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WOOD SPECTRA AND ANDERSON SPECTRA

Dedicated to Professor Yukihiro Kodama on his 60th birthday
Zexn-1cH1 YOSIMURA

Let KO, KU and KC denote the real, complex and self-conjugate K-
spectrum respectively. Given CW.spectra X, Y we say that X is quasi
KOx-equivalent to Y if there exists a map h: Y » KOA X such that the
composite (uA1N1AhR): KOAY - KOANX is an equivalence where
u: KOANKO - KO denotes the multiplication of KO (see [Y2]). The KU-
homology KUx X is regarded as a Z/2-graded abelian group with involution,
since the conjugation &, : KU - KU gives an involution i, on KUxX for
any CW.spectrum X. Notice that KUx X and KUx Y are isomorphic as Z/2-
graded abelian groups with involution if X is quasi KOx-equivalent to Y.

Let us denote by P and Q the cofibers of the maps »: X' - X° and
n°: X% - X° respectively where n: X' - X° denotes the stable Hopf map
of order 2. As is well known, KUyP = Z® Z on which t,» = ((1) (1)) and
KUP =0, and KU;Q = Z = KU.,Q on both of which {,x = 1. Following
[MOY] we call a CW-spectrum X a Wood spectrum if X is quasi KOx-
equivalent to P, and an Anderson spectrum if X is quasi KOx-equivalent to
Q (see [Y2]). For any abelian group G we denote by SG the Moore spec-
trum of type G. Evidently KU;SG = G on which t,» =1 and KU, SG = 0.

Let X be a CW-spectrum such that

i) KUiX is pure projective and 2-torsion free, thus it is a direct sum of
a free group and cyclic p-groups (p # 2). or

ii) KUxX is pure injective and 2-divisible, thus it is a direct summand of
a direct product of a divisible group and cyclic p-groups (p # 2) (see [F]).

Then KUs X admits a direct sum decomposition KUy X = A® B Cd C
so that the conjugation t,+ on KUxX behaves as

01

t,x =1 on A, tu*z—lonBandtu*z(l 0

)onCGBC

respectively (use [B, Propositions 3.7 and 3.8] or [CR]).
In [Y2, Theorems 1 and 2] (cf. [MOY]) we have obtained certain re-
sults concerning Wood spectra and Anderson spectra. On the other hand,
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166 7. YOSIMURA

Bousfield [B, Theorems 3.2 and 3.3] has independently shown the following
complete results which contain our partial results, although Bousfield’s
notation {or statement) is different from ours.

Theorem 1 (Bousfield). Let X be a CW-spectrum such that KUy X is
pure projective and 2-torsion free. Then there exist abelian groups A; (0 <
i£7), C(0£7<1) and G, (0 £ k < 3) with C; and Gy, free so that
X is quasi KOx-equivalent to the wedge sum (Y SiSA) V (Y >'PASC;)

vV (\k/ ' QA SGy). (Theorem 2.4).

Theorem 2 (Bousfield). Let X be a CW-spectrum such that KUy X is
pure injective and 2-divisible, Then there exist abelian groups A, (0 = i <
7), C,(0=j=1) and G, (0 < k < 3) with C; and G, divisible 2-torsion
so that X is quasi KOx-equivalent io the wedge sum (\:/ SiSA) V (Y >'P

ANSC;) Vv (\’{Z’”’ QANSG,). (Theorem 3.4).

Strictly speaking, Bousfield has proved that an associative KO-module
spectrum W is isomorphic as KO-module spectra to an extended KO-module

spectrum KOA Y with Y =(V Z'SA;) V (\J/ZJP/\SCJ) \Y% (\;’ ZEIQAN

SGy). if m(W AP) is free or divisible. Our purpose in this note is to
give a new proof of Theorems 1 and 2 by applying our method developed in
[Y2, Y3]. Our method allows us to prove Bousfield’s result for any asso-
ciative KO-module spectrum W, although we here give a new proof of his
result only for an extended KO-module spectrum KO N X.

In §1 we recall some properties of K-spectra KO, KU and KC ([B]
or [Anl]) and then study the structure of KCxX for any CW-spectrum X
as in Theorem 1 or 2. In §2 and §3 we will only deal with CW-spectra
X as in Theorems 1 and 2 respectively. After giving a refined decomposi-
tion of KUxX in each case, we will prove Theorem 1 (Theorem 2.4) along
the line adopted in [Y2, Y3] and Theorem 2 (Theorem 3.4) by a dual argu-
ment. In the proof of Theorem 2 we use the Anderson universal coeflicient
sequences (see [An2] or [Y1]), as was implicitly suggested in [B].

In this note we will work in the stable homotopy category of CW-
spectra [Ad].
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1. The real, complex and self-conjugate K-spectrum.

1.1. Let KO, KU and KC denote the real, complex and self-conjugate
K-spectrum respectively. All of these K-spectra are associative and com-
mutative ring spectra with unit. As relations among these K-spectra we
have the following cofiber sequences ([Anl], [B]):

. . LAY €y e’ _,
(1.1) i) X*KO —— KO — KU — X*KO
A1 c <!
i) K015 KO =5 KC 5 5°K0

;“l_u u
i) ke S ku BTN, gy 1™ ke

-7, ! u V ey €ctomty'

v) ke 2T ko v sko 2T ky S*KC
€My, a;l) gc V meece u E|

v KU e e po sgo SV ke ST sy,

The maps involved in (1.1) admit several properties as follows, The
stable Hopf map 7: X' —» X° has order 2. The maps ¢, : KO - KU, & :
KO - KC and ¢: KC - KU are ring maps with ¢{ec = £,, and the maps
co: KU - KO, 7: 3'KC - KO and y: KU - X'KC are merely KO-
module maps with 7% = e,. The periodicity maps n,: L*KU —» KU and
re: X*KC —» KC satisfy tne = nl¢ and ncy = ynl respectively. The
conjugation maps ¢, : KU - KU and i.: KC —» KC are ring maps satisfying
12=1,8=1, tumy = —mut, and b rc = ncite, and besides

(12) teee = €c, the = — 1, Wi=§fl. = ¢ and ley= —yly = —7.

Moreover there hold the following equalities among these maps (see

[B, 1.9]):

(1.3) 1) eoeu=2, tec = nAl, ncee =0, meectne' = ect+nAl,
£y =0 and yr, & = nA1l. and also
i) eueo =1+, Yeur = 1—1 and eceol = 1+1..

