QUASI KO*-EQUIVALENCES; WOOD SPECTRA AND ANDERSON SPECTRA

Dedicated to Professor Yukihiro Kodama on his 60th birthday

ZEN-ICHI YOSIMURA

Let KO, KU and KC denote the real, complex and self-conjugate K-spectrum respectively. Given CW-spectra X, Y we say that X is quasi KO_* -equivalent to Y if there exists a map $h: Y \to KO \land X$ such that the composite $(\mu \land 1)(1 \land h): KO \land Y \to KO \land X$ is an equivalence where $\mu: KO \land KO \to KO$ denotes the multiplication of KO (see [Y2]). The KU-homology KU_*X is regarded as a Z/2-graded abelian group with involution, since the conjugation $t_u: KU \to KU$ gives an involution t_{u^*} on KU_*X for any CW-spectrum X. Notice that KU_*X and KU_*Y are isomorphic as Z/2-graded abelian groups with involution if X is quasi KO_* -equivalent to Y.

Let us denote by P and Q the cofibers of the maps $\eta: \Sigma^1 \to \Sigma^0$ and $\eta^2: \Sigma^2 \to \Sigma^0$ respectively where $\eta: \Sigma^1 \to \Sigma^0$ denotes the stable Hopf map of order 2. As is well known, $KU_0P \cong Z \oplus Z$ on which $t_{u^*} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $KU_1P = 0$, and $KU_0Q \cong Z \cong KU_{-1}Q$ on both of which $t_{u^*} = 1$. Following [MOY] we call a CW-spectrum X a Wood spectrum if X is quasi KO_* -equivalent to P, and an Anderson spectrum if X is quasi X-equivalent to X (see [Y2]). For any abelian group X we denote by X the Moore spectrum of type X and X-equivalent X on which X-equivalent to X-equivalent X-equivalent to X-equivalent X-equivalent to X-equivalent X-equivalent X-equivalent to X-equivalent to X-equivalent X-equivalent

Let X be a CW-spectrum such that

- i) KU_*X is pure projective and 2-torsion free, thus it is a direct sum of a free group and cyclic p-groups ($p \neq 2$), or
- ii) KU_*X is pure injective and 2-divisible, thus it is a direct summand of a direct product of a divisible group and cyclic p-groups $(p \neq 2)$ (see [F]).

Then KU_*X admits a direct sum decomposition $KU_*X \cong A \oplus B \oplus C \oplus C$ so that the conjugation t_{u^*} on KU_*X behaves as

$$t_{u^*}=1$$
 on A , $t_{u^*}=-1$ on B and $t_{u^*}=\left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight)$ on $C\oplus C$

respectively (use [B, Propositions 3.7 and 3.8] or [CR]).

In [Y2, Theorems 1 and 2] (cf. [MOY]) we have obtained certain results concerning Wood spectra and Anderson spectra. On the other hand,

Bousfield [B, Theorems 3.2 and 3.3] has independently shown the following complete results which contain our partial results, although Bousfield's notation (or statement) is different from ours.

Theorem 1 (Bousfield). Let X be a CW-spectrum such that KU_*X is pure projective and 2-torsion free. Then there exist abelian groups A_i ($0 \le i \le 7$), C_j ($0 \le j \le 1$) and G_k ($0 \le k \le 3$) with C_j and G_k free so that X is quasi KO_* -equivalent to the wedge sum ($\bigvee_i \Sigma^i SA_i$) \vee ($\bigvee_j \Sigma^j P \land SC_j$) \vee ($\bigvee_i \Sigma^{k+1} Q \land SG_k$). (Theorem 2.4).

Theorem 2 (Bousfield). Let X be a CW-spectrum such that KU_*X is pure injective and 2-divisible. Then there exist abelian groups A_i ($0 \le i \le 7$), C_j ($0 \le j \le 1$) and G_k ($0 \le k \le 3$) with C_j and G_k divisible 2-torsion so that X is quasi KO_* -equivalent to the wedge sum $(\bigvee_i \Sigma^i SA_i) \lor (\bigvee_j \Sigma^j P) \land SC_j) \lor (\bigvee_k \Sigma^{k+1} Q \land SG_k)$. (Theorem 3.4).

Strictly speaking, Bousfield has proved that an associative KO-module spectrum W is isomorphic as KO-module spectra to an extended KO-module spectrum $KO \wedge Y$ with $Y = (\bigvee_i \Sigma^i SA_i) \vee (\bigvee_j \Sigma^j P \wedge SC_j) \vee (\bigvee_k \Sigma^{k+1} Q \wedge SC_k)$, if $\pi_*(W \wedge P)$ is free or divisible. Our purpose in this note is to give a new proof of Theorems 1 and 2 by applying our method developed in [Y2, Y3]. Our method allows us to prove Bousfield's result for any associative KO-module spectrum W, although we here give a new proof of his result only for an extended KO-module spectrum $KO \wedge X$.

In §1 we recall some properties of K-spectra KO, KU and KC ([B] or [An1]) and then study the structure of KC_*X for any CW-spectrum X as in Theorem 1 or 2. In §2 and §3 we will only deal with CW-spectra X as in Theorems 1 and 2 respectively. After giving a refined decomposition of KU_*X in each case, we will prove Theorem 1 (Theorem 2.4) along the line adopted in [Y2, Y3] and Theorem 2 (Theorem 3.4) by a dual argument. In the proof of Theorem 2 we use the Anderson universal coefficient sequences (see [An2] or [Y1]), as was implicitly suggested in [B].

In this note we will work in the stable homotopy category of CW-spectra [Ad].

1. The real, complex and self-conjugate K-spectrum.

- 1.1. Let KO, KU and KC denote the real, complex and self-conjugate K-spectrum respectively. All of these K-spectra are associative and commutative ring spectra with unit. As relations among these K-spectra we have the following cofiber sequences ([An1], [B]):
- $(1.1) \quad \text{i)} \quad \Sigma^{1} KO \xrightarrow{\eta \wedge 1} KO \xrightarrow{\varepsilon_{u}} KU \xrightarrow{\varepsilon_{o} \pi_{u}^{-1}} \Sigma^{2} KO$
 - ii) $\Sigma^2 KO \xrightarrow{\eta^2 \wedge 1} KO \xrightarrow{\varepsilon_c} KC \xrightarrow{\tau \pi_c^{-1}} \Sigma^3 KO$
 - iii) $KC \stackrel{\zeta}{\to} KU \stackrel{\pi_u^{-1}(1-t_u)}{\longrightarrow} \Sigma^2 KU \stackrel{\gamma \pi_u}{\longrightarrow} \Sigma^1 KC$
 - $\text{iv}) \quad \varSigma^{1} KC \xrightarrow{(-\tau, \ \tau \pi_{c}^{-1})} KO \lor \varSigma^{4} KO \xrightarrow{\varepsilon_{u} \lor \pi_{u}^{2} \varepsilon_{u}} KU \xrightarrow{\varepsilon_{c} \varepsilon_{o} \pi_{u}^{-1}} \varSigma^{2} KC$
 - $v) \quad \Sigma^{2} KU \xrightarrow{(-\varepsilon_{o} \pi_{u}, \varepsilon_{o} \pi_{u}^{-1})} KO \vee \Sigma^{4} KO \xrightarrow{\varepsilon_{c} \vee \pi_{c} \varepsilon_{c}} KC \xrightarrow{\varepsilon_{u} \tau \pi_{c}^{-1}} \Sigma^{3} KU.$

The maps involved in (1.1) admit several properties as follows. The stable Hopf map $\eta: \Sigma^1 \to \Sigma^0$ has order 2. The maps $\varepsilon_u: KO \to KU$, $\varepsilon_c: KO \to KC$ and $\zeta: KC \to KU$ are ring maps with $\zeta\varepsilon_c = \varepsilon_u$, and the maps $\varepsilon_o: KU \to KO$, $\tau: \Sigma^1 KC \to KO$ and $\gamma: KU \to \Sigma^1 KC$ are merely KO-module maps with $\tau\gamma = \varepsilon_o$. The periodicity maps $\pi_u: \Sigma^2 KU \to KU$ and $\pi_c: \Sigma^4 KC \to KC$ satisfy $\zeta\pi_c = \pi_u^2\zeta$ and $\pi_c\gamma = \gamma\pi_u^2$ respectively. The conjugation maps $t_u: KU \to KU$ and $t_c: KC \to KC$ are ring maps satisfying $t_u^2 = 1$, $t_c^2 = 1$, $t_u\pi_u = -\pi_u t_u$ and $t_c\pi_c = \pi_c t_c$, and besides

$$(1.2) \quad t_c \, \varepsilon_c = \varepsilon_c, \ \tau t_c = -\tau, \ t_u \, \zeta = \zeta t_c = \zeta \ and \ t_c \, \gamma = -\gamma t_u = -\gamma.$$

Moreover there hold the following equalities among these maps (see [B, 1.9]):

- (1.3) i) $\varepsilon_0 \varepsilon_u = 2$, $\tau \varepsilon_c = \eta \wedge 1$, $\tau \pi_c \varepsilon_c = 0$, $\pi_c \varepsilon_c \tau \pi_c^{-1} = \varepsilon_c \tau + \eta \wedge 1$, $\zeta \gamma = 0$ and $\gamma \pi_u \zeta = \eta \wedge 1$, and also
 - ii) $\varepsilon_u \varepsilon_o = 1 + t_u$, $\gamma \varepsilon_u \tau = 1 t_c$ and $\varepsilon_c \varepsilon_o \zeta = 1 + t_c$.

