ON SOME TYPE OF LEFT EXACT RADICALS

Dedicated to Professor Takashi Nagahara on his 60th birthday

Sнол MORIMOTO

In his paper [7], V. S. Ramamurthi has studied the smallest left exact radical J^* larger than the Jacobson radical J. However if we take $\mathscr C$ as the class of cosingular modules, then J^* coincides with $t_{\mathscr C}$. In this note, first we shall study smallest left exact radical r^* larger than a preradical r and show that r^* can be described by various methods. Also we shall show that $(r_1 \wedge \cdots \wedge r_n)^* = r_1^* \wedge \cdots \wedge r_n^*$ (Theorem 1.8). Then we shall treat the largest left exact radical r_* smaller than a preradical r_* . Finally, we shall investigate a module M such that $(k_M)^*(M) = M$. In consequence, we can prove that every direct product M^A of copies of a module M which is non-singular and $(k_M)^*(M) = M$ has no nonzero injective submodule for any index set M (Theorem 2.9). Though we touch upon QF-3' modules briefly in this paper, it has minutely been studied by Bican [1] and Kurata and Katayama [4].

Throughout this note R means a ring with identity and modules mean unitary left R-modules unless otherwise stated. We denote the category of modules by R-mod and the injective hull of $M \in R$ -mod by E(M). As for terminologies and basic properties concerning torsion theories and preradicals, we refer to [8]. For each preradical r, we denote the r-torsion (resp. r-torsion free) class by T(r) (resp. F(r)). Also the left linear topology corresponding to a left exact preradical r is denoted by $\mathscr{L}(r)$. Now for two preradicals r and s, we shall say that r is larger than s if $r(M) \supseteq s(M)$ for all modules M. For a preradical r, we put $\bar{r}(M) = \bigcap_R N \subseteq M \mid r(M/N) = O$. $\bar{r}(M) = r(E(M)) \cap M$ and $\hat{r}(M) = \sum_R N \subseteq M \mid r(N) = N$ for each module M, where $O := \{0\}$. Then \bar{r} (resp. \hat{r}) is the smallest radical (resp. left exact preradical) larger than r and \hat{r} is the largest idempotent preradical smaller than r.

We shall begin with the well-known lemma.

Lemma 1.1. Let r and s be preradicals. Then the following statements hold.

(1)
$$F(r) = F(\bar{r})$$
 and $T(r) = T(\hat{r})$.

 $\wedge \bar{s}_2$) = $T(\overline{s_1 \wedge s_2})$. Hence $\overline{s_1 \wedge s_2} = \bar{s}_1 \wedge \bar{s}_2$ by Lemma 1.1(3).

In contrast with r^* , we now treat the largest left exact radical r_* smaller than a preradical r.

Proposition 1.9. [3, Corollary 3.13]. Let r be a preradical for R-mod. We put $\mathscr{F} = |E(X)|X \in F(r)|$. Then k_* is the largest left exact radical smaller than \bar{r} .

Proof. Since $k_{\mathscr{F}} = \bigwedge |k_{E(X)}| X \in F(r)| \leq \bigwedge |k_X| X \in F(r)| = k_{F(r)} = \bar{r}$, $k_{\mathscr{F}}$ is a left exact radical smaller than \bar{r} . Suppose that t is a left exact radical such that $t \leq \bar{r}$. Let M be an r-torsionfree module. Since $F(r) \subseteq F(t)$ and t is left exact, E(M) is in F(t), namely, $\mathscr{F} \subseteq F(t)$. Thus $k_{\mathscr{F}} \geq k_{E(t)} = t$, namely, $t = k_{\mathscr{F}}$.

For a preradical r, we denote by r_* the largest left exact radical smaller than r, if it exists.

Corollary 1.10. Let r be a preradical for R-mod. Then

- (1) If r is a radical, then r_* exists.
- (2) r is a left exact radical if and only if there exists r_* and $r^* = r = r_*$ holds.

The following example shows that if r is not a radical, then r_* need not exist in general.

Example 1.11. Let K be a field and let R be the ring of all 2×2 upper triangular matrices over K. Let r be the left exact preradical corresponding to the left linear topology having the smallest lement

$$\begin{pmatrix} O & K \\ O & O \end{pmatrix}$$
.

Also r_1 and r_2 mean the left exact radicals corresponding to the left Gabriel topologies having the smallest elements

$$\begin{pmatrix} K & K \\ O & O \end{pmatrix}$$
 and $\begin{pmatrix} O & K \\ O & K \end{pmatrix}$

respectively. Then r is larger than r_1 and r_2 properly. If r_* exists, then r_* is larger than r_1 and r_2 . Thus we obtain

$$\begin{pmatrix} O & K \\ O & O \end{pmatrix} \in \mathscr{L}(r_*) \text{ and so } \begin{pmatrix} O & K \\ O & O \end{pmatrix}^2 = O$$

which belongs to $\mathcal{L}(r_*)$. Hence $r_* = 1$ (identity). This is a contradiction.

