilds-1x) —dolda-x)
(e, € K¥\x € M).

Proof. I 7: (K4+M)* > (K¥M)* is an isomorphism which leaves
every element of 1+ M fixed and maps every class modulo 1 + M onto itself,
then we can write 7(a, 0) = (a, u(a)) for some mapping u: K* - M. Itis
easy to see this y satisfies (25) and (26).

Conversely, suppose that y: K* —» M satisfies (25) and (26). Then we
can define r: (K+M)* > (KTM)* by

(e, x) = (a, JL(d},-nx)+u(a)+u(a) (da-1x)).

It is obvious that 7 leaves every element of 1 + M fixed and maps every class
modulo 1+ M onto itself. By

7(e,0)z(1,x) = z((,0)(1, x))
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la, x) (B, 0) = z{(a, x)(8,0))
(e, x) (1, y) = z((a, 2) (1, y)).

it is a routine to verify that ¢ is a group isomorphism.

If K:M and K+ M are equivalent, then so are (K+M)* and (K+ M )*.
But, the following example shows that the converse need not be true.

Example. Let M =10, a,2albea zero-ring (M? = 0) of order 3. We
shall define two E-couples ([, ], d) and([7],d) for K= GF(3) and M as

follows :

[0,0] =[0,a] =0

(1,1] =a [1,2] =[2,1] =0, [2,2] = 24
[a78] =0 (a,8€ K)
d3x=d§x=gﬁx=gﬁx=()
dx=dix=dx=dx=2x

dix = dix = dix = dix = 2x (x € M).

It is easy to see that ([, ], d) and ([7]. d) are E-couples for K and M. Let
K+M and KX M be E-sums corresponding to ([ , ], d) and ([ 7], d), respec-
tively. Since ch(K+M) = 9 and ch(K+M) = 3, K+ M and KT M are not
equivalent. Whereas, by putting x(e) =0 in Theorem5, we see that
(K+M)* and (KF M)* are equivalent.,

In conclusion, the author would like to express his indebtedness and
gratitude to Prof. Y. Hirano and Prof. H. Komatsu for their helpful sug-
gestion and valuable comments.
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