Let K denote the K-spectrum KO, KU or KC. To any map $f: Y \to K \wedge X$ we assign a K-module map $\kappa_{\kappa}(f) = (\mu \wedge 1)(1 \wedge f): K \wedge Y \to K \wedge X$ where $\mu: K \wedge K \to K$ denotes the multiplication of K. The assignment $\kappa_{\kappa}: [Y, K \wedge X] \to [K \wedge Y, K \wedge X]$ gives a right inverse of the induced homomorphism $(\iota \wedge 1)^*: [K \wedge Y, K \wedge X] \to [Y, K \wedge X]$ where $\iota: \Sigma^0 \to K$ denotes the unit of K. This homomorphism κ_{κ} induces a homomorphism

$$(1.4) \quad \kappa_i^k : [Y, K \wedge X] \to \operatorname{Hom}(K_i Y, K_i X)$$

assigning any map f to its induced homomorphism $\kappa_{\kappa}(f)_{*}$ in dimension i, which is often abbreviated as κ_{i} .

Let $\nabla K(G)$ denote the Anderson dual spectrum of K with coefficients in G (see [An2] or [Y1, I and II]). The CW-spectra K and $\nabla K(G)$ are related by the following universal coefficient sequence

$$0 \to \operatorname{Ext}(K_{*-1}X, G) \to \nabla K(G)^*X \to \operatorname{Hom}(K_*X, G) \to 0.$$

Recall that $\nabla KU(G) \cong KU \wedge SG$, $\nabla KO(G) \cong \Sigma^{-4}KO \wedge SG$ and $\nabla KC(G) \cong \Sigma^{-3}KC \wedge SG$ where SG denotes the Moore spectrum of type G ([An2] or [Y1, I]). So we may rewrite the above universal coefficient sequence as follows:

$$(1.5) \quad \text{i)} \quad 0 \to \operatorname{Ext}(KU_{-1}X, G) \to [X, KU \land SG] \xrightarrow{\kappa_0^{ku}} \operatorname{Hom}(KU_0X, G) \to 0$$

ii)
$$0 \to \operatorname{Ext}(KO_3X, G) \to [X, KO \land SG] \xrightarrow{\kappa_4^{ko}} \operatorname{Hom}(KO_4X, G) \to 0$$

iii)
$$0 \to \operatorname{Ext}(KC_2X, G) \to [X, KC \land SG] \xrightarrow{\kappa_3^{KO}} \operatorname{Hom}(KC_3X, G) \to 0.$$

- 1.2. In this note we will only deal with a CW-spectrum X such that
- (1.6) i) KU_*X is pure projective and 2-torsion free, thus it is written as a direct sum of a free group and cyclic p-groups ($p \neq 2$), or
- ii) KU_*X is pure injective and 2-divisible, thus it is written as a direct summand of a direct product of a divisible group and cyclic p-groups $(p \neq 2)$ (see [F]).

Given such a CW-spectrum X, $KU_{\scriptscriptstyle 0}X$ and $KU_{\scriptscriptstyle 1}X$ are respectively decomposed into the forms of

$$(1.7) \quad KU_0X \cong A \oplus B \oplus C \oplus C \text{ and } KU_1X \cong D \oplus E \oplus F \oplus F$$

on which the conjugation t_{u*} behaves as follows:

(1.8)
$$t_{u^*} = 1 \text{ on } A \text{ or } D, \ t_{u^*} = -1 \text{ on } B \text{ or } E, \text{ and }$$

$$t_{u^*} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ on } C \oplus C \text{ or } F \oplus F.$$

Here C and F may be taken to be free in the (1.6) i) case, and to be divisible 2-torsion in the (1.6) ii) case (see [B, Propositions 3.7 and 3.8] or [CR]).

In order to compute KC_*X we use the short exact sequence

$$0 \rightarrow (\gamma_{\pi_n})_*(KU_{i-1}X) \rightarrow KC_iX \rightarrow \zeta_*(KC_iX) \rightarrow 0$$

induced by the cofiber sequence (1.1) iii) (see [Y2, Lemma 2.1 i)]). Since the composite homomorphism $(\xi \varepsilon_c \varepsilon_o)_* : KU_tX \to KU_tX$ restricted to the image $\xi_*(KC_tX)$ is just multiplication by 2, the above short exact sequence is split after tensored with $Z\left[\frac{1}{2}\right]$. Under our assumption (1.6) it is a pure exact sequence, and actually a split exact sequence. Thus KC_*X admits the following direct sum decomposition:

(1.9)
$$KC_0X \cong (A \oplus B * Z/2 \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F),$$

$$KC_1X \cong (D \oplus E * Z/2 \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C),$$

$$KC_2X \cong (A * Z/2 \oplus B \oplus C) \oplus (D \otimes Z/2 \oplus E \oplus F),$$

$$KC_3X \cong (D * Z/2 \oplus E \oplus F) \oplus (A \oplus B \otimes Z/2 \oplus C).$$

Since $\eta \wedge 1 = \gamma \pi_u \zeta : \Sigma^1 KC \to KC$, the induced homomorphisms $\eta_* : KC_0 X \to KC_1 X$ restricted to A and B * Z/2 are respectively identified with the canonical projection $A \to A \otimes Z/2$ and the canonical inclusion $B * Z/2 \to B$, and the one η_* restricted to the other components $C \oplus (D \oplus E \otimes Z/2 \oplus F)$ is trivial. Thus $\eta_* : KC_0 X \cong A \oplus B * Z/2 \oplus C \oplus D \oplus E \otimes Z/2 \oplus F \to KC_1 X \cong D \oplus E * Z/2 \oplus F \oplus A \otimes Z/2 \oplus B \oplus C$ is given by

$$(1.10)_0$$
 $\eta_*(a, b, c, d, [e], f) = (0, 0, 0, [a], b, 0)$

where [] stands for the mod 2 reduction. For $\eta_*: KC_tX \to KC_{t+1}X$, $1 \le i \le 3$, we can obtain similar expressions $(1.10)_i$ to $(1.10)_0$, which will be used later.

On the other hand, the composite homomorphism $(\gamma \zeta)_* : KC_1 X \cong D \oplus E * Z/2 \oplus F \oplus A \otimes Z/2 \oplus B \oplus C \to KC_0 X \cong A \oplus B * Z/2 \oplus C \oplus D \oplus E \otimes Z/2 \oplus F$ is given by

$$(1.11)_0$$
 $(\gamma \xi)_*(d, e, f, [a], b, c) = (0, 0, 0, d, 0, 2f).$

For $(\gamma \zeta)_*: KC_{i-1}X \to KC_iX$, $1 \le i \le 3$, we can also obtain similar expressions $(1.11)_i$ to $(1.11)_0$.

The conjugation t_{c*} on $KC_iX \cong \zeta_*(KC_iX) \oplus (\gamma_{\pi_u})_*(KU_{i-1}X)$ can be represented by the following matrix

$$(1.12) \quad \begin{pmatrix} 1 & 0 \\ t_i & -1 \end{pmatrix} (0 \le i \le 3)$$

for a certain homomorphism $t_i: \zeta_*(KC_iX) \to (\gamma_{\pi_u})_*(KU_{i-1}X)$. In particu-

lar, take $X = \Sigma^1 Q \wedge SG$ when G is free or divisible. Here Q denotes the cofiber of the square $\eta^2 \colon \Sigma^2 \to \Sigma^0$. Use the following commutative diagram

in which the diagonal exact sequences are induced by the cofiber sequences (1.1) ii) and iii). Recall that $KU_{-1}(Q \wedge SG) \cong G \cong KU_0(Q \wedge SG)$ on both of which $t_{u^*} = 1$, and besides $KO_{i-1}(Q \wedge SG) \cong G$, $G \otimes Z/2$ or G * Z/2 according as $i \equiv 0, 1, 2$ or G * Z/2 according as $i \equiv 0, 1, 2$ or G * Z/2 according to G * Z/2 we then observe that

$$t_{c*} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \text{ on } KC_{-1}(Q \wedge SG) \cong G \oplus G$$

$$(1.13) \quad t_{c*} = 1 \text{ on } KC_{0}(Q \wedge SG) \cong G \oplus G \otimes \mathbb{Z}/2 \text{ and } KC_{1}(Q \wedge SG) \cong G * \mathbb{Z}/2 \oplus G \otimes \mathbb{Z}/2$$

$$t_{c*} = -1 \text{ on } KC_{2}(Q \wedge SG) \cong G * \mathbb{Z}/2 \oplus G.$$

1.3. The cofiber sequence $\Sigma^2 \xrightarrow{\eta^2} \Sigma^0 \xrightarrow{i_q} Q \xrightarrow{j_q} \Sigma^3$ gives the following commutative diagram

$$0 \rightarrow \operatorname{Hom}(KC_{-1}SG, KC_{0}X) \rightarrow \operatorname{Hom}(KC_{-1}(Q \wedge SG), KC_{0}X) \rightarrow \operatorname{Hom}(KC_{-1}SG, KC_{0}X) \rightarrow 0$$

$$\uparrow^{\chi_{0}} \qquad \uparrow^{\chi_{0}} \qquad \uparrow^{\chi_{0}}$$

$$0 \longrightarrow^{*} [\Sigma^{+}SG, KC \wedge X] \longrightarrow [\Sigma^{1}Q \wedge SG, KC \wedge X] \longrightarrow [\Sigma^{1}SG, KC \wedge X] \longrightarrow 0$$

$$\downarrow^{\chi_{1}} \qquad \downarrow^{\chi_{1}} \qquad \downarrow^{\chi_{1}}$$

$$0 \rightarrow \operatorname{Hom}(KC_{-2}SG, KC_{1}X) \rightarrow \operatorname{Hom}(KC_{0}(Q \wedge SG), KC_{1}X) \longrightarrow \operatorname{Hom}(KC_{0}SG, KC_{1}X) \rightarrow 0$$

in which the vertical arrows κ_t (i=0,1) are abbreviated $\kappa_t^{\kappa_c}$ of (1.4). Since $Q \wedge Q \cong Q \vee \Sigma^3 Q$ and $KC \cong KO \wedge Q$, all of the three rows are split short exact sequences. Notice that their splittings are compatible with κ_t (i=0,1) because the assignment $\kappa_{\kappa c}: [Y, KC \wedge X] \to [KC \wedge Y, KC \wedge X]$ admits the induced homomorphism $(\iota \wedge 1)^*$ as a left inverse. Obviously the right lower arrow κ_1 and the left upper one κ_0 become both epimorphisms, because they are isomorphisms if the abelian group G is free.

