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A THEOREM ON RADICALS IN FUNCTOR
CATEGORIES WITH APPLICATION TO
TORSION THEORIES

Yao MUSHENG

In this paper, we obtain a result concerning radicals in functor
categories and give an application to torsion theories.

1. Let C be a small preadditive category, and Ab the category of abelian
groups. (C°, Ab) denotes the category of all additive contravariant functors
from C to Ab. Kernels, cokernels and direct sums in (C°, Ab) can be
defined componentwise. Then (C°, Ab) is a Grothendieck category. For
details, we to refer [5].

The Jacobson radical J(T') of an object T in a Grothendieck category is
defined to be the subobject which is the intersection of all its maximal
subobjects. If T has no maximal subobjects, then define J(T) =T, A
subobject S < T is said to be superfluious if for any subobject N< T,
S+N= T always implies N= T. We use the notation S € T to denote
that S is a superfluous subobject of T.

Lemma 1. Let S, T be objects in a Grothendieck category, Then for any
fe Mor(S, T), f(J(S)) < J(T), where Mor(S, T) is the set of morphisms
fromStoT.

This is well known. The following two results are also known.

Lemma 2. Jcommutes with finite direct sums.

Lemma 3. Let T be an object in a Grothendieck category. Then 3
To < J(T), where To < T.

Let F=(C", Ab) be the functor category. and T an object of F. If B is
an object of C, then T(B) is an abelian group. Let a be an element of
T(B). We define a contravariant functor S from C to Ab as follows :
S(C) ={T(f)(a)|f € Mor(C, B)| for any C € C. If a is a morphism from
C to C', then define S(a): S(C’) - S(C) to be the restriction of T(a). It
is easy to see that S is an object of F and actually a subobject of T. We
call S the subobject of T generated by the element a. It is easy to verify
that every object T is the sum of its subobject which can be generated by one
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element.

Lemma 4. Let F = (C° Ab), and T a nonzero object of F. If B is an
object of C such that T(B) # 0, then for any nonzero element a € T(B),
there is a maximal subobject W of T with respect to a € W(B),

Proof. Since a # 0, the set of subobjects | Wa} of T with the property
a € Wo(B) is not empty {at least contains the zero subobject). Consider
any chain of the set { Wa} :

W]SWgSI‘VaS"' (*)

It is clear that (U W; is a subobject of T which does not contain a (i.e.
ae (UL, W)(B)). So it is the upper bound of the chain (*). By Zorn's

lemma, there is a maximal element in | Wal.

Theorem 5. Let F = (C° Ab). Then J(T) = 32| Tol Tag T} for
any object T in F,

Proof. By lemma 3, we need only to verify that J(T) < > T,. Let
a € J(T)(B) for some B e C, and S the subobject of J(T') generated by a.
We want to show that S is superfluous. Let N be a subobject of T such that
S+N=T. We may assume S ¥ N which means a € N(B). Then, there
is a nonempty set | Wa! of subobjects of T such that N < W, and a € W,(B).
By lemma 4, there is a maximal element W in the set |W,|. Obviously
S+W = T. But now W is a maximal subobject of T. In fact, let K be a
subobjeet of T such that W < K, then S < K which implies K= 7. Ac-
cording to the definition of radical, S < W, which is a contradiction.
Therefore S is superfluous. Consequently, we obtain J(T) < 3> T,.

Projective objects in functor categories have similar properties to
projective modules in module categories. The following two results can be
found in [4]:

Proposition 6. Let P be a projective object in F such that J(P) <« P.
Then

End P/J(End P) = End P/J(P)

where End P denotes the endomorphism ring of P.

Proposition 7. Let P be a projeciive object in F, and E = End P. If
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fis an element of E, then f € J(E) if and only if Im f € P, where J(E)
is the Jacobson radical of E.

The next result is a corollary of Theorem 5 :

Proposition 8. Let P # 0 be a projective object in ¥, Then J(P) #
P, or equivalently, P has at least one maximal subobject.

Proof. Suppose J(P) = P. By Theorem 5, P= Y| Ts| Ta € P}.
There is a canonical epimorphism f: @:T, = P. Since P is projective,
there is g: P = @7, such that fg = 1,. The canonical projection m :
DT, > T, induces a morphism 8« = mg: P — T, Let 7o be the injection
of T = P, then 7.8« € End P. Since Ty € P, Im a8« € P. This implies
that Im 21 7e8ea € P for any finite subset I' C I. By Proposition 7, 2r ta8e
€ J(End P). Hence 1, —2r 1a8« is an automorphism of P. Since P # 0,
there is an object B € C such that P(B) # 0. Let @ be a nonzero element
of P(B). P(B) = 25 TB). It is easy to see 1,,= 21/(7a 8e)s and gq,la)
# 0 for only finite numbers of a. Hence, there is a finite subset I' of I such
that (1,,—2.r(7ega)s)(a) = 0. This means 1, —3r 7e8qa is not an autom-
orphism which contradicts the fact mentioned above.

