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1. Introduction. We denote by O,(TF) the classical group On, Un or
Spn if F = R(real), C(complex) or H(quaternionic), respectively. Let
SO, C Ox be the rotation group and I'y = SO:n/Un. The homotopy groups
Tans i ) for i < 5 were determined except for the following cases ([2], [5],
[12]): i=2,n=0mod4; i=5,n=0,1,3 mod 4. The purpose of the
present note is to try determining the group structures in these cases. We
denote by (a, b) the greatest common divisor of integers a and 5. Our result
with Kachi’s one is stated as follows.

Theorem 1. i) men-2(lin) = Zso,2nese
ii) ﬂan+s(rm+2) = Za,2n+2e

Theorem 2. 1 ) 7Ts~n+5(ran) = Zun+as,nne © L.
") 7Ts11+n(rm+3) = Z.

Our method is first to use the homotopy exact sequence of a triad (SO.n
SOzn_2x, Un)[3]. To determine a group extension, we shall use Mimura’s
lemma about Toda brackets in fibrations.

2. Proof of Theorem 1. We denote the Stiefel manifold O(F)/On_,
(F) by Vs or Wa.x according as F = R or C. RP% = RP"/RP* "' stands
for the stunted space of the real n-dimensional projective space RP". Let
Nn € mnsi(S™) for n = 2 and vy € m43(S™) for n = 4 be the Hopf maps and
7}3'1 = Nn° Nar € Tn-2(S™).

By [5], the odd component of 7n.2(T%n) is isomorphic to Zg, 1. So we
shall work in the 2-components. By [2], msnsi(Tines) = mons:1(SO) for
i < 4. Therefore, by use of the homotopy exact sequence of a triad (SOsn+s;
S0:n, U4n+2) [3], we have fl’sn+2(F4n) = ”sn+3(r4n+a, Fm) = fana+s( Vanss, s,
Winiz,2).  Venss,s, RPsn*') and (Wins2,2, SV S®"**) are highly connected
and RPiz* = 2" RP;. So we have

7an+3(Vsn+s.5, W¢n+2.2) = 7Tan+3(2mRP3, SMH V Ssm—a)
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= Zanss( SV (S UAQMH-‘))
= 7T8n+3(SBn) = Zs,

where A = 7ngni2. This completes the proof of i) of Theorem 1.
A proof of ii) was given by Kachi [5]. We note the following :

7tsn+6(r4n+z) = 7l‘sn+7( Linss, F4'n+2) = ﬂsn+7( Vsn+9,5, W4n+4,2)
— 7tsn+7(2mRPf, SBTI+S v S8n+7)
— 7(311+7((Sﬂn+‘ \/ Ssn+6) UL?MHB) ~ Zz,

where M= Vin+4 V Nen+6.

By use of our method, we can prove the following

Theorem 3 (Oshima [12]). mnii(I%) = Zny2 ® Z:2if n =2 mod 4.
Proof. It suffices to give a proof for n > 6. We consider the following

natural map between exact sequences :

anﬂ
5 U
00— 7l'2n+2(sm) _— 7[2n+1(rn) EE— 7T2n+1(rn+1) — 0
r L !
Monv2{ Tnery In) = manei(Tn, Tnot) = maneil Tnars Tncy)

N U
Z, Lo

7f2n+l(rn+h Fn—l) = 7t2n+1( Vzn*l,% Wn,x) = 7t2n+1(RP2217:_2_. Szn_l) = 71'2n+1(Sm_2
Ug’) = Zi:, where A= nzn_.. This isomorphism is obtained from the
relation 75 = 12v,. So 9’ is nontrivial. Assume that the upper sequence
does not split and let o be a generator of mn.(Is). Then, 3(ni,) = (n!/2)
a, and so 9’ (73.) = jx3(7nin) = (n!/2)jx(a) = 0. This is a contradiction
and completes the proof.