We here assume that KU_*X is pure projective and 2-torsion free, and hence KC_*X is written into the form of (1.9). For each map $g: \Sigma^1Q \wedge$

 $SG \to KC \wedge X$ we can choose unique maps $g_0: \Sigma^1 SG \to KC \wedge X$ and $g_1: \Sigma^4 SG \to KC \wedge X$ with $g_0 = g(i_Q \wedge 1)$, under the direct sum decomposition $[\Sigma^1 Q \wedge SG, KC \wedge X] \cong [\Sigma^1 SG, KC \wedge X] \oplus [\Sigma^4 SG, KC \wedge X]$. Express the induced homomorphisms $\chi_1(g_0): KC_0SG \to KC_1X$ and $\chi_0(g_1): KC_{-4}SG \to KC_0X$ as $\chi_1(g_0) = u + v + w: G \to (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C)$ and $\chi_0(g_1) = x + y + z: G \to (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$ respectively, where $u: G \to D$, $v: G \to F$, $w: G \to A \otimes Z/2 \oplus B \oplus C$, $\chi: G \to A$, $\chi: G \to C$ and $\chi: G \to C \oplus C$ and $\chi: G \to C \oplus C$.

The induced homomorphism $\kappa_0(g_0): KC_{-1}SG \to KC_0X$ is identified with the composite $(\gamma\zeta)_*\kappa_1(g_0)$. $KC_0SG \to KC_0X$ because $(\gamma\zeta)_*: KC_0SG \to KC_{-1}SG$ is regarded as the identity on G. On the other hand, the induced homomorphism $\kappa_1(g_1): KC_{-3}SG \to KC_1X$ coincides with the mod 2 reduction of the composite $\eta_*\kappa_0(g_1): KC_{-4}SG \to KC_1X$ because $\eta_*: KC_{-4}SG \to KC_{-3}SG$ is just the canonical projection $G \to G \otimes Z/2$. By means of (1.10) and (1.11) we then observe that

(1.14) i) $\kappa_0(g_0): KC_{-1}SG \to KC_0X$ is expressed as the sum $u+2v: G \to D \oplus F \subset (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$, and

ii) $\chi_1(g_1): KC_{-3}SG \to KC_1X \text{ is expressed as the mod 2 reduction}$ $[x]: G \otimes Z/2 \to A \otimes Z/2 \subset (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C).$

This result implies that the induced homomorphisms $\kappa_0(g): KC_{-1}(Q \land SG) \to KC_0X$ and $\kappa_1(g): KC_0(Q \land SG) \to KC_1X$ are respectively represented by the following matrices

$$(1.15) \quad \begin{pmatrix} x+y & 0 \\ z & u+2v \end{pmatrix} : G \oplus G \to (A \oplus C) \oplus (D \oplus E \otimes \mathbb{Z}/2 \oplus F) \\ \begin{pmatrix} u+v & 0 \\ w & [x] \end{pmatrix} : G \oplus (G \otimes \mathbb{Z}/2) \to (D \oplus F) \oplus (A \otimes \mathbb{Z}/2 \oplus B \oplus C)$$

where $KC_{-1}(Q \wedge SG) \cong KC_{-4}SG \oplus KC_{-1}SG \cong G \oplus G$ and $KC_0(Q \wedge SG) \cong KC_0SG \oplus KC_{-3}SG \cong G \oplus (G \otimes Z/2)$.

The abelian group G is now assumed to be free. In this situation the assignment $(\varkappa_0, \varkappa_1): [\varSigma^1 Q \land SG, KC \land X] \to \operatorname{Hom}(KC_{-1}(Q \land SG), KC_0X) \oplus \operatorname{Hom}(KC_0(Q \land SG), KC_1X)$ is obviously a monomorphism. As in (1.12) we represent the conjugations t_{c^*} on KC_tX (i=0,1) by matrices $\begin{pmatrix} 1 & 0 \\ t_t & -1 \end{pmatrix}$ for certain homomorphisms $t_0: A \oplus C \to D \oplus E \otimes Z/2 \oplus F$ and $t_1: D \oplus F \to A \otimes Z/2 \oplus B \oplus C$. In particular, (1.13) asserts that $t_0=1:G \to G$ and $t_1=0:G \to G \otimes Z/2$ when $X=\varSigma^1 Q \land SG$. Since $\varkappa_t((t_c \land 1)g)=$

 $t_{c*} \kappa_i(g) t_{c*}$ for any map $g: \Sigma^1 Q \wedge SG \to KC \wedge X$, we can easily check that (1.16) $(t_c \wedge 1)g = g$ if and only if $t_0(x+y) = 2z + u + 2v$ and $t_1(u+v) = 2w$, where $\kappa_0(g) = \begin{pmatrix} x+y & 0 \\ z & u+2v \end{pmatrix}$ and $\kappa_1(g) = \begin{pmatrix} u+v & 0 \\ w & [x] \end{pmatrix}$ as in (1.15).

1.4. We next consider the following commutative diagram

$$0 \to \operatorname{Hom}(KC_0X, KC_{-1}SG) \to \operatorname{Hom}(KC_0X, KC_{-1}(Q \land SG)) \to \operatorname{Hom}(KC_0X, KC_{-1}SG) \to 0$$

$$\uparrow^{x_0} \qquad \uparrow^{x_0} \qquad \uparrow^{x_0} \qquad \uparrow^{x_0}$$

$$0 \longrightarrow [X, \Sigma^1 KC \land SG] \longrightarrow [X, \Sigma^1 KC \land Q \land SG] \longrightarrow [X, \Sigma^4 KC \land SG] \longrightarrow 0$$

$$\downarrow^{x_1} \qquad \downarrow^{x_1} \qquad \downarrow^{x_1}$$

$$0 \to \operatorname{Hom}(KC_3X, KC_2SG) \longrightarrow \operatorname{Hom}(KC_3X, KC_2(Q \land SG)) \to \operatorname{Hom}(KC_3X, KC_{-1}SG) \to 0$$

induced by the cofiber sequence $\Sigma^2 \stackrel{\eta^2}{\longrightarrow} \Sigma^0 \stackrel{i_q}{\longrightarrow} Q \stackrel{j_q}{\longrightarrow} \Sigma^3$, where the vertical arrows κ_i (i=0,3) are abbreviated κ_i^{kc} of (1.4). All of the three rows are split short exact sequences, and their splittings are compatible with κ_i (i=0,3). From (1.5) iii) it follows that the right lower arrow κ_3 and the left upper one κ_0 are both epimorphisms, and in particular they become isomorphisms if the abelian group G is divisible.

Assume that KU_*X is pure injective and 2-divisible, and hence KC_*X is written into the form of (1.9). For each map $g: X \to \Sigma^1 KC \land Q \land SG$ we can choose unique maps $g_0: X \to \Sigma^4 KC \land SG$ and $g_1: X \to \Sigma^1 KC \land SG$ with $g_0 = (j_Q \land 1)g$, under the direct sum decomposition $[X, \Sigma^1 KC \land Q \land SG] \cong [X, \Sigma^4 KC \land SG] \oplus [X, \Sigma^1 KC \land SG]$. Express the induced homomorphisms $\kappa_0(g_1): KC_0X \to KC_{-1}SG$ and $\kappa_3(g_0): KC_3X \to KC_{-1}SG$ as $\kappa_0(g_1) = w + u + v: (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to G$ and $\kappa_3(g_0) = z + x + y: (D * Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to G$ respectively, where $u: D \to G$, $v: F \to G$, $w: A \oplus B * Z/2 \oplus C \to G$, $x: A \to G$, $y: C \to G$ and $z: D * Z/2 \oplus E \oplus F \to G$. By a similar argument to (1.14) we obtain

- (1.17) i) $\kappa_0(g_0): KC_0X \to KC_{-4}SG$ is expressed as the sum $x+2y: (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to A \oplus C \to G$, and
- ii) $\kappa_3(g_1): KC_3X \to KC_2SG$ is expressed as the mod 2 restriction $u: (D*Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to D*Z/2 \to G*Z/2$.

This result implies that the induced homomorphisms $\kappa_0(g): KC_0X \to KC_{-1}(Q \land SG)$ and $\kappa_3(g): KC_3X \to KC_2(Q \land SG)$ are respectively represented by the following matrices

$$(1.18) \quad \begin{pmatrix} x+2y & 0 \\ w & u+v \end{pmatrix} : (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to G \oplus G$$

$$\begin{pmatrix} u & 0 \\ z & x+y \end{pmatrix} \quad : (D * Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to (G * Z/2) \oplus G$$

where $KC_{-1}(Q \wedge SG) \cong KC_{-4}SG \oplus KC_{-1}SG \cong G \oplus G$ and $KC_{2}(Q \wedge SG) \cong KC_{2}SG \oplus KC_{-1}SG \cong (G * Z/2) \oplus G$.