Proposition 1.12. Let r be a radical for R-mod. If each nonzero cyclic module in $T(r_*)$ has a nonzero factor in F(r), then $r_* = 0$. In particular, $J_* = 0$, where J is the Jacobson radical.

Proof. Suppose that there exists a nonzero module M such that $r_*(M) \neq O$. Then for any nonzero element x of $r_*(M)$, Rx is in $T(r_*)$. By hypothesis, there exists a proper submodule N of Rx such that Rx/N is in F(r). On the other hand, Rx/N is in $T(r_*)$ and is in $F(r_*)$, since $r_* \leq r$. This is a contradiction. Now let $\mathscr S$ be a complete representative set of simple modules. We put $\mathscr S' = \{E(S) \mid S \in \mathscr F\}$. As is easily seen, $J = k_{\mathscr F}$ and $J_* = k_{\mathscr F}$. Every nonzero cyclic module M has a maximal submodule X and M/X is in F(J). Hence by the first half of the proposition, $J_* = O$.

Let \mathscr{X} be a class of modules closed under injective hulls. We put $\mathscr{X}' = \{E(X) \mid X \in \mathscr{X} \}$. Since \mathscr{X}' is a subclass of \mathscr{X} , $k_{\mathscr{X}'} \geq k_{\mathscr{X}}$. Also since $(k_{\mathscr{X}})_* = k_{\mathscr{X}'}$, $k_{\mathscr{X}'} = k_{\mathscr{X}}$. Thus $k_{\mathscr{X}}$ is left exact. If \mathscr{X} is the class of modules with essential socles, then $k_{\mathscr{X}} = O$. In fact, since Soc(E(M)) = Soc(M), \mathscr{X} is closed under essential extensions. Also since $k_{\mathscr{X}} \leq J$ and $k_{\mathscr{X}} = (k_{\mathscr{X}})_*$, $k_{\mathscr{X}} \leq J_* = O$. Hence $k_{\mathscr{X}} = O$.

Proposition 1.13. Let S be a simple module. Then S is injective if and only if J(E(S)) = O. In particular, J is left exact if and only if R is a left V-ring [5, Proposition 5.3].

Proof. By [4, Corollary 2.6], every simple QF-3' module is injective. Let S be a simple module such that J(E(S)) = O. We put $\mathscr{S}^{\mathfrak{s}} = \mathscr{S} - |S_{\mathfrak{s}}|$, where \mathscr{S} is a complete representative set of simple modules and $S_{\mathfrak{s}}$ is in \mathscr{S} isomorphic to S. Since $k_{\mathscr{S}^{\mathfrak{s}}}(E(S)) \supseteq S$, $O = k_{\mathscr{T}}(E(S)) = k_{\mathscr{T}^{\mathfrak{s}}}(E(S)) \cap k_{S_{\mathfrak{s}}}(E(S)) \supseteq S \cap k_{S_{\mathfrak{s}}}(E(S))$. This implies $k_{S_{\mathfrak{s}}}(E(S)) = O$. Thus $k_{S}(E(S)) = O$, namely, S is QF-3'. Hence S is injective.

Let R be a left V-ring and a left semi-artinian ring. Then Soc(M) is essential in M for all modules M. Also $k_M \leq k_{Soc(M)} = \bigwedge_{t \in I} k_{S_t}$ for some family $|S_t|_{t \in I}$ of simple modules. Since R is a left V-ring, S_t is injective for all $i \in I$. Thus $k_{Soc(M)}$ is left exact. Also since E(Soc(M)) = E(M),

134 S. MORIMOTO

 $k_{E(SOC(M))} = k_{E(M)} \le k_M \le k_{SOC(M)}$. Since $k_{SOC(M)}$ is left exact, $k_{E(SOC(M))} = k_{SOC(M)}$, namely, k_M is left exact. Hence every module is QF-3 [6, Proposition 2].

Proposition 1.14. Let $|r_i|_{i\in I}$ be a family of preradicals for R-mod. We put $\mathscr{F} = \bigcap |F(r_i)| i \in I|$. Then $(k_{\mathscr{F}})_*$ is the largest one of those left exact radical r for which r(X) = 0 for all $X \in \mathscr{F}$. Furthermore $(k_{\mathscr{F}})_* = (\overline{\sum_i r_i})_*$, where $(\sum_i r_i)(M) = \sum_i r_i(M)$ for each module M.

