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ON SOME TYPE OF LEFT EXACT RADICALS

Dedicated to Professor Takashi Nagahara on his 60th birthday
Snost MORIMOTO

In his paper [7]. V. S. Ramamurthi has studied the smallest left exact
radical J* larger than the Jacobson radical J. However if we take € as
the class of cosingular modules, then J* coincides with ¢,. In this note,
first we shall study smallest left exact radical 7* larger than a preradical
r and show that r* can be described by various methods. Also we shall
show that (r; A -+ A 72)* = rn* A -+ A 7*(Theorem 1.8). Then we shall
treat the largest left exact radical rx smaller than a preradical ». Finally,
we shall investigate a module M such that (k4)*(M) = M. In consequence,
we can prove that every direct product M* of copies of a module M which
is non-singular and (ky)*(M) = M has no nonzero injective submodule for
any index set A (Theorem 2.9). Though we touch upon QF-3’ modules briefly
in this paper, it has minutely been studied by Bican [1] and Kurata and
Katayama [4].

Throughout this note R means a ring with identity and modules mean
unitary left R-modules unless otherwise stated. We denote the category of
modules by R-mod and the injective hull of M € R-mod by E(M). As for
terminologies and basic properties concerning torsion theories and preradi-
cals, we refer to [8]. For each preradical 7. we denote the r-torsion (resp.
r-torsionfree) class by T(r) (resp. F(r)). Also the left linear topology
corresponding to a left exact preradical r is denoted by #(r). Now for two
preradicals 7 and s, we shall say that r is larger than s if (M) D s(M)
for all modules M. For a preradical . we put 7(M) = N | NC M| r(M/N)
=0} fM)=r(EMM)) N M and (M) = 2|:NC M|r(N) = N} for
each module M, where O :={0}. Then ¥ (resp. 7) is the smallest radical
(resp. left exact preradical) larger than r and 7 is the largest idempotent
preradical smaller than r,

1. We shall begin with the well-known lemma.

Lemma 1.1. Let r and s be preradicals. Then the following statements
hold.
(1) F(r) = F(7) and T(r) = T(7).
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A 5) = T(s; A s;). Hence s, A s; =5 A 5 by Lemma 1.1(3).

In contrast with »*, we now treat the largest left exact radical rx
smaller than a preradical r.

Proposition 1.9. [3, Corollary 3.13]. Let r be a preradical for R-
mod. We put F = |E(X)|X € F(r)|. Then k; is the largest left exact
radical smaller than 7.

Proof. Since ks = Alkpo|X € F(r)| < ANks| X € F(r)| = kpr. =
7, ks is a left exact radical smaller than 7. Suppose that t is a left exact
radical such that ¢ < 7. Let M be an r-torsionfree module. Since F(r) C
F(t) and  is left exact, E(M) is in F(t), namely, # C F(t). Thus ks =

key = t, namely, ¢ = ks.

For a preradical », we denote by rx the largest left exact radical
smaller than 7, if it exists.

Corollary 1.10. Let r be a preradical for R-mod. Then
(1) Ifr is a radical, then r« exisis.
(2) 1 is a left exact radical if and only if there exists r« and r* = r

= rx holds.

The following example shows that if 7 is not a radical, then 7« need not
exist in general.

Example 1.11. Let K be a field and let R be the ring of all 2X2
upper triangular matrices over K. Let r be the left exact preradical cor-
responding to the left linear topology having the smallest _lement

(6 o)

0O 0/

Also 7, and 7, mean the left exact radicals corresponding to the left Gabriel
topologies having the smallest elements

(0 0)=(0 k)

respectively, Then 7 is larger than r, and r, properly. If rx exists, then
r« is larger than r, and 7,. Thus we obtain
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0 0

(OK
0 0

2
) € Z{rx) and so(O K) =0
which belongs to % (r«). Hence r« = 1(identity). This is a contradiction.

Proposition 1.12. Let r be a radical for R-mod. If each nonzero cyclic
module in T(r«) has a nonzero factor in F(r). then r« = 0. In particular,
Jx = O, where J is the Jacobson radical.