The abelian group G is now assumed to be divisible. Then the assignment $(\varkappa_0, \, \varkappa_3) : [X, \, \varSigma^1 KC \wedge Q \wedge SG] \to \operatorname{Hom}(KC_0X, \, KC_{-1}(Q \wedge SG)) \oplus \operatorname{Hom}(KC_3X, \, KC_2(Q \wedge SG))$ is obviously a monomorphism. The conjugations t_{c^*} on KC_iX (i=0,3) are represented by matrices $\begin{pmatrix} 1 & 0 \\ t_i & -1 \end{pmatrix}$ for certain homomorphisms $t_0 : A \oplus B * Z/2 \oplus C \to D \oplus F$ and $t_3 : D * Z/2 \oplus E \oplus F \to A \oplus C$. As a result corresponding to (1.16) we can similarly show that $(1.19) \quad (t_c \wedge 1)g = g \quad \text{if and only if } (u+v)t_0 = x+2y-2w \quad \text{and } (x+y)t_3 = -2z, \quad \text{where } \varkappa_0(g) = \begin{pmatrix} x+2y & 0 \\ w & u+v \end{pmatrix} \quad \text{and} \quad \varkappa_3(g) = \begin{pmatrix} u & 0 \\ z & x+y \end{pmatrix} \quad \text{for any map} g : X \to \varSigma^1 KC \wedge Q \wedge SG \quad \text{as in } (1.18).$

1.5. When an abelian group G is free, we consider the following commutative diagram

$$\operatorname{Hom}(KU_{0}(Q \wedge SG), KU_{0}X) \xrightarrow{(i_{qr})^{*}} \operatorname{Hom}(KU_{0}SG, KU_{0}X)$$

$$\uparrow^{\chi_{0}} \qquad \uparrow^{\chi_{0}} \qquad \uparrow^{\chi_{0}}$$

$$0 \longrightarrow \left[\Sigma^{3}SG, KU \wedge X\right] \xrightarrow{(j_{qr})^{*}} \left[Q \wedge SG, KU \wedge X\right] \xrightarrow{(i_{qr})^{*}} \left[SG, KU \wedge X\right] \longrightarrow 0$$

$$\downarrow^{\chi_{1}} \qquad \downarrow^{\chi_{1}} \qquad$$

in which the right vertical arrow $\kappa_0 = \kappa_0^{ku}$ and the left one $\kappa_1 = \kappa_1^{ku}$ are both isomorphisms, and the top and the bottom horizontal arrows $(i_{Q^*})^*$ and $(j_{Q^*})^*$ are also isomorphisms. The induced homomorphism $(j_Q \wedge 1)^* : [\Sigma^3 SG, KU \wedge X] \to [Q \wedge SG, KU \wedge X]$ admits as a left inverse the composite $((j_{Q^*})^*\kappa_1)^{-1}\kappa_1$, which is compatible with the conjugations $(t_u \wedge 1)_*$ because $\kappa_1((t_u \wedge 1)f) = t_{u^*\kappa_1}(f)t_{u^*}$. In other words, there exists a homomorphism

$$(1.20) \quad \lambda : [SG, KU \wedge X] \to [Q \wedge SG, KU \wedge X]$$

satisfying $(i_Q \wedge 1)^* \lambda = 1$ and $(t_u \wedge 1)_* \lambda = \lambda (t_u \wedge 1)_*$.

Lemma 1.1. Let G be a free abelian group and $g': \Sigma^1 Q \wedge SG \rightarrow KC \wedge X$ be a map satisfying $(t_c \wedge 1)g' = g'$. If the composite $(\eta \wedge 1)(\tau \pi_c^{-1} \wedge 1)g'(i_q \wedge 1): SG \rightarrow \Sigma^1 KO \wedge X$ is trivial, then there exist maps $h_1: \Sigma^1 SG \rightarrow KO \wedge X$ and $g: \Sigma^1 Q \wedge SG \rightarrow KC \wedge X$ such that $h_1(j_q \wedge 1) = (\tau \pi_c^{-1} \wedge 1)g$, $(t_c \wedge 1)g = g$ and $(\zeta \wedge 1)g = (\zeta \wedge 1)g'$ (cf. [Y3, Lemma 1.1]).

Proof. First choose a map $h_0: \Sigma^1 SG \to KO \wedge X$ satisfying $(\varepsilon_u \wedge 1)h_0 = (\zeta \wedge 1)g'(i_Q \wedge 1)$, and then a map $\ell': SG \to KU \wedge X$ such that $(\varepsilon_c \wedge 1)h_0 = g'(i_Q \wedge 1) + (\gamma \pi_u \wedge 1)\ell'$. Composing the conjugation map $t_c \wedge 1$ after the second equality, we see that $2(\gamma \pi_u \wedge 1)\ell' = 0$ because $t_c \varepsilon_c = \varepsilon_c$ and $t_c \gamma = -\gamma$. So there exists a map $k': SG \to KU \wedge X$ satisfying $2\ell' = (1 + t_u \wedge 1)k'$. Applying the right inverse λ of $(i_Q \wedge 1)^*$ obtained in (1.20) onto the above equality, we show that the composite $(\gamma \pi_u \wedge 1)\lambda(\ell'): \Sigma^1 Q \wedge SG \to KC \wedge X$ has order 2. Setting $g = g' + (\gamma \pi_u \wedge 1)\lambda(\ell')$, its map satisfies the equalities $(\varepsilon_c \wedge 1)h_0 = g(i_Q \wedge 1), (t_c \wedge 1)g = g$ and $(\zeta \wedge 1)g = (\zeta \wedge 1)g'$. Using the first equality we can then find a map $h_1: \Sigma^1 SG \to KO \wedge X$ with $h_1(j_Q \wedge 1) = (\tau \pi_c^{-1} \wedge 1)g$.

When an abelian group G is divisible, we next consider the following commutative diagram

Here the left vertical arrow $\kappa_0 = \kappa_0^{ku}$ and the right one $\kappa_1 = \kappa_1^{ku}$ are both isomorphisms because of (1.5) i), and the top and the bottom horizontal arrows $j_{Q^{**}}$ and $i_{Q^{**}}$ are also isomorphisms. Then a similar discussion to (1.20) shows that there exists a homomorphism

$$(1.21) \quad \rho: [X, \Sigma^3 KU \wedge SG] \to [X, KU \wedge Q \wedge SG]$$

satisfying $(1 \wedge j_q \wedge 1)_* \rho = 1$ and $(t_u \wedge 1)_* \rho = \rho (t_u \wedge 1)_*$.

As a dual of Lemma 1.1 we have

Lemma 1.2. Let G be a divisible abelian group and $g': X \to \Sigma^1 KC \land Q \land SG$ be a map satisfying $(t_c \land 1)g' = g'$. If the composite $(\eta \land 1)(\tau \pi_c^{-1})$

 $\wedge 1$)(1 \wedge $j_q \wedge 1$)g': $X \to \Sigma^6 KO \wedge SG$ is trivial, then there exist maps h_1 : $X \to \Sigma^4 KO \wedge SG$ and $g: X \to \Sigma^1 KC \wedge Q \wedge SG$ such that $(1 \wedge i_q \wedge 1)h_1 = (\tau \pi_c^{-1} \wedge 1)g$, $(t_c \wedge 1)g = g$ and $(\zeta \wedge 1)g = (\zeta \wedge 1)g'$.

Proof. Choose a map $h_0: X \to \Sigma^4 KO \wedge SG$ satisfying $(\varepsilon_u \wedge 1)h_0 = (\zeta \wedge 1)(1 \wedge j_Q \wedge 1)g'$, and hence a map $\ell': X \to \Sigma^5 KU \wedge SG$ such that $(\varepsilon_c \wedge 1)h_0 = (1 \wedge j_Q \wedge 1)g' + (\gamma \pi_u \wedge 1)\ell'$. Then it follows that $2(\gamma \pi_u \wedge 1)\ell' = 0$ because $t_c \varepsilon_c = \varepsilon_c$ and $t_c \gamma = -\gamma$. By applying the right inverse ρ of $(1 \wedge j_Q \wedge 1)_*$ obtained in (1.21) we verify that the composite $(\gamma \pi_u \wedge 1)\rho(\ell'): X \to \Sigma^1 KC \wedge Q \wedge SG$ has order 2. Set $g = g' + (\gamma \pi_u \wedge 1)\rho(\ell')$, then its map satisfies the equalities $(\varepsilon_c \wedge 1)h_0 = (1 \wedge j_Q \wedge 1)g$, $(t_c \wedge 1)g = g$ and $(\zeta \wedge 1)g = (\zeta \wedge 1)g'$. Obviously the first equality implies that there exists a map $h_1: X \to \Sigma^4 KO \wedge SG$ with $(1 \wedge i_Q \wedge 1)h_1 = (\tau \pi_c^{-1} \wedge 1)g$.

2. Pure projective and 2-torsion free.

2.1. In this section we will only deal with a CW-spectrum X such that KU_*X is pure projective and 2-torsion free, and hence KC_*X is expressed as in (1.9). We denote by A_E' the image of the induced homomorphism $(\varepsilon_{\mathfrak{C}\,\tau\eta})_*: KC_{-1}X \to KC_1X$ where $KC_1X \cong (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C)$. Then

(2.1)
$$A'_E = (\varepsilon_c \tau \eta)_*(KC_{-1}X) = (\varepsilon_c \tau)_*(E \otimes Z/2) \subset A \otimes Z/2 \subset KC_1X$$
 because $\eta_*(KC_{-1}X) = E \otimes Z/2$ and $\eta_*(KC_0X) = A \otimes Z/2$ by $(1.10)_i$ ($i = 3, 0$).

Since $\tau \varepsilon_c = \eta : \Sigma^1 KO \to KO$, it follows immediately that $\tau_* A_E' = 0 = (\tau \pi_c^{-1})_* A_E'$. Choose subgroups A_D' and A' in $A \otimes Z/2$ so that $A \otimes Z/2 \cong A_E' \oplus A_D' \oplus A'$ and $\operatorname{Ker}(\varepsilon_c \tau)_*|_{A \otimes Z/2} \cong A_E' \oplus A'$. Thus the subgroups A_D' and A' satisfy

$$(2.2) \quad (\varepsilon_c \tau)_* : A_D' \xrightarrow{\simeq} (\varepsilon_c \tau)_* (A \otimes Z/2) = D_A' \text{ and } (\varepsilon_c \tau)_* A' = 0.$$

We moreover put

$$(2.3) \quad A_0'' = (\varepsilon_c \eta)_*(KO_0 X) \text{ and } A_4'' = (\pi_c \varepsilon_c \eta)_*(KO_{-4} X)$$

both of which are subgroups of $A \otimes \mathbb{Z}/2$. It is obvious that

$$(2.4) \quad A'_{E} \subset A''_{0} \cap A''_{4} \text{ and } (\varepsilon_{C}\tau) * A''_{0} = 0 = (\varepsilon_{C}\tau) * A''_{4}$$

because $\varepsilon_c \tau \eta = \pi_c \varepsilon_c \eta \tau \pi_c^{-1} : \Sigma^2 KC \to KC$ and $\tau \pi_c \varepsilon_c = 0 : \Sigma^5 KO \to KO$.