Proof. Let X be a module. Then $X \in F(\sum_i r_i)$ if and only if $X \in F(r_i)$ for all $i \in I$, equivalently $X \in \bigcap |F(r_i)|$ $i \in I = \mathscr{F}$. Thus $F(\sum_i r_i) = \mathscr{F}$ and so $(\overline{\sum_i r_i}) = k_{\mathscr{F}}$. Therefore $(k_{\mathscr{F}})_* = (\overline{\sum_i r_i})_*$ is the largest left exact radical one of those left exact radical r such that $r(\mathscr{F}) = O$.

Proposition 1.15. Let $|r_i|_{i\in I}$ be a family of left exact preradicals. We put $\mathscr{F} = \bigcap |F(r_i)| i \in I|$. Then $k_{\mathscr{F}}$ is a left exact radical.

Proof. Let r be a left exact preradical for R-mod. Then \bar{r} is left exact if and only if F(r) is closed under essential extensions. In fact, if \bar{r} is left exact, then $F(\tilde{r}) = F(r)$. Thus r(E(X)) = 0 for all $X \in F(r)$, namely, F(r) is closed under essential extensions. Since each r_i is left exact, $F(r_i)$ is closed under essential extensions, and so is \mathscr{F} . Also since $\mathscr{F} = F(\sum_i r_i)$, $\overline{(\sum_i r_i)} = k_{\mathscr{F}}$ that is to say $k_{\mathscr{F}}$ is a left exact radical.

- 2. As above, k_M is the largest one of those preradical r for which r(M) = O. In this section, we shall study $(k_M)^*$ for each module M and characterize those modules M for which $(k_M)^*(M) = M$.
- **Lemma 2.1.** Let $\mathcal{A} = \{M_{\lambda}\}_{{\lambda} \in \Lambda}$ be a family of modules. We put $M = \sum_{{\lambda} \in \Lambda} \bigoplus M_{\lambda}$ and $M' = \prod_{{\lambda} \in \Lambda} M_{\lambda}$. Then the following assertions hold.
 - $(1) \quad \wedge |k_{M_{\lambda}}| \lambda \in \Lambda | = k_{M} = k_{M'}.$
 - (2) $(k_M)^* = (k_M)^* \le \wedge |(k_{M_\lambda})^*| \lambda \in \Lambda$.
 - (3) $(k_A)^* = (k_{A'})^* = (k_{A'})^*$ for all modules A and all index sets I.

Proof. (1). Since $M_{\lambda} \subseteq M \subseteq M'$ for any $\lambda \in \Lambda$, $k_{M_{\lambda}} \geq k_{M} \geq k_{M'}$. Thus $\wedge |k_{M_{\lambda}}| \lambda \in \Lambda| \geq k_{M} \geq k_{M'}$. However $\wedge |k_{M_{\lambda}}| \lambda \in \Lambda| = k_{M'}$. Thus $\wedge |k_{M_{\lambda}}| \lambda \in \Lambda| = k_{M'} = k_{M}$. (2). $(k_{M})^{*} = (k_{M'})^{*}$ and this equal to

$$(\wedge |k_{M_{\lambda}}| \lambda \in \Lambda|)^{*} = \wedge |k_{M_{\lambda}}| \lambda \in \Lambda|$$

$$\leq \wedge |\tilde{k}_{M_{\lambda}}| \lambda \in \Lambda| \leq \wedge |\tilde{k}_{M_{\lambda}}| \lambda \in \Lambda| = \wedge |(k_{M_{\lambda}})^{*}| \lambda \in \Lambda|.$$

(3) is clear.

