A THEOREM ON RADICALS IN FUNCTOR CATEGORIES WITH APPLICATION TO TORSION THEORIES

YAO MUSHENG

In this paper, we obtain a result concerning radicals in functor categories and give an application to torsion theories.

1. Let C be a small preadditive category, and Ab the category of abelian groups. (C^0, Ab) denotes the category of all additive contravariant functors from C to Ab. Kernels, cokernels and direct sums in (C^0, Ab) can be defined componentwise. Then (C^0, Ab) is a Grothendieck category. For details, we to refer [5].

The Jacobson radical J(T) of an object T in a Grothendieck category is defined to be the subobject which is the intersection of all its maximal subobjects. If T has no maximal subobjects, then define J(T) = T. A subobject $S \leq T$ is said to be superfluous if for any subobject $N \leq T$, S+N=T always implies N=T. We use the notation $S \ll T$ to denote that S is a superfluous subobject of T.

Lemma 1. Let S, T be objects in a Grothendieck category. Then for any $f \in Mor(S, T)$, $f(J(S)) \leq J(T)$, where Mor(S, T) is the set of morphisms from S to T.

This is well known. The following two results are also known.

Lemma 2. J commutes with finite direct sums.

Lemma 3. Let T be an object in a Grothendieck category. Then $\sum T_{\alpha} \leq J(T)$, where $T_{\alpha} \ll T$.

Let $F = (C^0, Ab)$ be the functor category, and T an object of F. If B is an object of C, then T(B) is an abelian group. Let a be an element of T(B). We define a contravariant functor S from C to Ab as follows: $S(C) = \{T(f)(a) | f \in Mor(C, B) | \text{ for any } C \in C$. If a is a morphism from C to C, then define $S(a): S(C') \to S(C)$ to be the restriction of T(a). It is easy to see that S is an object of F and actually a subobject of T. We call S the subobject of T generated by the element a. It is easy to verify that every object T is the sum of its subobject which can be generated by one

element.

Lemma 4. Let $F = (C^0, Ab)$, and T a nonzero object of F. If B is an object of C such that $T(B) \neq 0$, then for any nonzero element $a \in T(B)$, there is a maximal subobject W of T with respect to $a \in W(B)$.

Proof. Since $a \neq 0$, the set of subobjects $|W_{\alpha}|$ of T with the property $a \in W_{\alpha}(B)$ is not empty (at least contains the zero subobject). Consider any chain of the set $|W_{\alpha}|$:

$$W_1 \le W_2 \le W_3 \le \cdots \tag{*}$$

It is clear that $\bigcup_{i=1}^{\infty} W_i$ is a subobject of T which does not contain a (i.e. $a \in (\bigcup_{i=1}^{\infty} W_i)(B)$). So it is the upper bound of the chain (*). By Zorn's lemma, there is a maximal element in $\{W_{\alpha}\}$.

Theorem 5. Let $F = (C^0, Ab)$. Then $J(T) = \sum |T_{\alpha}| T_{\alpha} \ll T$ for any object T in F.

Proof. By lemma 3, we need only to verify that $J(T) \leq \sum T_{\alpha}$. Let $a \in J(T)(B)$ for some $B \in \mathbb{C}$, and S the subobject of J(T) generated by a. We want to show that S is superfluous. Let N be a subobject of T such that S+N=T. We may assume $S \nleq N$ which means $a \in N(B)$. Then, there is a nonempty set $\{W_{\alpha}\}$ of subobjects of T such that $N \leq W_{\alpha}$ and $a \in W_{\alpha}(B)$. By lemma 4, there is a maximal element W in the set $\{W_{\alpha}\}$. Obviously S+W=T. But now W is a maximal subobject of T. In fact, let K be a subobject of T such that $W \leq K$, then $S \leq K$ which implies K=T. According to the definition of radical, $S \leq W$, which is a contradiction. Therefore S is superfluous. Consequently, we obtain $J(T) \leq \sum T_{\alpha}$.

Projective objects in functor categories have similar properties to projective modules in module categories. The following two results can be found in [4]:

Proposition 6. Let P be a projective object in F such that $J(P) \ll P$. Then

$$End P/J(End P) \simeq End P/J(P)$$

where End P denotes the endomorphism ring of P.