More precisely we have

(2.5) i)
$$\tau_* A_0'' = \eta_*^2(KO_0X), (\tau \pi_c^{-1})_* A_4'' = \eta_*^2(KO_{-4}X), and$$

ii) $(\tau \pi_c^{-1})_* A_0'' = 0 = \tau_* A_4''.$

Lemma 2.1. There exists a direct sum decomposition

$$A \otimes Z/2 \cong A_E' \oplus A_D' \oplus A_0' \oplus A_4'$$

with $A_E \oplus A_0 \cong (\varepsilon_c \eta)_*(KO_0 X)$ and $A_E \oplus A_4 \cong (\pi_c \varepsilon_c \eta)_*(KO_{-4} X)$. Similarly there exist direct sum decompositions

$$D \otimes Z/2 \cong D'_A \oplus D'_B \oplus D'_1 \oplus D'_5$$
, $B \otimes Z/2 \cong B'_D \oplus B'_E \oplus B'_2 \oplus B'_6$ and $E \otimes Z/2 \cong E'_B \oplus E'_A \oplus E'_3 \oplus E'_7$

with suitable isomorphisms as above.

Proof. We will prove only the $A\otimes Z/2$ case. Choose subgroups A_0' and A_4' in $A\otimes Z/2$ so that $A_E'\oplus A_0'\cong A_0''$ and $A_E'\oplus A_4'\cong A_4''$. It is sufficient to show that $\ker(\varepsilon_c\tau)_*|_{A\otimes Z/2}\cong A_E'\oplus A_0'\oplus A_0'$. First, take an element $x\in A\otimes Z/2$ with $(\varepsilon_c\tau)_*x=0$. Using the equality $\eta^2=\tau\varepsilon_c\eta\colon \Sigma^2KO\to KO$, we get elements $u\in KO_0X$ and $v\in KO_5X$ such that $x=(\varepsilon_c\eta)_*u+(\pi_c^{-1}\varepsilon_c)_*v$. Moreover we notice that $\varepsilon_{u*}v=0$ because $\zeta_*(A\otimes Z/2)=0$. This implies that the element x is contained in $A_0''+A_4'=A_E'+A_0'+A_4'$. Thus it is verified that $\ker(\varepsilon_c\tau)_*|_{A\otimes Z/2}\cong A_E'+A_0'+A_4'$.

Next we take elements $a \in A_0'$, $b \in A_4'$ and $c \in A_E'$ satisfying a+b+c=0. Then it follows from (2.5) ii) that $\tau_*a=0=(\tau\pi_c^{-1})_*b$. Since $a \in (\varepsilon_c\eta)_*(KO_0X)$ and $b \in (\pi_c\varepsilon_c\eta)_*(KO_{-4}X)$ we use (2.5) i) to find elements x and y in $KC_{-1}X$ such that $a=(\varepsilon_c\eta\tau)_*x$ and $b=(\pi_c\varepsilon_c\eta\tau\pi_c^{-1})_*y=(\varepsilon_c\eta\tau)_*y$. Since the elements a and b are both belonging to A_E' , they must be zero, thus a=b=c=0. Consequently it is shown that $\ker(\varepsilon_c\tau)_*|_{A\otimes Z/2}\cong A_E'\oplus A_0'\oplus A_4'$.

2.2. We now choose a direct sum decomposition

(2.6)
$$A \cong A_E \oplus A_D \oplus A_0 \oplus A_4$$
 with A_E , A_D and A_4 free,

which after tensored with Z/2 gives the direct sum decomposition $A \otimes Z/2 \cong A_E' \oplus A_D' \oplus A_0' \oplus A_4'$ obtained in Lemma 2.1 (use [Ku]). Similarly we choose direct sum decompositions

$$(2.7) \quad D \cong D_A \oplus D_B \oplus D_1 \oplus D_5, \ B \cong B_D \oplus B_E \oplus B_2 \oplus B_6 \ and$$

$$E \cong E_B \oplus E_A \oplus E_3 \oplus E_7$$

which after tensored with Z/2 are respectively the direct sum decompositions of $D \otimes Z/2$, $B \otimes Z/2$ and $E \otimes Z/2$ obtained in Lemma 2.1.

Set $G = A_D \cong D_A$, which is free. We denote by $i_A : G \to A$ and $i_D : G \to D$ the canonical inclusions with $i_A(G) = A_D$ and $i_D(G) = D_A$. Let $t_0 : A \oplus C \to D \oplus E \otimes \mathbb{Z}/2 \oplus F$ and $t_1 : D \oplus F \to A \otimes \mathbb{Z}/2 \oplus B \oplus C$ be the homomorphisms given in (1.12), which are determined by the conjugations t_{C^*} on KC_iX (i = 0, 1) respectively.

Lemma 2.2. There exist unique homomorphisms $r: G \to D \oplus F$ and $s: G \to B \oplus C$ satisfying $t_0 i_A - i_D = 2r$ and $t_1 i_D = 2s$.

Proof. First we use the canonical inclusion $i_A: G \to KC_0X \cong (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$. By use of $(1.10)_0$ we observe that the composite $\eta_*i_A: G \to KC_1X \cong (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C)$ is identified with the canonical projection $G = A_D \to A_D \otimes Z/2 \cong A_D$. So the composite $(\eta_{\mathcal{E}_C}\tau)_*i_A: G \to KC_2X \cong (B \oplus C) \oplus (D \otimes Z/2 \oplus E \oplus F)$ is factorized through D_A' because $(\varepsilon_C\tau)_*: A_D' \xrightarrow{\cong} D_A'$ by (2.2). Therefore the composite $(\varepsilon_C\tau)_*i_A: G \to KC_1X$ is written into the form of a sum $-i_D+2u+v+w$ for some homomorphisms $u: G \to D$, $v: G \to F$ and $w: G \to A \otimes Z/2 \oplus B \oplus C$ (use $(1.10)_1$). Then it follows from $(1.11)_0$ that the composite $(\gamma \zeta \varepsilon_C \tau)_*i_A: G \to KC_0X$ coincides with the sum $-i_D+2(u+v)$. Since $\gamma \zeta \varepsilon_C \tau = 1-t_C: KC \to KC$, it is easily checked that $t_0i_A=i_D+2r$ setting $r=-(u+v): G \to D \oplus F$.

Next, use the canonical inclusion $i_D: G \to KC_1X \cong (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C)$ in place of $i_A: G \to KC_0X$. The composite $(\eta \varepsilon_c \tau)_* i_D: G \to KC_3X \cong (E \oplus F) \oplus (A \oplus B \otimes Z/2 \oplus C)$ is trivial because $\tau_*D_A' = \tau_*\eta_*A_D' = 0$ by use of (2.2) and $(1.10)_1$. By a parallel discussion to the above we can find a homomorphism $s: G \to B \oplus C$ such that $(\gamma \xi \varepsilon_c \tau)_* i_D = -2s: G \to KC_1X$. Use the equality $\gamma \xi \varepsilon_c \tau = 1 - t_c$ again to obtain the desired one $t_1 i_D = 2s$.

Let $f_G: \Sigma^1 Q \wedge SG \to KU \wedge X$ be the map whose induced homomorphisms $\kappa_{Ku}(f_G)_*: KU_{i-1}(Q \wedge SG) \to KU_iX$ (i=0,1) are given by the canonical inclusions $i_A: G \to A \oplus B \oplus C \oplus C$ and $i_B: G \to D \oplus E \oplus F \oplus F$ respectively. Since $(t_u \wedge 1)f_G = f_G$, we obtain a map $g_G: \Sigma^1 Q \wedge SG \to KC \wedge X$ with $(\zeta \wedge 1)g_G = f_G$ by use of the cofiber sequence (1.1) iii). According to (1.15) the induced homomorphisms $\kappa_0(g_G): KC_{-1}(Q \wedge SG) \to KC_0X$ and

 $\kappa_1(g_G): KC_0(Q \wedge SG) \to KC_1X$ are respectively given by the following matrices

$$(2.8) \begin{array}{l} \begin{pmatrix} i_A & 0 \\ z & i_D \end{pmatrix} : G \oplus G \rightarrow (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F) \\ \begin{pmatrix} i_D & 0 \\ w & [i_A] \end{pmatrix} : G \oplus (G \otimes Z/2) \rightarrow (D \oplus F) \oplus (A \otimes Z/2 \oplus B \oplus C) \end{array}$$

for some homomorphisms $z: G \to D \oplus E \otimes Z/2 \oplus F$ and $w: G \to A \otimes Z/2 \oplus B \oplus C$. In particular, take z=r and w=s, both of which are obtained in Lemma 2.2. Then (1.16) shows that the given map g_G satisfies $(t_C \wedge 1)g_G = g_G$. Thus we have

Corollary 2.3. There exists a map $g_G: \Sigma^1 Q \wedge SG \to KC \wedge X$ such that $(\xi \wedge 1)g_G = f_G$ and $(t_C \wedge 1)g_G = g_G$.

2.3. We will now prove one of our main theorems.

Theorem 2.4. Let X be a CW-spectrum such that KU_*X is pure projective and 2-torsion free, thus it is a direct sum of a free group and cyclic p-groups $(p \neq 2)$. Then there exist abelian groups A_i $(0 \leq i \leq 7)$, C_j $(0 \leq j \leq 1)$ and G_k $(0 \leq k \leq 3)$ so that X is quasi KO_* -equivalent to the wedge sum $(\bigvee_i \Sigma^i SA_i) \vee (\bigvee_j \Sigma^j P \wedge SC_j) \vee (\bigvee_k \Sigma^{k+1} Q \wedge SG_k)$ where C_j and G_k are taken to be free (cf. [B, Theorem 3.2]).