Proof. Suppose that there exists a nonzero module M such that r«(M)
# 0. Then for any nonzero element x of r«(M). Rx is in T(rx). By hy-
pothesis. there exists a proper submodule N of Rx such that Rx/N is in
F(r). On the other hand, Rx/N is in T(r4) and is in F(r«). since r« < r.
This is a contradiction. Now let & be a complete representative set of
simple modules. We put #' = [E(S)|S € #|. As is easily seen. J = k,
and Jx = k,. Every nonzero cyclic module M has a maximal submodule X

and M/X is in F(J). Hence by the first half of the proposition, Jx = O.

Let & be a class of modules closed under injective hulls. We put 2"’
=1E(X)|X € 2. Since &' is a subclass of 2", k, = k,. Also since
(ks)x = ks, ks = ks. Thus k. is left exact. If 2 is the class of modules
with essential socles, then k&, = O. In fact, since Soc(E{(M)) = Soc(M ),
& is closed under essential extensions. Also since kr < J and ks = (k. )%,

kr < Jx = O. Hence k, = O.

Proposition 1.13. Lei S be a simple module. Then S is injective if
and only if J(E(S)) = O. In particular, J is left exact if and only if R is
a left V-ring [5, Proposition 5.3].

Proof. By [4, Corollary 2.6], every simple QF-3’ module is injective.
Let S be a simple module such that J(E(S)) = 0. We put #° = 9 —| S,l,
where .# is a complete representative set of simple modules and S; is in
& isomorphic to S, Since k»s(E(S)) D S, O = k(E(S)) = kes(E(S)) N
ks,(E(S)) D SN ks, (E(S)). This implies ky,(E(S)) = O. Thus ks(E(S))
= 0, namely, S is QF-3'. Hence S is injective.

Let R be a left V-ring and a left semi-artinian ring. Then Soc(M) is
essential in M for all modules M. Also ky < ksoew. = Asesks, for some
family | S;l;c; of simple modules. Since R is a left V-ring, S; is injective

for all i € I. Thus ksoey is left exact. Also since E(Soc(M)) = E(M),
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keisocom = ke < ky < ksocm. Since ksocun.is left exact, Emsocimy = ksocom,
namely, k, is left exact. Hence every module is QF-3' [6, Proposition 2].

Proposition 1.14. Let {1;|;e; be a family of preradicals for R-mod.
We put & = NI F(r.)|i € Il. Then (k;)x is the largest one of those left
exact radical r for which v(X) = O for all X € #. Furthermore (k;)+ =
(2, r)%. where (1) (M) = X, 1:(M) for each module M.

Proof. Let X be a module. Then X € F(3> ;r;) if and only if X €
F(r;) for all i € I, equivalently X € N|F(r))|i € Il = F. Thus F(32;7;)
= & and so (23,7;) = ks. Therefore (ks)x = (2, 7:)% is the largest left
exact radical one of those left exact radical r such that r(&F) = O.

Proposition 1.15. Let | r;l,c; be a family of left exact preradicals, We
put F = (IF(r;)|i € I|. Then ks is a left exact radical.

Proof. Let r be a left exact preradical for R-mod. Then 7 is left
exact if and only if F(7) is closed under essential extensions. In fact, if 7
is left exact, then F(7) = F(r). Thus r(E(X)) = O for all X € F(r),
namely, F(r) is closed under essential extensions. Since each 7; is left
exact, F(r;) is closed under essential extensions, and so is &. Also since
F = F(2;r:), (20;7:) = ks that is to say ks is a left exact radical.

2. As above, ky is the largest one of those preradical r for which
r(M) = O. In this section, we shall study (k,)* for each module M and
characterize those modules M for which (k,)*(M) = M.

Lemma 2.1. Let .o = {M,|sc, be a family of modules. We put M =
Daes ® M, and M' = Tl,e.M,. Then the following assertions hold.