Let K denote the K-spectrum KO, KU or KC. To any map f: Y —
KA X we assign a K-module map xx(f) = (uA1YAAS) : KAY - KAX
where 1: K/AK - K denotes the multiplication of K. The assignment xy :
[Y KAX] - [KAY, KA X] gives a right inverse of the induced homo-
morphism ((A1)*: [KAY, KAX] - [Y, KAX] where (: X° - K de-

notes the unit of K. This homomorphism x, induces a homomorphism

(1.4) »F:[Y,KAX] - Hom(K,Y, K, X)
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assigning any map f to its induced homomorphism xx(f)% in dimension i,
which is often abbreviated as ;.

Let VK(G) denote the Anderson dual spectrum of K with coefficients
in G (see [An2] or [Y1, I and 1I]). The CW-spectra K and V K(G) are
related by the following universal coefficient sequence

0 > Ext(K«_, X, G) > VK(G)*X - Hom(K+X, G) - 0.

Recall that VKU(G) = KUASG, VKO(G) = X *KOANSG and
VKC(G) = X *KCA SG where SG denotes the Moore spectrum of type
G ([An2] or [Y1. I]). So we may rewrite the above universal coefficient
sequence as follows:

(1.5) i) 0 - Ext(KU_,X,G) - [X. KUASG] 25 Hom(KU,X, G) = 0
i) 0 Ext(KO;X,G) - [X. KOASG] = Hom(KO.X, G) - 0
iii) 0 - Ext(KC,X,G) - [X. KCASG] 25 Hom(KC X, G) = 0.

1.2. In this note we will only deal with a CW-spectrum X such that

(1.6) i) KUsX is pure projective and 2-torsion free, thus it is written
as a direct sum of a free group and cyclic p-groups (p =+ 2), or

ii) KUixX is pure injective and 2-divisible, thus it is written as
a direct summand of a direct product of a divisible group and cyclic p-groups
(p + 2) (see [F]).

Given such a CW-spectrum X, KU; X and KU, X are respectively de-
composed into the forms of
(1.7) KUX=z=A9oBoC®Cand KUX=D®E®FOF
on which the conjugation t,+ behaves as follows:
tio»=1ondor D, t,+ = —1 on Bor E, and

(1.8) 0 1

= (1 0) onC®Cor FOF,

Here C and F may be taken to be free in the (1.6) i) case, and to be
divisible 2-torsion in the (1.6) ii) case (see [B, Propositions 3.7 and 3.8]
or [CR]).

In order to compute KCxX we use the short exact sequence
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0 - (yzu)x (KU X) » KC.X > &(KC,X) - 0

induced by the cofiber sequence (1.1) iii) (see [Y2, Lemma 2.1 i)]). Since
the composite homomorphism (¢eceo)s : KU; X - KU, X restricted to the
image ¢x(KC;X) is just multiplication by 2, the above short exact sequence

is split after tensored with Z[%} Under our assumption (1.6) it is a pure

exact sequence, and actually a split exact sequence. Thus KCx«X admits
the following direct sum decomposition :

KCGX=(A®BxZ/20C)B(DODERZ/2DF),
KCX=(D®Ex Z/20F)®(A® Z/2® B C),
KC,X= (A% Z/2&0BoC)® (DR Z2QEDF),
KC;X=(DxZ2OEGF)®(A®B® Z/20C).

(1.9)

Since n A1 = ym,¢: Z'KC - KC, the induced homomorphisms 7, :
KC,X - KC, X restricted to A and B* Z/2 are respectively identified with
the canonical projection A » A ® Z/2 and the canonical inclusion B % Z/2
— B, and the one 7, restricted to the other components C® (D@ E® Z/2
® F) is trivial. Thus 7, : KCGX=ZADB*x Z/2@CODOERZ/2OF
- KCX=D®E%x Z/2®F®AR® Z/2@ B® C is given by

(1.10)s n4(a, b, c.d, [e], /) =(0,0,0, [a], b, 0)

where [ ] stands for the mod 2 reduction. For 7, : KC, X > KC,., X, 1 <
i < 3, we can obtain similar expressions (1.10); to (1.10),, which will be
used later,

On the other hand, the composite homomorphism (7¢)« : KC, X = D&
ExZ20F®ARZ/I2®PB®C » KCX = A®DBx Z/2®dCe® D E
® Z/2@ F is given by

(1.11), (7&)+(d, e, f, [a], b, c) = (0,0, 0, d, 0, 2f).

For (y¢)x : KC,.,X - KC, X, 1 £i < 3, we can also obtain similar ex-
pressions {(1.11): to (1.11),.

The conjugation tcx on KC. X = £+(KC, X) ® (ymy)«(KU,_1 X ) can be
represented by the following matrix

1 0

b Yos=isy

(1.12) (

for a certain homomorphism % : {x(KC,; X) - (ym,)«(KU,-, X ). In particu-



170 Z. YOSIMURA

lar, take X = 3'Q A SG when G is free or divisible. Here Q denotes the
cofiber of the square p*: X* - X° Use the following commutative diagram

« 0
KU_.(QASG) . K0, (QNSG)
! _kco@nse) ] L
KO0..(QASG) KU_(QASG)

0(’

in which the diagonal exact sequences are induced by the cofiber sequences
(1.1) i) and iii). Recall that KU.,(QASG) = G = KU (QASG) on
both of which #,» = 1, and besides KO,_,(QASG) = G, G, G® Z/2 or
G * Z/2 according as i = 0,1, 2 or 3 mod 4. By parallel discussions to
[Y2, (2.3)] we then observe that

e=(1 Y mKC.@QASE) = Gas

(113) e« =1 on Kco(Q/\SG) = G@G@Z/Z and
KC(QNSG)=G* Z/20G® Z/2
tlex = —1 on KC,(QANASG) = Gx Z/2 @ G.