Proof. Using the abelian groups chosen in (2.6) and (2.7) we set $A_1 = D_1$, $A_2 = B_2$, $A_3 = E_3$, $A_5 = D_5$, $A_6 = B_6$, $A_7 = E_7$, $C_0 = C$ and $C_1 = F$, and moreover $G_0 = A_D \cong D_A$, $G_1 = D_B \cong B_D$, $G_2 = B_E \cong E_B$ and $G_3 = E_A \cong A_E$. Abbreviate by Y the required wedge sum $(\bigvee_i \Sigma^i SA_i) \vee (\bigvee_j \Sigma^j P) \wedge SC_j \vee (\bigvee_k \Sigma^{k+1} Q \wedge SC_k)$. It is obvious that $KU_*Y \cong KU_*X$ on both of which the conjugations t_{u^*} behave as the same action. For each component Y_H of the wedge sum Y we choose a map $f_H: Y_H \to KU \wedge X$ whose induced homomorphism $\kappa_{\kappa_H}(f_H)_*: KU_*Y_H \to KU_*X$ is the canonical inclusion. Here H is taken to be A_t ($0 \leq i \leq 7$), C_j ($0 \leq j \leq 1$) and G_k ($0 \leq k \leq 3$). Since $(t_u \wedge 1)f_H = f_H$ by virtue of [Y3]. Lemma 1.2, there exists a map $g_H: Y_H \to KC \wedge X$ satisfying $(\xi \wedge 1)g_H = f_H$ for each H. Along the line adopted in [Y2, Y3] we will find a map $h_H: Y_H \to KO \wedge X$ such that $(\varepsilon_u \wedge 1)h_H = f_H$, and then apply [Y2], Proposition 1.1 to show that the map $h = f_H$, and then apply [Y2], Proposition 1.1 to show that the map $h = f_H$.

 $\bigvee_{H} h_{H}: Y = \bigvee_{H} Y_{H} \to KO \wedge X$ is a quasi KO_{*} -equivalence.

We will only find such maps h_H in the cases $H=A_0$, C_0 and G_0 . The other cases are similarly done.

- i) The $H=A_0$ case: The induced homomorphism $(\eta\tau\pi_c^{-1})_*:KC_0X\to KO_6X$ restricted to A_0 is trivial since $(\tau\pi_c^{-1})_*A_0'=0$ by (2.5) ii). Hence the composite $(\eta\wedge 1)(\tau\pi_c^{-1}\wedge 1)g_{A_0}=(\varepsilon_o\pi_u^{-1}\wedge 1)f_{A_0}:SA_0\to \Sigma^2KO\wedge X$ becomes trivial because A_0 is written as a direct sum of a free group and a uniquely 2-divisible group. So we get a required map $h_{A_0}:SA_0\to KO\wedge X$ with $(\varepsilon_u\wedge 1)h_{A_0}=f_{A_0}$.
- ii) The $H=C_0$ case: Since $\eta \wedge 1: \Sigma^1 KO \wedge P \to KO \wedge P$ is trivial, it is immediate that the composite $(\eta \wedge 1)(\tau \pi_c^{-1} \wedge 1)g_{c_0}=(\varepsilon_o \pi_u^{-1} \wedge 1)f_{c_0}: P \wedge SC_0 \to \Sigma^2 KO \wedge X$ becomes trivial. So we get a required map $h_{c_0}: P \wedge SC_0 \to KO \wedge X$ with $(\varepsilon_u \wedge 1)h_{c_0}=f_{c_0}$.
- iii) The $H=G_0$ case: For simplicity we put $G=G_0$, $f=f_{G_0}$ and $g=g_{G_0}$ where $G=A_0\cong D_A$ and it is free. By Corollary 2.3 the map $g:\Sigma^1Q\wedge SG\to KC\wedge X$ can be chosen to satisfy $(t_c\wedge 1)g=g$ as well as $(\zeta\wedge 1)g=f$. The induced homomorphism $(\eta\tau\pi_c^{-1})_*:KC_1X\to KO_{-1}X$ restricted to D_A is trivial since $(\tau\pi_c^{-1})_*D_A'=0$. So the composite $(\eta\wedge 1)(\tau\pi_c^{-1}\wedge 1)g(i_Q\wedge 1):SG\to \Sigma^1KO\wedge X$ becomes trivial. By applying Lemma 1.1 we then get a map $h_1:\Sigma^1SG\to KO\wedge X$ such that $h_1(j_Q\wedge 1)=(\tau\pi_c^{-1}\wedge 1)g$ although the map g with $(t_c\wedge 1)g=g$ and $(\zeta\wedge 1)g=f$ might be changed slightly for the new one.

In order to observe that the composite $(\varepsilon_o \pi_u^{-1} \wedge 1)f = (\eta \wedge 1)(\tau \pi_c^{-1} \wedge 1)g = (\eta \wedge 1)h_1(j_Q \wedge 1): Q \wedge SG \rightarrow \Sigma^1 KO \wedge X$ is trivial, we will next show that there exists a map $k: SG \rightarrow KO \wedge X$ satisfying $(\eta^2 \wedge 1)k = (\eta \wedge 1)h_1$ as in the proof of [Y2, Theorem 3.4]. Denote by $i_A: G \rightarrow A$ and $i_D: G \rightarrow D$ the canonical inclusions with $i_A(G) = A_D$ and $i_D(G) = D_A$ respectively. Moreover we note that the conjugation $t_{c*} = \begin{pmatrix} 1 & 0 \\ t_0 & -1 \end{pmatrix}$ on $KC_0X \cong (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$ for a certain homomorphism $t_0: A \oplus C \rightarrow D \oplus E \otimes Z/2 \oplus F$ (see (1.12)). By (2.8) we may express as $\kappa_{KC}(g)_* = \kappa_0(g) = \begin{pmatrix} i_A & 0 \\ z & i_D \end{pmatrix}: KC_3(Q \wedge SG) \cong G \oplus G \rightarrow KC_4X \cong (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$. Here the homomorphism $z: G \rightarrow D \oplus E \otimes Z/2 \oplus F$ satisfies $t_0 i_A = 2z + i_D$ by virtue of (1.16) because $(t_c \wedge 1)g = g$. Recall [Y2, (3.5)] that the induced homomorphism $\varepsilon_{C*}: KO_3(Q \wedge SG) \rightarrow KC_3(Q \wedge SG)$ is represented by the column $\begin{pmatrix} 2 \\ 1 \end{pmatrix}: G \rightarrow G \oplus G$ (cf. (1.13)). Then

an easy computation shows that the composite $\chi_{\kappa c}(g)_* \varepsilon_{c*} : KO_3(Q \wedge SG) \to KC_4X$ coincides with the composite $(1+t_{c*})i_A: G \to (A \oplus C) \oplus (D \oplus E \otimes Z/2 \oplus F)$. Since $\tau \pi_c^{-1}t_c = -\tau \pi_c^{-1}$, it is easily checked that the composite $(\tau \pi_c^{-1})_* \chi_{\kappa c}(g)_* \varepsilon_{c*} : KO_3(Q \wedge SG) \to KO_1X$ is trivial. Thus $\chi_{\kappa o}((\tau \pi_c^{-1} \wedge 1)g)_* = \chi_{\kappa o}(h_1(j_Q \wedge 1))_* : KO_3(Q \wedge SG) \to KO_1X$ is trivial.

Use the commutative diagram

$$[SG, \Sigma^{-2}KC \wedge X] \xrightarrow{(\eta \wedge 1)_{*}} [SG, \Sigma^{-1}KC \wedge X] \xrightarrow{(j_{\theta} \wedge 1)^{*}} [\Sigma^{-3}Q \wedge SG, \Sigma^{-1}KC \wedge X]$$

$$\downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}}$$

$$\downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}}$$

$$\downarrow_{\chi_{0}} \qquad \downarrow_{\chi_{0}} \qquad \downarrow_$$

where the left two vertical arrows $\kappa_0 = \kappa_0^{ko}$ are isomorphisms since G is free. Notice that $\kappa_0((\varepsilon_c \wedge 1)h_1(j_q \wedge 1)): KO_k(Q \wedge SG) \to KC_1X$ is trivial. So we see that $\kappa_0((\varepsilon_c \wedge 1)h_1): KO_0SG \to KC_1X$ has order 2 since the bottom right horizontal arrow $(j_{q^*})^*$ is just multiplication by 2 on $\operatorname{Hom}(G, KC_1X)$. In other words, $\kappa_0((\varepsilon_c \wedge 1)h_1): G \to D \oplus F \oplus A \otimes Z/2 \oplus B \oplus C$ is factorized through $A \otimes Z/2$. Then $\kappa_0((\eta\varepsilon_c \wedge 1)h_1): KO_0SG \to KC_2X$ becomes trivial because $\eta_*(A \otimes Z/2) = 0$. Therefore the composite $(\eta\varepsilon_c \wedge 1)h_1: \Sigma^2SG \to KC \wedge X$ is trivial since the left vertical arrow κ_0 is an isomorphism. So we get a map $k: SG \to KO \wedge X$ satisfying $(\eta^2 \wedge 1)k = (\eta \wedge 1)h_1$. Consequently there exists a map $h: \Sigma^1Q \wedge SG \to KO \wedge X$ with $(\varepsilon_u \wedge 1)h = f$ as desired.

3. Pure injective and 2-divisible.

3.1. In this section we will only deal with a CW-spectrum X such that KU_*X is pure injective and 2-divisible, and hence KC_*X is expressed as in (1.9). Denote by A'_E the image of the induced homomorphism $(\varepsilon_C \tau \eta)_*: KC_1X \to KC_3X$ where $KC_3X \cong (D*Z/2 \oplus E \oplus F) \oplus (A \oplus C)$. Thus

(3.1)
$$A'_E = (\varepsilon_c \tau \eta)_*(KC_1 X) = (\varepsilon_c \tau)_*(E * Z/2) \subset A * Z/2 \subset KC_3 X$$
 because $\eta_*(KC_1 X) = E * Z/2$ and $\eta_*(KC_2 X) = A * Z/2$ by $(1.10)_i$ ($i = 1, 2$).

