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ON THE HIGHER HOMOTOPY ASSOCIATIVITY
OF P-REGULAR HOPF SPACES

Touru KANEMOTO

1. Introduction. Throughout the paper we consider the product space
of odd dimensional spheres

X — Sznl‘—lX'“X SZﬂk—l

which is localized at a prime p. It is well known that X is p-equivalent to
an H-space for an odd prime p. At the prime 2, Adams [1] has shown that X
is 2-equivalent to an H-space if and only if n, = 1, 2 or 4 for each i. At the
prime 3, Hemmi [4 ] has shown that X is 3-equivalent to a homotopy associative
H-space if and only if X is 3-equivalent to a loop space (S')*x(S*)°*x SU(3)¢,
where a, b and ¢ are non-negative integers. Ingeneral, it is known that X is
p-equivalent to an A,_,-space for an odd prime p by [8]. Furthermore Hubbu-
ck-Mimura [6] and Iwase [7] have shown that for any odd prime p, if X is
p-equivalent to a 1-connected A,,-space, then n; € 12, ..., p{ for each i. Hence
it is reasonable to conjecture that for any odd prime p, X is p-equivalent to
an Ap-space if and only if X is p-equivalent to a loop space. In this paper we
consider the case p = 5. By passing to the universal cover of X which inherits
the higher homotopy associativity assumption, it will become clear that all
circles in X can be omitted without essential loss of generality and so the
additional hypothesis is made that X is 1-connected.
The main result of this paper is stated as follows:

Theorem. The product X = S*™1 7' X -.. X 8™ ! (n, <--- < n) is 5-
equivalent to a 1-connected As-space if and only if it is 5-equivaleni to one of
the following spaces :

S?, S7, SU(3), Sp(2), SU(4), SU(5).

Corollary. The product X is 5-equivalent to a 1-connected As-space if
and only if it is 5-equivalent to a loop space.

This paper is organized as follows. In §2 we prepare three lemmas
which will be needed to prove the main theorem. §3 gives a proof of the
main theorem.
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2. Preliminaries. Suppose that X = S*"17'X... X 8" (0, <-+- < ny)
is p-equivalent to a 1-connected A,-space for an odd prime p. Then we call
the set of integers (mi, ---, n,) the half type of X. Clearly the wedge sum
S*™7 ' V...V S§*"¥ ! gives a generating subspace of X in the sense of [7].
Hence by [7], there exists a space Q(p) such that XP(p—1) C Q(p) C XP
(p), where XP(n) is the n-th projective space of X. So we can obtain the
following quotient algebra M of K*(Q(p): Z,) = K*(Q(p)) ® Z, which is
a polynomial algebra truncated at height p+1 :

M= Zp[u, -, ug]®,

where Z, is the set of integers localized at p. Furthermore M can be cho-
sen to be closed under the action of the Adams operations ¢* for all k. Since
the integral homology of Q(p) has no p-torsion, the Atiyah-Hirzebruch spec-
tral sequence with Z-coefficient of [3] collapses. And hence we can obtain
the following quotient algebra N of HXQ(p); Z,) which is the associated
graded ring of M and a polynomial algebra truncated at hight p+1 :

N = Z(Dl[ylv s yk:l’ﬁ'l'll" deg Y = 2"1.
Then by Hubbuck [5], N admits the following Hubbuck operations :

S7: No— Npvgo-n) - (g=0)
Rq(k)I N,— Nn_+q-:p—1) (q = 0, ke Z)-

And these operations satisfy the following properties :
(1) S™x) = x* mod p for any x € N,.
(2) the Cartan formulae
S xy) = Héq SHx)S(y)

R(k)ay) = 3 R)@)R(k)y) for anyz.y € N.

(3) the generalized Adem relations
Let k be prime top. Then for q 21,

q-1 N . .,
(1 _kq:p—l))sq = Zl qu— an—l)piRi(k)sq—t mod pq.
In particular, this implies that S'S?'= ¢S?mod p. To prove the the-
orem by using the Hubbuck operations, we prepare the following lemmas. In

the case X = S*"', we consider the properties (1) and (3) of the Hubbuck
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operations. For dimensional reasons we obtain the following :

Lemma 1. If S*™ ' is p-equivalent to an A,-space, then n divides p—1.

From now on, when we write y, for a generator, it is assumed that this
generator has dimension n, that is, twice the dimension is the degree. Sup-
pose that rank X = 2. Then we see that 7, < p by Hubbuck-Mimura [6] and
Iwase [7]. Now we consider the case n, < p.

Lemma 2. If N has a generator of dimension q not dividing p—1, then
N has a generator of dimension r and the following condition is satisfied :

r+p—1 =0 mod q.