. . )
1.3. The cofiber sequence X? - X° 2L » gives the following
commutative diagram

0 = Hom(KC.,SG. KCoX) - Hom(KC_,(Q ASG), KC,X) - Hom(KC_,SG, KC,X) - 0
Tao Txe Ta

0 —'[X'SG, KCAX]) —— [Z'QASG, KC AX] [2'SG,KCAX] —0
Lx L Lx

0 — Hom(KC_;SG, KC,X) — Hom(KC(Q A SG), KC,X) — Hom(KC,SG, KC,X) — 0

in which the vertical arrows x, (i = 0, 1) are abbreviated x*¢ of (1.4),
Since RANQ=QV X°Q and KC = KOA Q, all of the three rows are
split short exact sequences. Notice that their splittings are compatible
with »; (i = 0, 1) because the assignment xxc: [Y, KCAX] - [KCAYY,
KCA X] admits the induced homomorphism (¢A1)* as a left inverse.
Obviously the right lower arrow x, and the left upper one x, become both
epimorphisms, because they are isomorphisms if the abelian group G is
free.

We here assume that KUx X is pure projective and 2-torsion free, and
hence KC«X is written into the form of (1.9). For each map g: X' QAN
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SG - KCA X we can choose unique maps & : 2'SG » KCA X and g, :
3*SG -» KCA X with go = g(ig/A1), under the direct sum decomposition
[Z'QASG, KCAX]) = [2'SG, KCAX]®[2*SG, KCA X]. Express
the induced homomorphisms x:(g) : KCoSG » KC, X and x(g,) : KC_,SG
> KCoX as x(g) =u+v+w:G>(DOF)D(ARZ/2®B®C) and
x(g)=x+y+2: Go(ADC)D (DD E® Z/2 ® F) respectively, where
u:Go>D, v:GoF, w:6G-AZ/2®8B®C, x:G—-A, y:G->C
and2: GoDOE®Z/I2&F.

The induced homomorphism x.(g) : KC_,SG — KC,X is identified with
the composite (7¢)xxi(g0) . KCoSG - KCoX because (7¢)x: KC,SG -
KC_,SG is regarded as the identity on G. On the other hand, the induced
homomorphism x,(g:) : KC_3SG —» KC, X coincides with the mod 2 reduction
of the composite 74xo(8): KC_.SG - KC,X because 7, :KC_,SG -
KC_;SG is just the canonical projection G - G® Z/2. By means of (1.10)
and (1.11) we then observe that

(1.14) 1) xo(go) : KC_,SG - KC,X is expressed as the sum u+2v: G -
DOFC(ADC)D(DDERZ/2BF), and

i) wm(g): KC_38G —» KC,X is expressed as the mod 2 reduction
] :G®Z/2 5 ARZ/I2C DOF)D(ARZ/20® B C).

This result implies that the induced homomorphisms x,(g) : KC_,(@ N\
SG) - KC,X and x(g): KC(QA SG) » KC, X are respectively repre-
sented by the following matrices

( x+y O
z u+t2v

( u+v 0
w o [x]

where KC_,(QASG) = KC_,.SG® KC_,SG = G® G and KC,(Q/N\ SG)
= KC,SGB®KC_,SG=G®(G® Z/2).

The abelian group G is now assumed to be free. In this situation the
assignment (xo, x1) : [Z'Q/ASG, KCA X] - Hom(KC_,(Q\SG), KC, X)
@ Hom(KCy(Q A\ SG). KC,X) is obviously a monomorphism. As in (1.12)

):G@G—>(A€BC)€B(D€BE®Z/2€BF)
(1.15)
):G@(G@Z/Z) >(DeF)®(A®Z/2® B C)

we represent the conjugations t.+ on KC, X (i = 0. 1) by matrices ( 1 _(1))

for certain homomorphisms t,: A®C > DOE®Z/2®F and t,: DOF
- A® Z/2® B® C. In particular, (1.13) asserts that 4, =1:G - G
and , =0: G > G® Z/2 when X = Z'QANASG. Since x((tc:\1)g) =
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texx;(g)tcx for any map g: Z' Q@ NSG —» KC/A X, we can easily check that
(1.16) (t:A\1)g = g if and only if ty(x+y) = 224+u+2v and ,(u+v)

= 2w, where x(g) = (x-{z—y u-IE)ZV) and x(g) = (u-;v [2]) as in
(1.15).

1.4. We next consider the following commutative diagram

0 - Hom(KC, X, KC_,SG) - Hom(KC, X, KC_,(QA SG)) - Hom(KC, X, KC_,SG) - 0

Tltn Tlu Tlu
0 — [X,Z'KCASG] —— [X, Z'KCA QA SG] —— [X, Z*KCA SG] — 0
lm lx: lls

0 — Hom(KC;X, KC,S8G) — Hom(KC;X, KC,(QN SG)) — Hom(KC, X, KC_,SG) - 0

induced by the cofiber sequence X* IR Q %5 2*, where the vertical
arrows x; ({ = 0. 3) are abbreviated x of (1.4). All of the three rows
are split short exact sequences, and their splittings are compatible with x;
(i =0,3). From (1.5) iii) it follows that the right lower arrow x; and
the left upper one x, are both epimorphisms, and in particular they become
isomorphisms if the abelian group G is divisible.

Assume that KUx X is pure injective and 2-divisible, and hence KCs+ X
is written into the form of (1.9). For eachmap g: X - S'KCA QAN SG
we can choose unique maps g,: X - Z'KCASG and g,: X > X' KCASG
with g = (jo/\ 1)g. under the direct sum decomposition [X. Z'KCA QAN
SG] = [X, Z*KCASG]®[X, ' KCASG]. Express the induced homo-
morphisms x(g) : KCo X - KC_,SG and x:(g) : KC;X - KC_,SG as
xl(g) = wt+ut+v: (A®Bx Z/2®C)D(DSF) > G and x:(g) = 2+
x+y: (Dx ZI2BED®F)®(A®C) - G respectively, where u: D - G,
v:Fo>G w: A®B%x Z/2®C>G, x:A-> G, y:C>Gand z: Dx*
Z/2® E®F - G. By a similar argument to (1.14) we obtain

(1.17) i) xo(go) : KCoX —» KC_,SG is expressed as the sum x+2y:
(A®Bx Z20C)®(DOF) > A®C > G, and

ii) x(g): KC;X - KC,SG is expressed as the mod 2 resiriction
u: (D% ZI2OEDF)®(ADC) - D% Z/2 - G* Z/2.