Since $\tau_*A'_E = 0$, we can choose subgroups A'_D and A' in A * Z/2 so that $A * Z/2 \cong A'_E \oplus A'_D \oplus A'$ and $\operatorname{Ker}(\varepsilon_C \tau)_*|_{A*Z/2} \cong A'_E \oplus A'$. Thus the subgroups A'_D and A' satisfy

$$(3.2) \quad (\varepsilon_C \tau)_* : A_D \xrightarrow{\simeq} (\varepsilon_C \tau)_* (A * Z/2) = D_A \text{ and } (\varepsilon_C \tau)_* A' = 0.$$

As a dual of Lemma 2.1 we have

Lemma 3.1. There exists a direct sum decomposition

$$A * Z/2 \cong A_F \oplus A_D \oplus A_0 \oplus A_4$$

with $A'_{E} \oplus A'_{0} \cong (\varepsilon_{c} \eta)_{*}(KO_{2}X)$ and $A'_{E} \oplus A'_{4} \cong (\pi_{c} \varepsilon_{c} \eta)_{*}(KO_{-2}X)$. Similarly there exist direct sum decompositions

$$D * Z/2 \cong D'_A \oplus D'_B \oplus D'_1 \oplus D'_5$$
, $B * Z/2 \cong B'_D \oplus B'_E \oplus B'_2 \oplus B'_6$ and $E * Z/2 \cong E'_B \oplus E'_A \oplus E'_3 \oplus E'_7$

with suitable isomorphisms as above.

Proof. Choose subgroups A_0' and A_4' in A * Z/2 so that $A_E' \oplus A_0' \cong (\varepsilon_C \eta)_*(KO_2 X)$ and $A_E' \oplus A_4' \cong (\pi_C \varepsilon_C \eta)_*(KO_{-2} X)$. Then we can easily show that $\operatorname{Ker}(\varepsilon_C \tau)_*|_{A*Z/2} \cong A_E' \oplus A_0' \oplus A_4'$ by the quite same argument as in the proof of Lemma 2.1.

We now choose a direct sum decomposition

(3.3) $A \cong A_E \oplus A_D \oplus A_0 \oplus A_4$ with A_E , A_D and A_A divisible 2-torsion,

which restricted to the torsion subgroups of order 2 is just the direct sum decomposition $A * Z/2 \cong A_E' \oplus A_D' \oplus A_0' \oplus A_0'$ obtained in Lemma 3.1. Similarly we choose direct sum decompositions

$$(3.4) \quad D \cong D_A \oplus D_B \oplus D_1 \oplus D_5, \ B \cong B_D \oplus B_E \oplus B_2 \oplus B_6 \ and$$

$$E \cong E_B \oplus E_A \oplus E_3 \oplus E_7$$

which induce respectively the direct sum decompositions of D*Z/2, B*Z/2 and E*Z/2 obtained in Lemma 3.1.

Set $G = A_D \cong D_A$, which is divisible 2-torsion. We denote by $p_A : A \to G$ and $p_D : D \to G$ the canonical projections with $p_A(A_D) = G$ and $p_D(D_A) = G$. Let $t_0 : A \oplus B * Z/2 \oplus C \to D \oplus F$ and $t_3 : D * Z/2 \oplus E \oplus F \to A \oplus C$ be the homomorphisms given in (1.12), which are determined by the conjugations t_{c^*} on KC_iX (i = 0, 3) respectively. By a dual argument to the proof of Lemma 2.2 we show

Lemma 3.2. There exist unique homomorphisms $r: A \oplus C \to G$ and $s: E \oplus F \to G$ satisfying $p_D t_0 - p_A = 2r$ and $p_A t_3 = 2s$.

Proof. First we use the canonical projection $p_D: KC_0X \cong (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to G$. By means of $(1.10)_i$ (i = 2, 3) and (3.2) we

observe as in the proof of Lemma 2.2 that the composite $p_D(\varepsilon_C\tau)_*: KC_{-1}X \cong (D*Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to G$ is written into the form of a sum $p_A+2x+y+z$ for some homomorphisms $x:A\to G$, $y:C\to G$ and $z:D*Z/2 \oplus E \oplus F \to G$. Then $(1.11)_3$ shows that the composite $p_D(\varepsilon_C\tau\gamma\zeta)_*:KC_0X\to G$ is identified with the sum $p_A+2(x+y)$. Since $\varepsilon_C\tau\gamma\zeta=1+t_C:KC\to KC$, it is easily checked that $p_Dt_0=p_A+2r$ setting $r=x+y:A\oplus C\to G$.

Using the canonical projection $p_A: KC_3X \cong (D*Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to G$ in place of $p_D: KC_0X \to G$, we can similarly find a homomorphism $s: E \oplus F \to G$ such that $p_A(\varepsilon_c \tau \gamma \zeta)_* = 2s: KC_3X \to G$. This equality implies the desired one $p_At_3 = 2s$ because $\varepsilon_c \tau \gamma \zeta = 1 + t_c$.

Let $f_G: X \to \Sigma^1 KU \land Q \land SG$ be the map whose induced homomorphisms $\kappa_{ku}(f_G)_*: KU_iX \to KU_{i-1}(Q \land SG)$ (i=0,1) are given by the canonical projections $p_A: A \oplus B \oplus C \oplus C \to G$ and $p_D: D \oplus E \oplus F \oplus F \to G$ respectively. Since $(t_u \land 1)f_G = f_G$, there exists a map $g_G: X \to \Sigma^1 KC \land Q \land SG$ with $(\zeta \land 1)g_G = f_G$. According to (1.18) the induced homomorphisms $\kappa_0(g_G): KC_0X \to KC_{-1}(Q \land SG)$ and $\kappa_3(g_G): KC_3X \to KC_2(Q \land SG)$ are respectively given by the following matrices

$$(3.5) \quad \frac{\begin{pmatrix} p_A & 0 \\ w & p_D \end{pmatrix} : (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to G \oplus G}{\begin{pmatrix} p_D & 0 \\ z & p_A \end{pmatrix} : (D * Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to (G * Z/2) \oplus G}$$

for some homomorphisms $w: A \oplus B * Z/2 \oplus C \to G$ and $z: D * Z/2 \oplus E \oplus F \to G$. In particular, take w = -r and z = -s by using the homomorphisms r and s obtained in Lemma 3.2. Then (1.19) asserts that the given map g_G satisfies $(t_c \wedge 1)g_G = g_G$. Thus we have

Corollary 3.3. There exists a map $g_G: X \to \Sigma^1 KC \wedge Q \wedge SG$ such that $(\zeta \wedge 1)g_G = f_G$ and $(t_C \wedge 1)g_G = g_G$.

- **3.2.** We will finally prove another main result, which is a dual of Theorem 2.4.
- Theorem 3.4. Let X be a CW-spectrum such that KU_{*}X is pure injective and 2-divisible, thus it is a direct summand of a direct product of a divisible group and cyclic p-groups $(p \neq 2)$. Then there exist abelian groups A_i $(0 \leq i \leq 7)$, C_j $(0 \leq j \leq 1)$ and G_k $(0 \leq k \leq 3)$ so that X is

quasi KO_* -equivalent to the wedge sum $(\bigvee_i \Sigma^i SA_i) \vee (\bigvee_j \Sigma^j P \wedge SC_j) \vee (\bigvee_k \Sigma^{k+1} Q \wedge SG_k)$ where C_j and G_k are taken to be divisible 2-torsion (cf. [B, Theorem 3.3]).

Proof. As in the proof of Theorem 2.4 we take A_t , C_j and G_k to be the abelian groups chosen in (3.3) and (3.4). For each component Y_H of the required wedge sum $Y = (\bigvee_i \Sigma^i S A_i) \vee (\bigvee_j \Sigma^j P \wedge S C_j) \vee (\bigvee_k \Sigma^{k+1} Q \wedge S G_k)$, we choose a map $f_H: X \to KU \wedge Y_H$ whose induced homomorphism $\kappa_{Ku}(f_H)_*: KU_*X \to KU_*Y_H$ is the canonical projection. Since $(t_u \wedge 1)f_H = f_H$, there exists a map $g_H: X \to KC \wedge Y_H$ satisfying $(\zeta \wedge 1)g_H = f_H$ for each G_H . By a dual argument to the proof of Theorem 2.4 we will only show that there exist maps $h_H: X \to KO \wedge Y_H$ such that $(\varepsilon_u \wedge 1)h_H = f_H$ in the cases G_H and G_H .

i) The $H = A_0$ case: Use the commutative diagram

$$0 \to \operatorname{Ext}(KO_{6}X, A_{0}) \to \left[\Sigma^{-3}X, KO \wedge SA_{0}\right] \xrightarrow{\kappa_{4}} \operatorname{Hom}(KO_{7}X, A_{0}) \to 0$$

$$\downarrow (\eta_{*})^{*} \qquad \qquad \downarrow (\eta \wedge 1)^{*} \qquad \qquad \downarrow (\eta_{*})^{*}$$

$$0 \to \operatorname{Ext}(KO_{5}X, A_{0}) \to \left[\Sigma^{-2}X, KO \wedge SA_{0}\right] \xrightarrow{\kappa_{4}} \operatorname{Hom}(KO_{6}X, A_{0}) \to 0$$

involving the Anderson universal coefficient sequences (1.5) ii), where $\kappa_4 = \kappa_4^{ko}$. The induced homomorphism $\kappa_{ko}((\eta \wedge 1)g_{A_0})_*: KO_6X \to KC_7SA_0$ is trivial because $(\pi_c^{-1}\varepsilon_c\eta)_*(KO_6X) \cong A_E' \oplus A_4' \subset A_E \oplus A_4$ by Lemma 3.1. This implies that $\kappa_4((\eta \wedge 1)(\tau\pi_c^{-1}\wedge 1)g_{A_0}) = 0$ in $\operatorname{Hom}(KO_6X, A_0)$. Obviously the composite $(\eta \wedge 1)(\tau\pi_c^{-1}\wedge 1)g_{A_0}$ has order 2. However $\operatorname{Ext}(KO_5X, A_0)$ is uniquely 2-divisible since A_0 is a direct sum of a divisible group and a uniquely 2-divisible group. So we see that the composite $(\eta \wedge 1)(\tau\pi_c^{-1}\wedge 1)g_{A_0} = (\varepsilon_0\pi_u^{-1}\wedge 1)f_{A_0}: X \to \Sigma^2KO \wedge SA_0$ is in fact trivial. Hence there exists a required map $h_{A_0}: X \to KO \wedge SA_0$ with $(\varepsilon_u \wedge 1)h_{A_0} = f_{A_0}$.