Remark. Q(Vansze-1,20-1, Wasio1,eo1) is identified with a fiber Iy, of
the inclusion I'n < Ine: [5].

3. A relation among the characteristic maps. In this section we shall
state an application of Theorem 1. Let Yu(F) € mans1-2(O0n(F)) be the
characteristic map, where d = dimg F. Letr: U, SOzpand c: Span &
U:n be the canonical inclusions and let x, be an integer such that (x»,6) =
(n,2)(n+1,3). We set an= (3+(—1)"")/2 rcyn(H)+xn7in(R) © vin_
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for n = 2.

Theorem 4. r(72(C) e nin) = (3+(—1)")en for n = 2. In particular,
’l’( '}"m(C) ° 7712311) = 12/(3’ 2n+1) rc yén(H)-

Proof. By Lemma 1.6 of [6] and its proof and by Corollary 24.5 of
[14], we have muns2(Uzn) = Zansid c¥n(H)E @ Zof 72a(C) o plal for n = 2.
By [6], Il‘sn+z(SOan) = Z: D Zs. By [1] and [13], Tsn+6{SOsnss) = Ten+6
(SO) D Itsn+7(Vsn+9.5) = Z.s ® 7,4 for n = 2. By [4], 7[14(8012) = Zawu ®
Z..

We consider the following commutative diagram for n = 2 :

7Z'4n+z(U2n) , 7l'm+3(Sm+l)
Lrs Q la
7!4n+3(Sm) i 7l‘4n+z(SO4n) 2, 7T4n+2(804n+1)
9" lpx Li%
7l‘4n+z(rzn) 7Z4n+2(SOm+2),

where the mappings are canonical and the horizontal and perpendicular se-
quences are exact. By [2], mns2(Ionsi) = 0 for n = 2. Therefore ri and
0" are epimorphisms, and so are ix and px. Zini2(SOunsx) = Zag_n for k =1
or 2[6]. Since 3nins1 = Yins1(R) ©9in = r'72a(C) 0 nin, r'cyn(H) is taken
as a generator of mn,2(SO4n.1) and we have a relation 4r'cyn(H) = r'7a(C)
o nin. So re¥n(H) and Ovin = 7in(R) © ven—:1 generate min,2(SO04n) and 77in
(C)onin=4rcyn(H) mod Yin(R)o vin_r. Let xj, be an integer such that
rY2n(C) o nin = drcYn(H) +xn¥in(R) © vin_y and 1 < x, < 24. Then z, is
a multiple of 4 or 2 according as n = 0 or 1 mod 2. We set x, = xn/(3 +
(—1)™). By Theorem 1, we have the assertion of the theorem. This com-
pletes the proof.

4. Proof of Theorem 2. We shall prove ii) of Theorem 2. We con-
sider exact sequences :

A
ﬁ8n+lz(ssn?s) - 7f8n+n(r4n+3) - 7TBn+11(F4n+4) - 0;

i U
Zzi V§n+6} Z

Manso(S™7°) == manss( Nines) — Tsns8{ Dines) = manss( SE™E).
L L g
Z2(12.2n+1) Z,D Z, y .
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The order of Avsn,s must be (12, 2n+1). So, A(Vinis) = AVenis© Vants =
0. This completes the proof of ii).

We shall prove i) of Theorem 2. By Propositions 12.1 and 12.2 of [5]
and by [15], we have the assertion for n = 1. We shall use the following
group structures for n = 2 :

7rsn+4(Um) = Zun+ 216, mn2 [8] ;

mm+a(U4n+1) = Zan+anaz,znenjes © Lo [9] 5

mn+s(Um) = LZun+aise ® (Z2)3 [11] :

71'sn+4(SOsn) =0 [6] H

7snes(SO0sn) = (Z2)*,  Manss(SOsns2) = Zrio ® (Z,)* and
} Il'sm-s(SOan) = (Zz)s ([1], [7]),
where ¢ is the complex James number W{d4n+5,5] and (Z,) = Z. ®--
® Z, (k times).