Now we put $\mathcal{M}_1 = |M \in R\text{-mod}|(k_M)^*(M) = O|$, $\mathcal{M}_2 = |M \in R\text{-mod}|(k_M)^*(M) = M|$ and $\mathcal{M}_3 = |M \in R\text{-mod}|O \neq (k_M)^*(M) \neq M|$. As is easily seen, every injective module belongs to \mathcal{M}_1 and every noninjective simple module belongs to \mathcal{M}_2 by Proposition 1.13. Next let S_1 and S_2 be non-isomorphic simple noninjective modules (for example, $R = \mathbb{Z}$, $S_1 = \mathbb{Z}/2\mathbb{Z}$ and $S_2 = \mathbb{Z}/3\mathbb{Z}$). We put $M = E(S_1) \oplus S_2$. Then $(k_M)^*(M) = (k_M)^*(E(S_1)) \oplus (k_M)^*(S_2)$. By Theorem 1.8 and Lemma 2.1, $(k_M)^*(E(S_1)) = (k_{E(S_1)})^*(E(S_1)) \cap (k_{S_2})^*(S_2) = O$ and $(k_M)^*(S_2) = (k_{E(S_1)})^*(S_2) \cap (k_{S_2})^*(S_2) = k_{E(S_1)}(S_2) \cap (k_{S_2})^*(S_2) = k_{E(S_1)}(S_2) \cap S_2$. Assume that $Hom_R(S_2, E(S_1)) \neq O$. Then there exists a nonzero monomorphism $f \in Hom_R(S_2, E(S_1))$. Since $f(S_2) \cap S_1 \neq O$ and $f(S_2)$ is simple, $f(S_2) = S_1$, namely, $S_1 \cong S_2$. This is a contradiction. Thus $k_{E(S_1)}(S_2) = S_2$. Hence $O \neq (k_M)^*(M) = S_2 \neq M$.

Corollary 2.2. [4, Proposition 2.2]. Let $|Q_{\lambda}|_{\lambda \in A}$ be a family of QF-3' modules. We put $Q = \sum_{\lambda \in A} \oplus Q_{\lambda}$ and $Q' = \prod_{\lambda \in A} Q_{\lambda}$. Then both Q and Q' are QF-3'.

Proof. By Lemma 2.1, $(k_Q)^* = (k_{Q'})^* \le \wedge |(k_{Q_\lambda})^*| \lambda \in \Lambda| = \wedge |k_{Q_\lambda}| \lambda \in \Lambda| = k_Q = k_{Q'}$. Thus $k_Q = (k_Q)^*$ and $k_{Q'} = (k_{Q'})^*$.

In general, $k_{E(R)} \leq Z \leq G$ holds, where Z is the singular torsion functor and G is the Goldie torsion functor. If M is QF-3', faithful and nonsingular module, then k_M is left exact, $k_M \leq k_{E(R)}$ and $Z \leq k_M$. Thus $k_M \leq k_{E(R)} \leq Z \leq k_M$ and so $k_M = k_{E(R)} = Z$. Conversely, if $k_M = k_{E(R)} = Z$, then k_M is left exact, $k_M(R) = O$ and Z(M) = O. Hence M is QF-3', faithful and nonsingular. Thus we have

Proposition 2.3. A module M is nonsingular, faithful and QF-3' if and only if $Z = k_{E(R)} = k_M$.

Corollary 2.4. For a ring R, the following conditions are equivalent:

- (i) R is a left nonsingular ring.
- (ii) There exists a faithful nonsingular module.
- (iii) $Z = k_{E(R)}$.

Proof. (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are clear. (ii) \Rightarrow (iii). Let M be a faithful nonsingular module. Then so is E(M). By Proposition 2.3,

 $Z=k_{E(M)}=k_{E(R)}.$

Let $_RU$ be a module and S the endomorphism ring of $_RU$. For each module M, we put $M^* = Hom_R(M, _RU_S)$ and $M^{**} = Hom_S(M^*, _RU_S)$. There exists a natural mapping $\varphi_M \colon M \to M^{**}$ as $\varphi_M(m)(h) = h(m)$ for any $m \in M$ and any $h \in M^*$. As is well-known, $Ker(\varphi_M) = \{m \in M \mid h(m) = 0 \text{ for all } h \in M^*\} = k_U(M)$.

A module M is called U-torsionless if φ_M is a monomorphism, equivalently, $k_U(M) = O$. Clearly, M is QF-3' if and only if E(M) is M-torsionless.

Proposition 2.5. Let M be a faithful module. If E(M) is R-torsionless, then M is QF-3'.

Proof. Since M is faithful, $k_M \le k_R$. Also since E(M) is R-torsionless, $k_R(E(M)) = O$, namely, $k_R \le k_{E(M)}$. Thus $k_M \le k_R \le k_{E(M)} \le k_M$ and so $k_M = k_{E(M)}$. Hence M is QF-3'.

However the converse is false. Take for example $R = \mathbb{Z}$ and $M = \mathbb{Q}$. Since ${}_{\mathbb{Z}}\mathbb{Q}$ is injective, ${}_{\mathbb{Z}}\mathbb{Q}$ is QF-3' and so M is faithful and QF-3'. But since $Hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) = O$, $k_{\mathbb{R}}(M) = M$, namely, E(M) = M is not R-torsionless.

Next we consider those modules M for which $(k_M)^*(M) = M$.

Proposition 2.6. Let M be a module. Then the following assertions hold.