Proof. The properties (1) and (3) imply that
S$'Sys) = gy mod p.

Since S' satisfies the Cartan formulae, the element S '(y,) contains an
element of the form ygy,, where y; is in the indecomposable module QN,. It
follows that there exists an element y, in @N; such that

S yq) = ayayr+1LE modp
¥eS'(yr) = Bya+ 1. E. modp,

where I.E. stands for “independent elements” of the base of N and

a, 3% 0 mod p and 0 < a < p. Therefore it follows that
S'yr) = 73 “+1LE. modp,

where ¥ & 0 mod p. Hence we obtain that 7+p—1 = 0 mod ¢ for dimen-
sional reasons. This completes the proof of the lemma. Q. E.D.
Next we consider the case n, = p.

Lemma 3. If Nhas a generalor y, of dimension p, then N has genera-
tors y; of dimension i for all i, 2 =i = p—1.
Proof. We apply the generalized Adem relations. Let & be p—1. Then

we have that

p—1
h;‘ klp— h,-(p—l)thh(k) Sp—h(yp) = (1 _kﬂp—l}) Sp(:)'p) mOd pP-
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Since v (k#*""—1) = 2 by [2], we deduce that
2 { . )
h;‘ kt.p—h;lp—l,-thh(k)Sp—h(yp) = /\szg mod Pa,

where A == 0 mod p. Considering the possibility of contribution to the element
ys by the mapping R'(k), we see that S* '(y,) contains an element of the
form y)~ 'y by the property (2), where y is in QN,. However by our hy-
pothesis of connectivity, Q(p) is 2-connected and @N, = 0, Therefore we
conclude that the above argument does not hold. Hence it follows that

R*(k)S” Hy,) = Xy

where A % 0 mod p. Using a similar argument to the above, we can deduce
that the only possibility of contribution to the element y, by the mapping
R*(k) lies on the element y5~’y, for dimensional reasons, where ¥ is in
QN,. It follows that there exists an element ¥, in QN, such that

S y,) = apyf 'y, +1.E. modp
¥5 'R¥k)(5:) = Bys

where a,, £, & 0 mod p. Then we have
R*k)(3) = ry;+ 1 E. modp,

where 7, % 0 mod p. Since S'S** = (p—2)S8”7* mod p by the property
(3), using the above again, we see that the only possibility of contribution to
the element y5 *y, by the mapping S' lies on the element of the form y5 3y,
for dimensional reasons, where v is in QN;. It follows that there exists an
element y; in QN; such that

S y) = ey s+ 1.E.  modp
yﬁ_ss'(ya) = ﬂayﬁ'zszrI. E. mod P,

where a;, £ & 0 mod p. Therefore we have
S'(ys) = r0ey.+1. E. modp,

where 7 = 0 mod p. Hence repeating the above argument, we deduce by
induction that there exist elements y; in @N; for 3 = i = p—1 such that

SYy:) = %Yy +1.E. mod p,

where 7; 5 0 mod p. This completes the proof of the lemma, Q. E. D.
In the next section, we prove the main theorem by applying these three
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lemmas.

3. The proof of the theorem. Firstly we consider the sufficient condi-
tion of the theorem. In the case X = S®*"', Sullivan [9] has shown that for
an odd prime p, X is p-equivalent to a loop space if and only if n divides
p—1. Hence we see that S® and S™ are 5-equivalent to loop spaces. It is
well known that SU(n) and Sp(n) are loop spaces. Hence S* S7, SU(3),
SU(4) and SU(5) are 5-equivalent to loop spaces, and hence A;-spaces.

Secondly we consider the necessary condition of the theorem. When X
is 5-equivalent to a 1-connected As-space, we recall from Hubbuck-Mimura
(6] and Iwase [7] that rank X =4, By applying the three lemmas we
deduce that only the following half types can occur :

2,4.(2,3),(2.4).(2,3,4),(2.3,4,5).

In fact, in the case rank X = 1, we deduce that n, = 2 or 4 by Lemma 1. In
the case rank X = 2, we deduce that (n,, n,) = (2, 3) or (2,4) by Lemmas
2 and 3. In the case rank X = 3, we deduce that (n,, n,, n;) = (2,3,4) by
Lemmas 2 and 3. In the case rank X = 4, we deduce that (n, n,, n;, n,) =
(2,3,4,5) by Lemma 3. Summing up we see that X is one of the following :

S 87, 8°%x 83 S8°%x 87, §°x 8°xS7, §*xS°xS"xS°,
where it is known that SU(n) "‘f S3x...x8*™ ' for 2 = n<=<5 and Sp(n) =

S*X---x 8! for n =1 and 2. Consequently, this completes the proof of
the theorem.
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