This result implies that the induced homomorphisms x.(g) : KC, X -
KC_,(QANSG) and x;5(g) : KC; X - KC,(Q N\ SG) are respectively repre-
sented by the following matrices
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(“;fy uf:v):(AEBB* Z26C)®(DOF) - GG

(1.18)
(“ 0 ) (D% Z2®EBF)®(ABC) > (Gx Z/2)® G
z x+y

where KC_(QNASG) = KC_,SGO®KC_,SG=G® G and KC,(QAN SG)
= KC,SG@KC_,SG=(G* Z/2)® G,

The abelian group G is now assumed to be divisible. Then the assign-
ment (xo. x:) : [ X, Z'KCAQASG] - Hom(KC, X, KC_,(Q A SG)) ®
Hom(KC; X, KC,(Q A SG)) is obviously a monomorphism. The conjugations

\

tex on KC;X (i = 0, 3) are represented by matrices (: _(1)) for certain

homomorphisms t,: A@B% Z/2®C—>D®F and t; : Dk Z/2DEDF
- A® C. As a result corresponding to (1.16) we can similarly show that

(1.19) (i A\1)g =g if and only if (u+v)t, = x+2y—2w and (x+y)t,

x+2y 0 ) _(u )
w o ou4v and x,(g) = z x+y

g: X-> S KCANQASG as in(1.18).

= —2z, where x(g) = ( Sfor any map

1.5. When an abelian group G is free, we consider the following
commutative diagram

(ioe)*

Hom(KUy(QA SG), KU, X) —— Hom(KU,SG, KU, X)

Txo Tlﬁ
0 — [£28G, KUA X] 221 rq ase, kuax] — 2 156, KUA X] — 0

l’h - lkl
Hom(KU_,SG, KU, X) ", Hom(KU(Q A SG). KUX)

in which the right vertical arrow x, = x¢“ and the left one x, = »f* are
both isomorphisms, and the top and the bottom horizontal arrows (ig«)* and
(jo*)* are also isomorphisms. The induced homomorphism (jo A1)*: [X2®SG,
KUANX] - [QASG, KUNX] admits as a left inverse the composite
((jex)*x1) " 'x1, which is compatible with the conjugations (#, /\1)x because
(. A1)f) = tyxx(f)tus. In other words, there exists a homomorphism

(1.20) A:[SG, KUAX] - [QASG, KUANX]
satisfying (ip A1*A =1 and (£, A1D)xA = Aty A1)x.
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Lemma 1.1. Let G be a free abelian group and g : S'QNSG >
KCAX be a map satisfying (tc\N1)g = g'. If the composite (n N1)(zrs’
NA1D)g (i, \1): SG - X' KONX is trivial, then there exisi maps h,:
3'SG - KONX and g: Z'QNASG - KCAX such that h(joN\1) =
(zme' Al)g, (teA\1)g = g and (EA1)g = (EA1)g (cf. [Y3, Lemma
1.1)).

Proof. First choose a map A, : X' SG - KON X satisfying (e, A1)k,
= (¢N1)g'(ig/ A1), and then a map £ : SG - KU /A X such that (ec A1)k,
= g'(ig A1) +{ym, AN1)£. Composing the conjugation map i A1 after the
second equality, we see that 2(yr, /A1)¢ = 0 because icec = ec and t.y =
—7. So there exists a map &' : SG » KUAX satisfying 2¢ = (1+
tw A1)k'. Applying the right inverse A of (i, /\1)* obtained in (1.20) onto
the above equality, we show that the composite (yr, A1)AL) : Z'Q@ASG
- KCA X has order 2. Setting g = g +(ymx /A1) A(£'), its map satisfies
the equalities (ec A1)k, = g(ig A1), (tc Al)g = g and (EN1l)g =
(&¢A1)g. Using the first equality we can then find a map A, : X'SG —»
KOANX with b, (jo A1) = (zns' Al)sg.

When an abelian group G is divisible, we next consider the following
commutative diagram

Hom(KU, X, KU(Q N SG)) e, Hom(KU. X, KU_,SG)

TK\ 1 . , le
0 — [X, KUA SG] (X, KUAQA SG] LA*A 1y sakUA $6] — 0

[ [

Hom(KUp X, KUy SG Y —= Hom(KU, X, KUs(Q A SG)) .

(1A igA L)
_—

Here the left vertical arrow x, = »¢* and the right one x; = x* are both
isomorphisms because of (1.5) i), and the top and the bottom horizontal
arrows Jjos and igex are also isomorphisms. Then a similar discussion to
(1.20) shows that there exists a homomorphism

(1.21) p:[X, Z°KUANSG] - [X, KUNQANSG]
satisfying (1 A\ jgA1l)xp =1 and (i, A1)xp = p(t, A 1)x.

As a dual of Lemma 1.1 we have

Lemma 1.2. Let G be o divisible abelian group and g : X » S'KC A
Q ASG be a map satisfying (i:/\1)g = g'. If the composite (n N1 )(rrc'
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AL AJAL)g : X - Z°KOASG is trivial, then there exist maps h, :
X->3*KONSGand g: X - Z'KCNAQAN SG such that (1N ig A1)h, =
(zme' Al)g, (t: N1)g = g and (A 1)g = (L A1)g.

Proof. Choose a map hy: X > Z*KOAN SG satisfying (e, AN1)h, =
(EN1N 1N JjoA1)g, and hence a map £ : X » Z*KUASG such that
(ec A1)he = (1N joNA1)g' +(yny A1)Z. Then it follows that 2(yz, A1) £
= 0 because lcec = ec and iy = —y. By applying the right inverse p of
(1/\ jo/\1)x obtained in (1.21) we verify that the composite ( Y7, A1)p(£2) :
X -5 X'KCNANQANSG has order 2. Set g = g'+(ynu A 1)p(£), then its
map satisfies the equalities (ec A1)k, = (1A joAl)g, (t:A\1)g = g and
(EA1)g = (¢N1)g". Obviously the first equality implies that there exists
amap by : X » Z*KOASG with (1 N ig A\ 1)hy = (z2c' A 1)g.

2. Pure projective and 2-torsion free.

2.1. In this section we will only deal with a CW.spectrum X such
that KUx X is pure projective and 2-torsion free, and hence KC«X is ex-
pressed as in (1.9). We denote by A the image of the induced homomor-
phism (eczn)x : KC_,X - KC, X where KCCX=Z (DO F)D(A®RZ/2d
Ba& C). Then

(2.1) Ap = (ecn)x(KC_,X) = (ect)(E® Z/2) C A® Z/2 C KC\ X

because 7x(KC_,X) =E® Z/2 and n«(KC, X) = A® Z/2 by (1.10), (i =
3, 0).