(1) /\’kM,\l/\EAII=kM=kM‘-

(2) (ku)* = (kn')* = /\{(km;.)* I A E A%-

(3) (k)* = (kyn)* = (ki)™ for all modules A and all index sets I,

Proof. (1). Since M, CT M C M’ for any A€ A, ky, = ky = ky.
Thus Alky|A € Al = ky = ky. However Alky |A € Al = ky. Thus
Akl A€ At =ky = ky. (2). (ky)* = (ky)* and this equal to

P
(Atky A€ AD* = Atky A e Al
SAlklde AL < Alkyld e Al = Allky)*| A € AL
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(3) is clear.

Now we put 4, =M € R-mod|(ky)*(M) = O}. .4, = M € R-mod|
(ky)*(M) =M} and . &3 =M € R-mod| O =+ (ky)*(M) = M|. As is easily
seen, every injective module belongs to ..#, and every noninjective simple
module belongs to .#, by Proposition 1.13. Next let S, and S, be
non-isomorphic simple noninjective modules (for example, R = Z, S, =
Z/2Z and S, = Z/3Z). We put M = E(S,) ® S,. Then (k,)*(M) =
(ky)*(E(S))) @ (ky)*(S,). By Theorem 1.8 and Lemma 2.1, (ky)*(E(S,))
= (kes,)*(E(S))) N (ks,)*(S.) = O and (ky)*(S,) = (kgs, )*(S2) N (ks,)*(S2)
= kes,(S2) N (ks,)*(S,) = kes (Sz) N S.. Assume that Hom(S,, E(S,))
%+ 0. Then there exists a nonzero monomorphism f € Homg(S,. E(S,)).
Since f(S;) N S, #+ O and f(S,) is simple, f(S,) = S,. namely, S, = S,.
This is a contradiction. Thus kgs,(S:) = S,. Hence O # (ky)*(M) = S,
+= M.

Corollary 2.2. [4, Proposition 2.2]. Let | Qilre . be a family of QF-
3" modules, We put Q = X laes ® Qr and Q = Ilre.Qr. Then both Q and
Q' are QF.3".

Proof. By Lemma 2.1, (ko)* = (ke)* < A{(ke)*|A € Al = Alkq|
AE Al = ko= kg. Thus ko = (ko)* and k¢ = (ky)*.

In general, kpp < Z < G holds, where Z is the singular torsion functor
and G is the Goldie torsion functor. If M is QF-3', faithful and nonsingular
module, then ky is left exact. ky < kgp o and Z < ky. Thus ky < kpp < Z
< kyand so ky = kero = Z. Conversely, if ky = kgr. = Z. then ky is left
exact. ky(R) = O and Z(M) = O. Hence M is QF-3'. faithful and non-

singular. Thus we have

Proposition 2.3. A module M is nonsingular. faithful and QF-3' if and
o'nly if Z = kmm = kM-

Corollary 2.4. For a ring R. the following conditions are equivalent :
(1) R is a left nonsingular ring.

(ii) There exists a faithful nonsingular module.

(i) Z= k.

Proof. (i) => (ii) and (iii) = (i) are clear. (ii) = (iii). Let M be a
faithful nonsingular module. Then so is E(M). By Proposition 2.3,
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Z= Kew = kmx-

Let xU be a module and S the endomorphism ring of zU. For each
module M, we put M* = Hom,(M, Us) and M** = Homs(M*, ;U;). There
exists a natural mapping @y: M — M** as @,(m)(h) = h{m) for any m €
M and any h € M*. As is well-known, Ker(py,) = {m € M|h(m) = O for
all h € M*| = k,(M).

A module M is called U-torsionless if ¢ is a monomorphism, equiva-
lently, k(M) = O. Clearly, M is QF.3' if and only if E(M ) is M-torsion-

less.

Proposition 2.5. Let M be a faithful module. If E(M) is R-torsionless,
then M is QF-3'.

Proof. Since M is faithful, &y < k;. Also since E(M) is R-torsion-
leSS. kR(E(A/I)) = 0, namely, kk < k};,M:. Thus k," < kR < kE(M} < kM and
so ky = kgy. Hence M is QF-3'.