2. Let R be a ring with identity, andl Mod-R;the category of all unital
right R-modules. ILet o be a hereditary torsion theory on Mod-R. The
quotient category of Mod-R with respect to o is denoted by Mod-R/s. For a
right R-module M, the o-Jacobson radical (or simply o-radical) of M is
defined by

JAM) =N{N|M/N is a o-cocritical R-module].

If there is no such N, we define J,(M) = M. J, (M) is a o-pure submodule
of M, i.e. M/J,(M) is o-torsionfree. It is easy to see that in the quotient
category Mod-R/ 0, J;(M) coincides with J(M), where J(M) is the Jacobson
radical of the object M. We say a submodule N of M is o-superfluous if and
only if there is no proper o-pure submodule K of M such that N°+K is
o-dense in M, where N¢ denotes the o-closure of N in M. We use the
notation N €, M to denote that N is a o-superfluous submodule of M. In the
theory of modules, there is a well known result:

JM) = 3| Ma| Mo < M|,

One may ask if there is a relative version of this result. In general the
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sum of o-superfluous submodules of M need not be a o-pure submodule.
However, we may ask that, with what condition, the o-radical of M
coincides with the closure of the sum of its o-superfluous submodules, i.e.

JAM) = (3 Ma)¢, where Ma <, M.

Lemma 9. Let N be a submodule of M. Then N is a o-superfluous
submodule of M if and only if N is a superfluous subobject of M in the
quotient category Mod-R/ o. ‘

Proof. let N, Min Mod-R. Then N, = (N°),, where N, and (N°),
denote the o-localization of N and N° respectively. From the definition of
o-superfluous submodule, N® <, M. Since the lattice of pure submodules of
M is isomorphic to the lattice of subobjects of M,, N, is superfluous in M,.

Conversely, let N, €« M, in the category Mod-R/ ¢, and K a o-pure
submodule of M such that N°+K is dense in M. Then (N°+K), =M,
which implies N,+ K, = M,. So that K; = M, which means that K is dense
in M. But K is o-pure, so K =M,

The following lemma is a result due to Freyd (see [2]).

Lemma 10. Let F be a Grothendieck category. If F has a family of
finitely generated projective generators, then F is equivalent to a funcior
category (C°, Ab), where C is a suitable small preadditive category.

Now we prove the following theorem :

Theorem 11. Let o be a hereditary torsion theory on Mod-R. If the
quotient category Mod-R/ o has a family of finitely generated projective genera-
tors, then for any right R-module M, J/(M) = (3 M,)¢, where M, runs over
all the g-superfluous submodules of M.

Progf. Let F be an equivalence functor from a Grothendieck category
C to another Grothendieck category D. For any object C in C, the lattice of
subobjects of C is isomorphic to the lattice of F(C). Therefore, a subobject
B of C is maximal iff F(B) is a maximal subobject of F(C). This means
J(F(C)) = F(J(C)). It is also clear that a subobject B of C is superfluous
iff F(B) is a superfluous subobject of F(C). By Lemma 10, the category
Mod-R/ o is equivalent to a functor category. Therefore Jo{(M) = (2 Ma)¢
by using Theorem 5 and Lemma 9.

Corollary 12. Let ¢ be a right perfect hereditary torsion theory on
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Mod-R. Then, for any right R-module M, J{M) = 33 {Mo| Mo <, M}

Proof. Since o is right perfect, the quotient category Mod-R/ ¢ has a
finitely generated projective generator. By Theorem 11, Jo{(M) = (3] Mo) €,
We need only to show that 2 Ma is o-pure in M. Let x € M such that
xI © 3 M., where I is a dense right ideal of R. Since o is perfect, we
may assume that [ is finitely generated. So, there is a finite subset A such
that xf C 34 M.. However, every finite sum of o-superfluous submodules is
still superfluous. Hence xI is o-superfluous in M. The closure of xf is also
o-superfluous. It means that x € 3 Ma. Therefore 25 M, is o-pure in M.
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