Since rec = p: ' KO - KO, it follows immediately that 4 A = 0 =
(z7e ' )xAz. Choose subgroups A, and 4 in A® Z/2 so that AQ Z/2 =
A;® A, ® A and Ker(ec)x|1e22 = Ar® A'. Thus the subgroups Ap and
A’ satisfy
(2.2) (ect)n: Ay — (ccr)a(A® Z/2) = D, and (ect)xA = 0.

We moreover put
(2.3) A; = (ecn)x(KOoX) and Al = (ncecn)x(KO_ X)
both of which are subgroups of A ® Z/2. It is obvious that
(2.4) A: C AN Al and (ect)xAi = 0 = (ec ) Al

because ec7n = mcecnrae': L*KC - KC and rrncec = 0: Z°KO - KO.
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More precisely we have

(2.5) 1) A = 9 (KO X), (775" )% A = ni(KO_,X) and
1) (s )xds = 0 = 744l

Lemma 2.1. There exists a direci sum decomposition
ARZ/I2 = A, DA DA DA,
with A ® Ay = (een)«(KOyX) and Ar ® Ay = (reecn)x(KO_ X).

Similarly there exist direct sum decompositions

DeZiR2=D,®@D;®D & D;, B® Z/2 = B,® B; ® B, ® B; and
E®ZR2 ZE;®E,®E; 0 E;

with suitable isomorphisms as above.

Proof. We will prove only the A® Z/2 case. Choose subgroups A,
and 4, in A® Z/2 so that A @ Ay = Ay and A @ A, = A;. It is sufficient
to show that Ker{ec )« 1022 = Ar ® A; ® A,. First, take an element x €
A® Z/2 with (ect)xx = 0. Using the equality 5 = recn: X*KO - KO, we
get elements 2 € KO, X and v € KO; X such that x = (ecn)su+ (7 ec)xv.
Moreover we notice that e,+v = 0 because £x(A ® Z/2) = 0. This implies
that the element x is contained in Ay + A; = Ar+ Ay + A:. Thus it is verified
that Ker(ec )% a0 22 = Ap+ Ao+ A

Next we take elements a € A;, b € A, and ¢ € A} satisfying a+b+¢
= 0. Then it follows from (2.5) ii) that z4a = 0 = (zzc')xb. Since
a € (ecn)x(KO,X) and b € (mcecn)x(KO_,X) we use (2.5) i) to find ele-
ments x and y in KC_,X such that a = (ecnz)xx and b = (mcecnrns sy
= (ecnt)xy. Since the elements a and b are both belonging to Ag, they
must be zero, thus @« = & = ¢ = 0. Consequently it is shown that

Ker(ecr)x 'A@Z/Z Z A DA D A,

2.2. We now choose a direct sum decomposition
(2.6) A= A DA D A D A, with Az, Ay and A, free,

which after tensored with Z/2 gives the direct sum decomposition A ® Z/2
= A:;® A, ® A, ® A, obtained in Lemma 2.1 (use [Ku]). Similarly we

choose direct sum decompositions

(2.7) D;DA@DH@D]GBDs,B;BL)@B;;@Bz@BGand
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EzE, 8 E,®E,®E,.

which after tensored with Z/2 are respectively the direct sum decomposi-
tions of D® Z/2, B® Z/2 and E® Z/2 obtained in Lemma 2.1.

Set G = Ap = D,, which is free. We denote by i, : G »> Aand i,: G
— D the canonical inclusions with i;(G) = A, and i,(G) = D,. Let &, :
ADC-DOE®RZ/I2®Fand t,: DOF -» AQ Z/2 ® B® C be the homo-
morphisms given in (1.12), which are determined by the conjugations #.+ on
KC.,X (i = 0, 1) respectively.

Lemma 2.2. There exisl unique homomorphisms r: G- D® F and
s: G > B® C satisfying lyi,—ip, = 2r and 4 i, = 2s,

Proof. First we use the canonical inclusion i, : G > KC,X=(A® C)
SDBE®Z/2® F). By use of (1.10), we observe that the composite
mia: G KCX=(DOF)B(A® Z/2® B® C) is identified with the
canonical projection G = A, > 4,® Z/2 = A). So the composite (nec 7)xis:
G- KCX=(BOC)D(DQZ12O®E®F) is factorized through D,

because (ec 7)x : Ay — Dj by (2.2). Therefore the composite (ecz)xis: G
— KC, X is written into the form of a sum —ip+2u+ v+ w for some homo-
morphisms u: G - D, v:G > F and w: G »> A® Z/2® B® C (use
(1.10),). Then it follows from (1.11), that the composite ( Y{ec 7)xis: G —
KC, X coincides with the sum —i,+2(u+7v). Since yfecr=1—1t.: KC -
KC, it is easily checked that #iy = i,+2r setting r = —(u4+v): G -
D@ F.

Next, use the canonical inclusion i,: G » KC,X=Z(D®F)®(A®
Z/2® B® C) in place of i, : G > KCyX. The composite (nect)xip: G =
KCGX=(E®F)®(A® B® Z/2® C) is trivial because r4D) = 7475 4)
=0 by use of (2.2) and (1.10),. By a parallel discussion to the above we
can find a homomorphism s : G » B® C such that (y¢ecr)siy = —25: G
— KC,X. Use the equality y¢ec.tr = 1—1t. again to obtain the desired one
tiip = 2s.

Let fi: ' Q/\ SG —» KU N\ X be the map whose induced homomorphisms
xea(fo)x 1 KU, (QASG) - KU X (i = 0.1) are given by the canonical
inclusions iy: G > A®@BO®C®Cand ip: G > DD E® F® F respective-
ly. Since (¢, A1)f: = f;. we obtain a map g;: S'QNASG -» KC A X with
(EA1)ge = Jf; by use of the cofiber sequence (1.1) iii). According to
(1.15) the induced homomorphisms x,(g:) : KC_.(QASG) - KC,X and
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x(gs) : KCG(QASG) - KC,X are respectively given by the following

matrices

(“?) :¢ec~aec)0DOERZ2OF)
D

(2.8) .
(if [2]) :GO(G®Z/2) > (DOF)®(A® Z/2® B C)

for some homomorphisms z2: G > DO E® Z/2B F and w: G - A® Z/2
® B® C. In particular, take 2 = r and w = s, both of which are obtained
in Lemma 2.2. Then (1.16) shows that the given map g; satisfies ({. A 1)gc
= g¢. Thus we have

Corollary 2.3. There exists a map g¢: X' Q@NANSG -» KCAX such
th’ai ({/\l)ga = ﬁ; and (tc /\l)g{‘ = &¢.