However the converse is false. Take for example R=Z and M = Q.
Since zQ is injective, zQ is QF-3' and so M is faithful and QF-3’. But
since Homz(Q, ZZ) = O, kx(M) = M, namely, E(M) = M is not R-torsion-

less.

Next we consider those modules M for which (ky)*(M) = M.

Proposition 2.6. Let M be a module. Then the following assertions
hold.

(1) If (k)*(M) = M, then M has no nonzero injective submodule.

(2) (ky)* =1 if and only if M" has no nonzero injective submodule for
any index set A.

Proof. (1). Suppose that M has a nonzero injective submodule N.
Then there exists a submodule X such that M = N @ X. Since (kyoy)* =
(ky A ko)* = (By)* A (k)* and (k)*(M) = (ky)*(N @ X) = (ky)*(N) @
(k)*(X) = (k)*(X). M = (k)" (M) = kX (M) N k™M) € X, and so M
= X and N = 0. This is a contradiction. (2). By the definition of kj
a module X belongs to F'(ky) if and only if X can be embedded in M* for
some index set A. Let &' be the class of injective modules belonging to
F(ky). Then (ky)* = k.. Thus (ky)* =1 if and only if €' = O. The
proof of (2) is completed.
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If R=7Z and M = Z/pZ, where p is a prime number, then M* has no
nonzero injective submodule for any index set A.

Corollary 2.7. Let M be a module. If (ky,)*(M) = M, then M has

no nonzero injective submodule for all index seis A.

Proof. By Lemma 2.1(3), (ky)*(M“) = (ky)* (M) = ((k,)*(M))*
= M*, Thus M" has no have nonzero injective submodule by Proposition
2.6(1).

Though the following lemma ([2. Lemma 0.2]) has been already known,
we give here its torsion theoritic proof.

Lemma 2.8. Let E be an injective module and M a nonsingular module.
If f € Homy(E, M), then both Im(f) and Ker(f) are injective.

Proof. Since Ker(f) is essential in E(Ker(f)), Z(E/Ker(f)) D
Z(E(Ker(f))/Ker(f)) = E(Ker(f))/Ker(f). On the other hand, since
E/Ker(f) = Im(f) C M, Z(E/Ker(f)) = O and so E(Ker(f))/Ker(f) = O.
Therefore E(Ker(f)) = Ker(f), namely. Ker(f) is injective. Since Ker(f)
is a direct summand of E, there exists a submodule X of E such that E =

Ker(f) @ X. Thus X = E/Ker(f) = Im(f) and so Im(f) is injective.

With regard to the converse of Proposition 2.6(1), it seems to be
difficult to prove the general case. For a nonsingular module M, we have

Theorem 2.9. For a nonzero nonsingular module M, the following con-
ditions are equivalent :
(i) (k)*(M) = M.
(ii) M has no nonzero injective submodule.
(iii) M has no nonzero injective submodule for all index sets A.
(iv) M?* has no nonzero injective submodule for all index sets A.

(V) (k;\;)* = 1.

Proof. (1)=>(iii) follows from Corollary 2.7. The equivalence of (iv)
and (v) was proved in Proposition 2.6 (2). Since (iii)=>(ii) and (v)=>(i) are
clear, we may prove (ii)=>(iv). Assume that M* has a nonzero injective sub-
module E for some index set A. Thus there exists a nonzero homomorphism
ffrom E to M. By Lemma 2.8, Im(f) is nonzero injective, namely, M has
a nonzero injective submodule. This is a contradiction.



138 S. MORIMOTO

Example 2.10. Let R be the ring of 2 X2 upper triangular matrices
over a field K. We put

w-(59)

0 0O

Then M is a simple projective module and so M is nonsingular. Clearly M
is not injective, namely, (k,)*(M) = M.

Note that if R = Z and M = Z/pZ, as above. Then M is singular,
noninjective and simple, but satisfies the equivalent condition of Theorem

2.9.
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