We consider the natural map between exact sequences :

(Z2)2 Z 210
U N
Hsn+9(Sm+1) - ﬁsms(Um) - ﬂ8n+a(Um+l) - 7l’an+s(88n+l)
[ 1 1
ﬂ'sn+9(V8n+2.2) - 7Tsn+8(SOBn) - 7Tan+8(SOB'n+z) - ﬂsm—s( Vsn+z‘2>-
i N
(Z.)° Lo ® (Zo)°

We remark that msnsol Vensz2) = manso(S®) @ mnss(SY) = Zolval @
(Z,)*[15] and A and A' are split monomorphisms. So. from this diagram,
we have the following.

(*) Ysr{ R) © v3a_1 + 0 and it is not in the image of r*.

We consider an exact sequence

2
ﬂ8n+6(88n) - 7an+5(nn) - 7TSn+5(r4n+l) - 0.

U

Z14n+2).l-:ﬁ. ni/12

Ovin = po Yen(R) o vin_y, where p: SOgn = I'in is the projection. By (x),
it is nontrivial. So we have man+s(Iin) = Zunsaus,mne® Lo 0T Zian+ s, nyss -
To settle the group extension, we need the following

Lemma 5(Mimura [10]). Let F L X8 Bre a fibration. Suppose that
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a € masi(B), B € n,(8™) and ¥ € mx(S’) satisty the conditions (Aa)eof=
Boy= 0. For any element & of a Toda bracket | Aa, B, Y| C mei(F), there
exists an element ¢ € 7;+1(X) such that pxe = a°o 2.8 and ix& = €0 2.7.

Now we consider an exact sequence
p* A 7%
780+5(S08n) — Man+s(in) = manss(Uin) — an+«(SOsn).
U U I
(Z.)" Lisntae, e 0

Let ¢ € msnss(Ien) be an element such that Ae is a generator of msn.s{Uin).
Let ¢ be the identity map of S® and ¢ = (4n+2)!(6,7r)/12. By Lemma 5,
for any element & € | Aa, atsn+s, Vsnsal, there exists an element ¢ € 7sn+s
(SOsn) such that rx8 = €° vsnss and pxe = aa. Suppose that pxe = 0. Then
pxe = px(Ysn(R) o vin_1). So there exists an element 8 € mp.s(Usn) such
that ¢ = Yin(R) o via_1+7rx0. Therefore 0 ="px(e° vsnss) = px(7sn(R)e
van_1). This contradicts the assertion (*). Hence we have ae = 0. This
completes the proof of i) of Theorem 2.

Finally we shall prove the following

Proposition 6. msn+?(in1) = Z @ Z: for n = 1 and it is isomorphic
0 ZDZ: D Zsor Z® Ly for n=2,

Proof. We consider an exact sequence :
Tanss(S*"°?) é) Msns1{ Tins1) = monro(Tine2) = 0.

By [5], mns1(lins2) =Z for n=1;=Z & Z, for n = 2. So the non-
triviality of A concludes the assertion.
Consider an exact sequence :

J‘Tsn+9(Soan+3) — 71'8n+9(-r471+2) i ﬂan-«—s(Umw) — ﬂan+a(SOan+3)
*
P > 71'8ﬂ.+8(nn+2)-

By [1].[7] and [9], it becomes the following :
Z.® Z,— Zunv4l!|'12,2n+l)/12 g Zi4n+4))_l(12,2n+1)/24 D Z,>Z.9 Z, —

ZZXIZ. 27+ 1}

Therefore p* is an epimorphism on the 2-component. Consider a commutative
diagram
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nsnes(SOsnes) —BX Tsn+s( Dins2)

AN oo

T3n+ 8( Ssn+2)

By [1] and [7], 7en+7(SOsnsx) = Z @ (Z2)** for k=2 or 3. So px is

trivial. Therefore g« is trivial. This shows the nontriviality of A and com-

pletes the proof.

(1]
(2]

M.

B.
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