- ii) The $H=C_0$ case: The composite $(\eta \wedge 1)(\tau \pi_c^{-1} \wedge 1)g_{c_0}=(\varepsilon_o \pi_u^{-1} \wedge 1)f_{A_0}: X \to \Sigma^2 KO \wedge P \wedge SC_0$ is evidently trivial. So we get a required map $h_{A_0}: X \to KO \wedge P \wedge SC_0$ with $(\varepsilon_u \wedge 1)h_{c_0}=f_{c_0}$.
- iii) The $H=G_0$ case: For simplicity we put $G=G_0$, $f=f_{G_0}$, $g=g_{G_0}$ where $G=A_D\cong D_A$ and it is divisible 2-torsion. By virtue of Corollary 3.3 the map $g\colon X\to \Sigma^1KC\wedge Q\wedge SG$ can be chosen to satisfy $(t_c\wedge 1)g=g$ as well as $(\zeta\wedge 1)g=f$. Denote by $p_A\colon A\to G$ and $p_D\colon D\to G$ the canonical projections with $p_A(A_D)=G$ and $p_D(D_A)=G$. According to

 $(3.5), \ \kappa_{kc}(g)*=\kappa_0(g)=\left(\begin{matrix}p_A&0\\w&p_D\end{matrix}\right)\colon KC_0X\to KC_{-1}(Q\land SG) \ \text{and} \ \kappa_{kc}(g)*$ $=\kappa_3(g)=\left(\begin{matrix}p_D&0\\z&p_A\end{matrix}\right)\colon KC_3X\to KC_2(Q\land SG) \ \text{for some homomorphisms}\ w:$ $A\oplus B*Z/2\oplus C\to G \ \text{and}\ z\colon D*Z/2\oplus E\oplus F\to G. \ \text{As is easily checked,}$ the induced homomorphism $\kappa_{Ko}((\eta\land 1)g)*=\kappa_{Kc}(g)*(\varepsilon_c\eta)*\colon KO_2X\to KC_2(Q\land SG) \ \text{is trivial because}\ (\varepsilon_c\eta)*(KO_2X)\cong A_E'\oplus A_0'\subset A_E\oplus A_0 \ \text{and}\ p_A(A_E\oplus A_0\oplus A_4)=0. \ \text{Hence the composite}\ (\eta\land 1)(\tau\pi_c^{-1}\land 1)(1\land j_Q\land 1)g\colon X\to \Sigma^6KO\land SG \ \text{becomes trivial since}\ \kappa_{-4}^{Ko}\colon [\Sigma^{-6}X,KO\land SG]\to \text{Hom}(KO_2X,G) \ \text{is an isomorphism by}\ (1.5)\ \text{ii}). \ \text{By applying Lemma}\ 1.2\ \text{we then get}\ \text{a map}\ h_1\colon X\to \Sigma^4KO\land SG \ \text{such that}\ (1\land i_Q\land 1)h_1=(\tau\pi_c^{-1}\land 1)g\ \text{although}\ \text{the map}\ g\ \text{with}\ (t_c\land 1)g=g\ \text{and}\ (\zeta\land 1)g=f\ \text{might}\ \text{be changed slightly}\ \text{for the new one.}$

As in the latter part of the proof iii) of Theorem 2.4 we will next show that there exists a map $k: X \to \Sigma^5 KO \wedge SG$ satisfying $(\eta^2 \wedge 1)k = (\eta \wedge 1)h_1$, in order to observe that the composite $(\varepsilon_o \pi_u^{-1} \wedge 1)f = (\eta \wedge 1) \cdot (\tau \pi_c^{-1} \wedge 1)g = (1 \wedge i_Q \wedge 1)(\eta \wedge 1)h_1: X \to \Sigma^3 KO \wedge Q \wedge SG$ is trivial. By (1.12) we note that the conjugation $t_{c^*} = \begin{pmatrix} 1 & 0 \\ t_0 & -1 \end{pmatrix}$ on $KC_0 X \cong (A \oplus B * Z/2 \oplus C \to D \oplus F)$ for a certain homomorphism $t_0: A \oplus B * Z/2 \oplus C \to D \oplus F$. Then (1.19) says that the homomorphism $w: A \oplus B * Z/2 \oplus C \to G$ satisfies $p_D t_0 = p_A - 2w$ where $\chi_{kc}(g)_* = \chi_0(g) = \begin{pmatrix} p_A & 0 \\ w & p_D \end{pmatrix}$, because $(t_c \wedge 1)g = g$. Recall that $(\tau \pi_c^{-1})_*: KC_{-1}(Q \wedge SG) \to KO_{-4}(Q \wedge SG)$ is represented by the row $(-1 \ 2): G \oplus G \to G$ (cf. [Y2, (3.5)]). Then an easy computation shows that the composite $(\tau \pi_c^{-1})_* \chi_{kc}(g)_*: KC_0 X \to KO_{-4}(Q \wedge SG)$ coincides with the composite $p_D(1-t_{c^*}): (A \oplus B * Z/2 \oplus C) \oplus (D \oplus F) \to G$. So the composite $(\tau \pi_c^{-1})_* \chi_{kc}(g)_* \varepsilon_{c^*}: KO_0 X \to KO_{-4}(Q \wedge SG)$ becomes trivial because $t_c \varepsilon_c = \varepsilon_c$. Thus $\chi_{ko}((\tau \pi_c^{-1} \wedge 1)g)_* = \chi_{ko}((1 \wedge i_Q \wedge 1)h_1)_*: KO_0 X \to KO_{-4}(Q \wedge SG)$ is trivial.

Since the induced homomorphism $i_{Q^*}: KO_{-4}SG \to KO_{-4}(Q \land SG)$ is multiplication by 2 on G, it follows immediately that $\chi_{ko}(h_1)_*: KO_0X \to KO_{-4}SG$ has order 2. Hence the composite $\chi_{ko}(h_1)_*(\tau\pi_c^{-1})_*: KC_3X \cong (D*Z/2 \oplus E \oplus F) \oplus (A \oplus C) \to KO_{-4}SG \cong G$ is factorized through D*Z/2. Since $\eta_*(KC_2X) = A*Z/2$, the composite $\chi_{ko}((\eta \land 1)h_1)_*(\tau\pi_c^{-1})_*: KC_2X \to KO_{-4}SG$ is trivial, too. We here use the commutative diagram

$$\begin{array}{c} \left[\Sigma^{-1}X, \ \Sigma^{4}KO \wedge SG \right] \xrightarrow{\left(\eta^{2} \wedge 1\right)^{*}} \left[\Sigma^{1}X, \ \Sigma^{4}KO \wedge SG \right] \\ \downarrow^{\chi_{0}} & \downarrow^{\chi_{0}} \\ \operatorname{Hom}(KO_{1}X, \ KO_{-4}SG) \xrightarrow{\left(\eta^{\frac{1}{2}}\right)^{*}} \operatorname{Hom}(KO_{-1}X, \ KO_{-4}SG) \xrightarrow{\left(\tau \pi_{c}^{-1}\right)^{*}} \operatorname{Hom}(KC_{2}X, \ KO_{-4}SG) \end{array}$$

where the two vertical arrows $\kappa_0 = \kappa_0^{ko}$ are isomorphisms by (1.5) ii). As is easily seen, there exists a map $k: X \to \Sigma^5 KO \wedge SG$ satisfying $(\eta^2 \wedge 1)k = (\eta \wedge 1)h_1$. Consequently we obtain a map $h: X \to \Sigma^1 KO \wedge Q \wedge SG$ with $(\varepsilon_u \wedge 1)h = f$ as desired.

REFERENCES

- [Ad] J. F. ADAMS: Stable Homotopy and Generalized Homology, Univ. of Chicago, 1974.
- [An1] D. W. Anderson: A New Cohomology Theory, Thesis, Univ. of California, Berkeley, 1964.
- [An2] D. W. Anderson: Universal Coefficient Theorems for K-theory, mimeographed notes, Berkeley.
- [B] A. K. BOUSFIELD: A classification of K-local spectra, J. Pure and Applied Algebra 66 (1990), 121-163.
- [CR] C. W. CURTIS and I. REINER: Methods of Representation Theory with Applications to Finite Groups and Orders, Pure and Applied Math., A Wiley-Interscience series of texts, monographs and tracts, 1981.
- [F] L. FUCHS: Infinite Abelian Groups I, Pure and Applied Math. 36-1, Academic Press, 1970.
- [Ku] A. G. KUROSH: The Theory of Groups, I, Chelsea Publ. Co. New York, 1955.
- [MOY] M. MIMURA, S. OKA and M. YASUO: K-theory and the homotopy types of some function spaces, in preparation.
- [Y1] Z. YOSIMURA: Universal coefficient sequences for cohomology theories of CW-spectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.
- [Y2] Z. YOSIMURA: Quasi K-homology equivalences, I, Osaka J. Math. 27 (1990), 456-498.
- [Y3] Z. YOSIMURA: The Quasi KO-homology Types of The Real Projective Spaces, Homotopy theory and related topics, Springer Lecture Notes in Math. 1418 (1990), 156-174.

DEPARTMENT OF MATHEMATICS
OSAKA CITY UNIVERSITY
SUGIMOTO, SUMIYOSHI, OSAKA, 558 JAPAN

(Received February 21, 1990)