Proposition 7. Let P be a projective object in F, and E = End P. If

f is an element of E, then $f \in J(E)$ if and only if Im $f \ll P$, where J(E) is the Jacobson radical of E.

The next result is a corollary of Theorem 5:

Proposition 8. Let $P \neq 0$ be a projective object in F. Then $J(P) \neq P$, or equivalently, P has at least one maximal subobject.

Proof. Suppose J(P)=P. By Theorem 5, $P=\sum_I \mid T_\alpha \mid T_\alpha \ll P \mid$. There is a canonical epimorphism $f\colon \bigoplus_I T_\alpha \to P$. Since P is projective, there is $g\colon P\to \bigoplus T_\alpha$ such that $fg=1_P$. The canonical projection $\pi_\alpha\colon \bigoplus T_\alpha\to T_\alpha$ induces a morphism $g_\alpha=\pi_\alpha g\colon P\to T_\alpha$. Let τ_α be the injection of $T_\alpha\to P$, then $\tau_\alpha g_\alpha\in \operatorname{End} P$. Since $T_\alpha\ll P$, $\operatorname{Im}\,\tau_\alpha g_\alpha\ll P$. This implies that $\operatorname{Im}\,\sum_I \tau_\alpha g_\alpha\ll P$ for any finite subset $I'\subset I$. By Proposition 7, $\sum_I \tau_\alpha g_\alpha\in J(\operatorname{End} P)$. Hence $1_P-\sum_I \tau_\alpha g_\alpha$ is an automorphism of P. Since $P\neq 0$, there is an object $B\in C$ such that $P(B)\neq 0$. Let a be a nonzero element of P(B). $P(B)=\sum_I T_\alpha(B)$. It is easy to see $1_{P_B}=\sum_I (\tau_\alpha g_\alpha)_B$ and $g_{\alpha_B}(a)\neq 0$ for only finite numbers of a. Hence, there is a finite subset I' of I such that $(1_{P_B}-\sum_I (\tau_\alpha g_\alpha)_B)(a)=0$. This means $1_P-\sum_I \tau_\alpha g_\alpha$ is not an automorphism which contradicts the fact mentioned above.

2. Let R be a ring with identity, and Mod-R the category of all unital right R-modules. Let σ be a hereditary torsion theory on Mod-R. The quotient category of Mod-R with respect to σ is denoted by Mod- R/σ . For a right R-module M, the σ -Jacobson radical (or simply σ -radical) of M is defined by

$$J_{\sigma}(M) = \bigcap \{N \mid M/N \text{ is a } \sigma\text{-cocritical } R\text{-module}\}.$$

If there is no such N, we define $J_{\sigma}(M)=M$. $J_{\sigma}(M)$ is a σ -pure submodule of M, i.e. $M/J_{\sigma}(M)$ is σ -torsionfree. It is easy to see that in the quotient category $\operatorname{Mod-}R/\sigma$, $J_{\sigma}(M)$ coincides with J(M), where J(M) is the Jacobson radical of the object M. We say a submodule N of M is σ -superfluous if and only if there is no proper σ -pure submodule K of M such that N^c+K is σ -dense in M, where N^c denotes the σ -closure of N in M. We use the notation $N \ll_{\sigma} M$ to denote that N is a σ -superfluous submodule of M. In the theory of modules, there is a well known result:

$$J(M) = \sum |M_{\alpha}| M_{\alpha} \ll M$$
.

One may ask if there is a relative version of this result. In general the

sum of σ -superfluous submodules of M need not be a σ -pure submodule. However, we may ask that, with what condition, the σ -radical of M coincides with the closure of the sum of its σ -superfluous submodules, i.e. $J_{\sigma}(M) = (\sum M_{\sigma})^c$, where $M_{\sigma} \ll_{\sigma} M$.

Lemma 9. Let N be a submodule of M. Then N is a σ -superfluous submodule of M if and only if N is a superfluous subobject of M in the quotient category Mod-R/ σ .