2.3. We will now prove one of our main theorems.

Theorem 2.4. Let X be a CW-specirum such that KUx X is pure pro-
jective and 2-torsion free, thus it is a direct sum of a free group and cyclic
p-groups (p # 2). Then there exist abelian groups A, (0 £ i<7), C; (0 <
j<1)and G, (0 < k < 3) so that X is quasi KOx-equivalent to the wedge
sum (\i/'ZiSAi) \V (\j/ZjP/\SC,-) \V4 (\k/Zk”Q A SG,) where C; and G,

are taken to be free (cf. [B, Theorem 3.2]).

Proof. Using the abelian groups chosen in (2.6) and (2.7) we set A,
=D,A =08, As=E;, As=D;, Ai=Bs., A, =E,, C,=C and C, =
F, and moreover Gy = A, = D,, G, =Dy = B,, G, = B; = E; and G; =
E, = A;. Abbreviate by Y the required wedge sum (Y S'SA)V (Y >'P

ASC;) V (\’.:/Z"“Q/\ SG). It is obvious that KUs Y = KUs X on both

of which the conjugations %,» behave as the same action. For each component
Y, of the wedge sum Y we choose a map f;: Yy » KUA X whose induced
homomorphism xx, (fy)x : KUsx Yy » KUsx X is the canonical inclusion. Here
H is taken to be 4, (0= i<7), C;(0<j<1)and G, (0 =<k < 3).
Since (t, A1)fy = fu by virtue of [Y3. Lemma 1.2], there exists a map
gw: Yy > KCAX satisfying (¢ A1)gy = fu for each H. Along the line
adopted in [Y2, Y3] we will find a map hy: Yy » KO A X such that (e, A
1)hy = f4. and then apply [Y2, Proposition 1.1] to show that the map A =
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\,{hn Y= \H/ Y, > KOAX is a quasi KOx-equivalence.
We will only find such maps %y in the cases H = Ay, C, and G,. The

other cases are similarly done.

i) The H= A, case: The induced homomorphism (zz:')x : KCo X
— KOs X restricted to A, is trivial since (zzz')xAs = 0 by (2.5) ii).
Hence the composite (p A1) (zac' A1)gs, = (eoma' A1) fo,: SA, —» Z*KO
/\ X becomes trivial because 4, is written as a direct sum of a free group
and a uniquely 2-divisible group. So we get a required map h,, : SA, -
KONX with (e, A1)hyy = fi,.

ii) The H= C, case: Since n Al1: KON P - KOAP is triv-
ial, it is immediate that the composite (p A1)(znc' Al)ge, = (eoma' N
1) fe,: PASC, » Z*KO A X becomes trivial. So we get a required map
hey: PASCy » KOA X with (e, A1)he, = f,.

iii) The H= G, case: For simplicity we put G = G,, f= f, and
g = 8¢, where G = A, = D, and it is free. By Corollary 2.3 the map g :
2'QASG - KCAX can be chosen to satisfy (ic Al)g = g as well as
(¢ Al)g = f. The induced homomorphism (pzns')x : KC,X - KO_, X re-
stricted to D, is trivial since (rz:')«Ds = 0. So the composite (5 A
1zac' A1)glig A1): SG - ' KOAX becomes trivial, By applying
Lemma 1.1 we then get a map A, : ' SG —» KO A X such that A,(j, A1) =
(znc' A1)g although the map g with (i A1)g = g and (£ A1)g = f might
be changed slightly for the new one.

In order to observe that the composite (eomy' A1)f = (p A1) zre!
Alg=ALR(jo A1) : QASG - Z'KO AKX is trivial, we will next
show that there exists a map k: SG - KO AX satisfying (’ A1)k =
(p A1)h, as in the proof of [Y2, Theorem 3.4]. Denote by iy : G - A and
ip: G —» D the canonical inclusions with #,(G) = A, and i,(G) = D, re-
spectively. Moreover we note that the conjugation i.x = (:0 _(1)) on
KCGX=(A®C)D(DOE®Z/20 F) for a certain homomorphism i, :
A®PC->DOE®Z/2®F (see (1.12)). By (2.8) we may express as
welede = mie) = (0} KC(QASG) = 6@ 6> KCX= (4@ C)
SDDPER®Z/28 F). Here the homomorphismz: G > DO ER Z/2® F
satisfies tyi, = 22+ i, by virtue of (1.16) because (. A1l)g = g. Recall
[Y2. (3.5)] that the induced homomorphism ec+: KO;(Q ASG) - KCi(Q

2) .G > G®G (cf. (1.13)). Then

A SG) is represented by the column (1
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an easy computation shows that the composite xxc(8)xecr: KOy (QANASG) -
KC.X coincides with the composite (1+ix)is: G>(AGC)D (DB ER
Z/2®F). Since tns't, = —rne’, it is easily checked that the composite
(e Vaxnc(g)xeer : KO;(QNASG) —» KO, X is trivial. Thus xgo((zmc' A
1)g) = xro(hi(Go A 1))s : KOs(QASG) » KO, X is trivial.

Use the commutative diagram

(7 A 1)« (JeAT)*

[SG, Z*KCA X] [SG, Z'KC A X] [Z7°QASG, Z'KC A X]
‘LXD \on l.Ko

Hom(K0,SG, KC,X) «—— Hom(K0,SG, KC, X) l—1—) Hom(KO,(Q A SG), KC, X)
ek Jar)*

where the left two vertical arrows x, = x¢° are isomorphisms since G is
free. Notice that xo((ec A1)Yhi(jog A1) : KO{Q ASG) -» KC, X is triv-
ial. So we see that x((ec A1)h,) : KO,SG —» KC, X has order 2 since
the bottom right horizontal arrow (je+)* is just multiplication by 2 on
Hom(G, KC,X). In other words, x((ecA1)h): G>DOFOA®Z/26
B@® C is factorized through A ® Z/2. Then x((nec A1)h) : KO, SG —
KC,X becomes trivial because 74(A ® Z/2) = 0. Therefore the composite
(nec A1)k, : Z*SG - KC A X is trivial since the left vertical arrow x, is
an isomorphism. So we get a map k: SG - KON X satisfying (n? A1)k
= (p A1)h,. Consequently there exists a map h: Z'Q@NASG » KONX
with (ex A1)h = f as desired.

3. Pure injective and 2-divisible.

3.1. In this section we will only deal with a CW-spectrum X such
that KUx X is pure injective and 2-divisible. and hence KC«X is expressed

as in (1.9). Denote by A; the image of the induced homomorphism (ec 77)x :
KC, X - KC,X where KC;X=(Dx ZI2®E@F)®(A®C). Thus

(3.1) Ap = (ectn)«(KC X) = (ec)s(E* Z/2) C A% Z/2 C KC, X

because n(KC,X) = E* Z/2 and 7«(KC.X) = A% Z/2 by (1.10), (i =
1,2).

Since 7+A; = 0. we can choose subgroups A, and A" in A% Z/2 so
that A% Z/2 = A:® Ap® A" and Ker(ect)slivze = Ae® A. Thus the
subgroups A, and A’ satisfy

(3.2) (ecthx : Ap — (cct)x(A % Z/2) = Di and (ect)xd = 0.
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As a dual of Lemma 2.1 we have

Lemma 3.1. There exisis a direct sum decomposition
Ax Z/2 = AL DA, A D A,
with A; ® Ay = (ecn)x(KO0, X) and A; ® A, = (mcecn)«(KO_, X).

Similarly there exist direct sum decompositions

Dx Z/2 =D,®Dy;®D;®D;., Bk Z/2 = B,® B; ® B, ® B; and
Ex Z/2 = E;®@E.®E;® E;

with suitable isomorphisms as above.

Proof. Choose subgroups Ay and A, in A% Z/2 so that A ® Ay, =
(ecn)x(KO,X) and Ax @ Ay = (mcecn)x(KO_,X). Then we can easily show
that Ker(ec 7)x |asze = A: ® A, ® A, by the quite same argument as in the
proof of Lemma 2.1.

We now choose a direct sum decomposition
(3.3) A=A @A, DA D A, with Az, A, and A, divisible 2-torsion,

which restricted to the torsion subgroups of order 2 is just the direct sum
decomposition A% Z/2 = Ay ® A, ® A, & A, obtained in Lemma 3.1.
Similarly we choose direct sum decompositions

(3.4) D;D.;@DB@D]@Ds.B;BD®35®Bz@Bsand
EZE,®E,®E,®E,

which induce respectively the direct sum decompositions of D% Z/2, B*
Z/2 and E % Z/2 obtained in Lemma 3.1.

Set G = A, = D,. which is divisible 2-torsion. We denote by p,: A
— G and pp: D - G the canonical projections with py(Ap) = G and py(D,)
=G, Let t,: A®@Bx%x Z/206C > DOF and ;, : Dk Z/2DED F -
A ® C be the homomorphisms given in (1.12). which are determined by the
conjugations f.x on KC,X (i = 0, 3) respectively. By a dual argument to
the proof of Lemma 2.2 we show

Lemma 3.2. There exist unique homomorphisms r: A® C —» G and
s: E®F - G satisfying pplo—ps = 21 and pyt; = 2s.

Proof. First we use the canonical projection pp: KCo X = (A® B
ZIR2B®C)D(D@®F) » G. By means of (1.10), (i = 2, 3) and (3.2) we
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observe as in the proof of Lemma 2.2 that the composite pp(ec )% : KC_, X
= (D% Z/2@EDF)®(A® C) » G is written into the form of a sum
ps+2x+y+2 for some homomorphisms x: A - G, y: C > G and z: D%
ZI2®E®F - G. Then (1.11); shows that the composite py(eczy&)s :
KCyX - G is identified with the sum p,+2(x+y). Since ectyt =1+1.:
KC — KC, it is easily checked that pyty, = p,+27r setting r = x+y: A D
C - G.

Using the canonical projection p,: KC; X = (D% Z/2®EDF)® (A
@ C) - G in place of p,: KC,X - G, we can similarly find a homomor-
phism s : E® F — G such that p,{ecz7f)x = 2s: KC;X - G. This equal-
ity implies the desired one p,t;s = 2s because e.ry¢ = 1 +1i.

Let f;: X— Z'KUA Q@A SG be the map whose induced homomorphisms
xeu(Sfo)x : KU X - KU,_((QNSG) (i =0, 1) are given by the canonical
projections p,: ABB®CHC -G and pp: DO ED®F®F - G respec-
tively. Since (t, AN1)f; = f;, there existsamap g;: X - S'KCAQANSG
with (¢ A1)g; = fe. According to (1.18) the induced homomorphisms
x0(gc) : KCo X - KC_[(QNASG) and x:(g;) : KC; X - KC,(Q A\NSG) are

respectively given by the following matrices

& N ):(4@B% z20C)0@(DOF) - GOG
(3.5) ’
(’;” I? ) (D% Z/20E®F)(A®C) - (G* Z/2)®G

A
for some homomorphisms w: A@ B% Z/2® C > G and 2: D% Z/2@® E
® F - G. In particular, take w = —7 and z = —s by using the homomor-
phisms r and s obtained in Lemma 3.2. Then (1.19) asserts that the given

map g satisfies (i, A1)g; = g;. Thus we have

Corollary 3.3, There exists a map goc: X » ' KCAQANSG such
lhat ({/\l)gg = j;, and (tc/\l)g(; = 8.

3.2. We will finally prove another main result, which is a dual of
Theorem 2.4.

Theorem 3.4. Let X be a CW-spectrum such that KUy X is pure injec-
tive and 2-divisible, thus it is a direct summand of a direct product of
a divisible group and cyclic p-groups (p #+ 2). Then there exist abelian
groups A; (02 i<7), C,(0Lj=1)and G, (0 < k £ 3) so that X is
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quasi KOx-equivalent to the wedge sum (V X'SA;) V (\,/ S'PASC;) VvV
(\k/ S QA SG,) where C; and G, are taken to be divisible 2-torsion (cf.
[B, Theorem 3.3]).