Proof. Let $N \ll_{\sigma} M$ in Mod-R. Then $N_{\sigma} = (N^c)_{\sigma}$, where N_{σ} and $(N^c)_{\sigma}$ denote the σ -localization of N and N^c respectively. From the definition of σ -superfluous submodule, $N^c \ll_{\sigma} M$. Since the lattice of pure submodules of M is isomorphic to the lattice of subobjects of M_{σ} , N_{σ} is superfluous in M_{σ} .

Conversely, let $N_{\sigma} \ll M_{\sigma}$ in the category Mod- R/σ , and K a σ -pure submodule of M such that $N^c + K$ is dense in M. Then $(N^c + K)_{\sigma} = M_{\sigma}$ which implies $N_{\sigma} + K_{\sigma} = M_{\sigma}$. So that $K_{\sigma} = M_{\sigma}$ which means that K is dense in M. But K is σ -pure, so K = M.

The following lemma is a result due to Freyd (see [2]).

Lemma 10. Let F be a Grothendieck category. If F has a family of finitely generated projective generators, then F is equivalent to a functor category (C^0 , Ab), where C is a suitable small preadditive category.

Now we prove the following theorem:

Theorem 11. Let σ be a hereditary torsion theory on Mod-R. If the quotient category Mod-R/ σ has a family of finitely generated projective generators, then for any right R-module M, $J_{\sigma}(M) = (\sum M_{\alpha})^{c}$, where M_{α} runs over all the σ -superfluous submodules of M.

Proof. Let F be an equivalence functor from a Grothendieck category C to another Grothendieck category D. For any object C in C, the lattice of subobjects of C is isomorphic to the lattice of F(C). Therefore, a subobject B of C is maximal iff F(B) is a maximal subobject of F(C). This means J(F(C)) = F(J(C)). It is also clear that a subobject B of C is superfluous iff F(B) is a superfluous subobject of F(C). By Lemma 10, the category $\operatorname{Mod-} R/\sigma$ is equivalent to a functor category. Therefore $J_{\sigma}(M) = (\sum M_{\sigma})^{c}$ by using Theorem 5 and Lemma 9.

Corollary 12. Let σ be a right perfect hereditary torsion theory on

Mod-R. Then, for any right R-module M, $J_{\sigma}(M) = \sum \{M_{\alpha} | M_{\alpha} \ll_{\sigma} M\}$.

Proof. Since σ is right perfect, the quotient category $\operatorname{Mod-}R/\sigma$ has a finitely generated projective generator. By Theorem 11, $J_{\sigma}(M) = (\sum M_{\alpha})^{c}$. We need only to show that $\sum M_{\alpha}$ is σ -pure in M. Let $x \in M$ such that $xI \subset \sum M_{\alpha}$, where I is a dense right ideal of R. Since σ is perfect, we may assume that I is finitely generated. So, there is a finite subset A such that $xI \subset \sum_{A} M_{\alpha}$. However, every finite sum of σ -superfluous submodules is still superfluous. Hence xI is σ -superfluous in M. The closure of xI is also σ -superfluous. It means that $x \in \sum M_{\alpha}$. Therefore $\sum M_{\alpha}$ is σ -pure in M.

Acknowledgements. The author is grateful to the Japan Society for Promotion of Science. This paper was finished while he was a JSPS fellow and visited Okayama University. The author also would like to express his hearty thanks to Professor H. Tominaga for his kind help and hospitality.

REFERENCES

- F. Anderson and K. Fuller: Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.
- [2] P. FREYD: Algebra-values functors in general categories and tensor product in particular, Colloq. Math. 14 (1966), 89-105.
- [3] J. S. GOLAN: Torsion Theories, Longman, New York, 1986.
- [4] M. HARADA: Perfect Categories (I), Osaka J. Math. 10(1973), 329-341.
- [5] N. POPESCU: Abelian Categories with Applications to Rings and Modules, Academic Press, London, 1973.
- [6] B. STENSTRÖM: Rings of Quotients, Springer-Verlag, Berlin, 1975.

DEPARTMENT OF MATHEMATICS
FUDAN UNIVERSITY
SHANGHAI, CHINA

(Received September 8, 1989)