Proof. As in the proof of Theorem 2.4 we take A;, C; and G, to be
the abelian groups chosen in (3.3) and (3.4). For each component Yy of the
required wedge sum Y = (V X'SA;) V (VXZ'PASC;) vV (\k/E"“Q/\

SG,), we choose a map fy: X - KUAY, whose induced homomorphism
aeu{fi)x : KUsX —» KUs Yy is the canonical projection. Since (t, A1)fy =
Ju, there exists a map gy : X » KC /Y, satisfying (¢ A1)gy = fy for each
H. By a dual argument to the proof of Theorem 2.4 we will only show that
there exist maps A, : X » KO A 'Y, such that (e, A1)y, = f, in the cases
H= A, C, and G,.

i) The H= A, case: Use the commutative diagram

0 - Ext(KO: X, A) —» [Z7°X, KON SA] =5 Hom(KO, X, 4) - 0
l(ﬂ*)* 1(7}/\1)* l(ﬂ*)*
0 - Ext(KOsX. A) » [£72X, KOA SA,] =5 Hom(KO. X, 4,) — 0

involving the Anderson universal coefficient sequences (1.5) ii), where x,
= x&°. The induced homomorphism xxo{(n A 1)84,)x : KOs X — KC,SA4, is
trivial because (7:'ecn)x(KOsX) = A:® A, C A:® A, by Lemma 3.1.
This implies that x((p A1) (zrc'A1)gs,) = 0 in Hom(KO: X, A,). Obvi-
ously the composite (p A1)(zzc' A1)g,, has order 2. However Ext(KO; X,
A,) is uniquely 2-divisible since 4, is a direct sum of a divisible group and
a uniquely 2-divisible group. So we see that the composite (7 A1){(zxs!
A1)gy, =(eoma A1) fi,: X > Z*KO A SA, is in fact trivial. Hence there
exists a required map hy, : X - KON SA, with (e, A1)hy, = fi,.

ii) The H = C, case: The composite (p A1) (zrnc' A1)ge, = (eomi’
AL fy,: X > Z*KOANAP ASC, is evidently trivial. So we get a required
map h,, : X > KOAPASC, with (e, A1)he, = £,.

iii) The H = G, case: For simplicity we put G = G,, f= f.,, 8 =
gco where G = A, = D, and it is divisible 2-torsion. By virtue of Corol-
lary 3.3 the map g: X - X' KC A QA SG can be chosen to satisfy (tc Al)g
=g as well as (¢ Al)g = f. Denote by p,: A > G and pp: D > G the
canonical projections with p,{(A;) = G and py(D,) = G. According to
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(3.5)» Xkc(g)* = ku(g) = (1;: SD) : KCOX—> KC_I(Q/\ SG) and th(g)*

= x:(8) = (ZD :)) ) : KC, X - KC,(Q A SG) for some homomorphisms w :

A®B%x Z/2®C—>Gandz: D% Z/2® E® F - G. As is easily checked,
the induced homomorphism xxo((7 A 1)8)x = xkc(8)#{ecn)x: KO, X - KC\(Q
A\ S8G) is trivial because (e.7)x(K0,X) = Ay ® A, C A: ® A, and p.(4: D
A, ® A,) = 0. Hence the composite (p A1)(zas' AN1)(1 A jgA1)g: X -
2°KO A SG becomes trivial since x*{: [X°*X, KOA SG] - Hom(KO, X,
G) is an isomorphism by (1.5) ii). By applying Lemma 1.2 we then get
amap h,: X - Z*KO /A SG such that (1 A ig A1)k, = (z2:' A\ 1)g although
the map g with (. AN1)g = g and (¢/A\1)g = f might be changed slightly
for the new one.

As in the latter part of the proof iii) of Theorem 2.4 we will next
show that there exists a map k: X » 3*KO A SG satisfying (? A1)k =
(p A1)k, in order to observe that the composite (eozy' A1)f= (g Al)-
(eac' AN1D)g=ANigN1)(p A1)k : X - S KOA QAN SG is trivial. By
i _?) on KX = (A Bx
Z/2@®C)D (DB F) for a certain homomorphism ¢, : A® B% Z/2® C -
D@ F. Then (1.19) says that the homomorphism w: A® B% Z/2® C —
pa O
w pp
(2 \N1)g = g. Recall that (zzs')x : KC_,(QASG) - KO_,(QNASG) is
represented by the row (—1 2): G® G - G (cf. [Y2, (3.5)]). Then
an easy computation shows that the composite (zac')sxic(g)sx : KCo X —
KO_(QA SG) coincides with the composite pp(1—tc«): (AD Bk Z/2®
C)® (DD F)->G. So the composite (e Vxxrc(g)ecr: KO X - KO_,(Q
A SG) becomes trivial because l.ec = ec. Thus uo({znc'A1)glx =
xeo({1 N g A1)Yh)x : KO X — KO_,(Q ASG) is trivial.

Since the induced homomorphism ig«: KO_,SG - KO_,(Q ANSG) is
multiplication by 2 on G, it follows immediately that xxo(h )% : KOy X —
KO_,SG has order 2, Hence the composite xxo(hi)s(zms ') : KC;X =
D% Z2OEDF)®(ADC) » KO_,SG = G is factorized through D *
Z/2. Since 74(KC,X) = A% Z/2, the composite xxo{(n A1)h)s(z7 " )% :
KC,X - KO_,SG is trivial, too. We here use the commutative dia-

gram

(1.12) we note that the conjugation .« = (

G satisfies pyt, = pa—2w where xic(g)x = xo(g) = ( ), because
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-1 4 ('7:,\1)‘ 1 4
[5-'X, Z*KOA SG] 2", [5'X, 5*KO A SG]

la lx

Hom(KO, X, KO.,SG) —(—‘> Hom(KO_, X, KO_.,58G) — Hom(KC. X, KO_,SG)

7 (znce)

where the two vertical arrows x, = x,° are isomorphisms by (1.5) ii). As

is easily

seen, there exists a map k: X - X°* KO A SG satisfying (5* A1)k

= (pA\1)h,. Consequently we obtain a map h: X - ' KON QA SG with
(e, N1)h = f as desired.

[Adl U
[An1] D.
[An2] D.
[B] A
[CR] C.
[F] L
(Ku] A

[Y1] Z.

[Y2] Z.
[ys] z
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