- (1) If $(k_M)^*(M) = M$, then M has no nonzero injective submodule.
- (2) $(k_M)^* = 1$ if and only if M^A has no nonzero injective submodule for any index set Λ .

Proof. (1). Suppose that M has a nonzero injective submodule N. Then there exists a submodule X such that $M=N\oplus X$. Since $(k_{N\oplus X})^*=(k_N\wedge k_X)^*=(k_N)^*\wedge (k_X)^*$ and $(k_N)^*(M)=(k_N)^*(N\oplus X)=(k_N)^*(N)\oplus (k_N)^*(X)=(k_N)^*(X)$, $M=(k_M)^*(M)=k_X^*(M)\cap k_X^*(M)\subseteq X$, and so M=X and N=O. This is a contradiction. (2). By the definition of k_M a module X belongs to $F(k_M)$ if and only if X can be embedded in M^A for some index set A. Let $\mathscr E'$ be the class of injective modules belonging to $F(k_M)$. Then $(k_M)^*=k_{P'}$. Thus $(k_M)^*=1$ if and only if $\mathscr E'=O$. The proof of (2) is completed.

If $R = \mathbb{Z}$ and $M = \mathbb{Z}/p\mathbb{Z}$, where p is a prime number, then M^{Λ} has no nonzero injective submodule for any index set Λ .

Corollary 2.7. Let M be a module. If $(k_M)^*(M) = M$, then $M^{(A)}$ has no nonzero injective submodule for all index sets Λ .

Proof. By Lemma 2.1(3), $(k_M^{(A)})^*(M^{(A)}) = (k_M)^*(M^{(A)}) = ((k_M)^*(M))^{(A)} = M^{(A)}$. Thus $M^{(A)}$ has no have nonzero injective submodule by Proposition 2.6(1).

Though the following lemma ([2, Lemma 0.2]) has been already known, we give here its torsion theoritic proof.

Lemma 2.8. Let E be an injective module and M a nonsingular module. If $f \in Hom_R(E, M)$, then both Im(f) and Ker(f) are injective.

Proof. Since Ker(f) is essential in E(Ker(f)), $Z(E/Ker(f)) \supseteq Z(E(Ker(f))/Ker(f)) = E(Ker(f))/Ker(f)$. On the other hand, since $E/Ker(f) \cong Im(f) \subseteq M$, Z(E/Ker(f)) = 0 and so E(Ker(f))/Ker(f) = 0. Therefore E(Ker(f)) = Ker(f), namely, Ker(f) is injective. Since Ker(f) is a direct summand of E, there exists a submodule X of E such that $E = Ker(f) \oplus X$. Thus $X \cong E/Ker(f) \cong Im(f)$ and so Im(f) is injective.

With regard to the converse of Proposition 2.6(1), it seems to be difficult to prove the general case. For a nonsingular module M, we have

Theorem 2.9. For a nonzero nonsingular module M, the following conditions are equivalent:

- (i) $(k_M)^*(M) = M$.
- (ii) M has no nonzero injective submodule.
- (iii) $M^{(\Lambda)}$ has no nonzero injective submodule for all index sets Λ .
- (iv) M^{Λ} has no nonzero injective submodule for all index sets Λ .
- $(v) (k_M)^* = 1.$

Proof. (i) \Rightarrow (iii) follows from Corollary 2.7. The equivalence of (iv) and (v) was proved in Proposition 2.6(2). Since (iii) \Rightarrow (ii) and (v) \Rightarrow (i) are clear, we may prove (ii) \Rightarrow (iv). Assume that M^{Λ} has a nonzero injective submodule E for some index set Λ . Thus there exists a nonzero homomorphism f from E to M. By Lemma 2.8, Im(f) is nonzero injective, namely, M has a nonzero injective submodule. This is a contradiction.

Example 2.10. Let R be the ring of 2×2 upper triangular matrices over a field K. We put

$$M = \left(\begin{array}{cc} K & O \\ O & O \end{array} \right).$$

Then M is a simple projective module and so M is nonsingular. Clearly M is not injective, namely, $(k_M)^*(M) = M$.

Note that if $R = \mathbb{Z}$ and $M = \mathbb{Z}/p\mathbb{Z}$, as above. Then M is singular, noninjective and simple, but satisfies the equivalent condition of Theorem 2.9.

REFERENCES

- [1] L. BICAN: QF-3' modules and rings, Comment. Math. Univ. Carolinae 14 (1973), 295-
- [2] V. C. CATEFORIS: Minimal injective cogenerator for the class of modules of zero singular submodule, Pacific J. Math. 40 (1972), 527-539.
- [3] Y. KURATA: N-fold Torsion Theories in the Category of Modules, preprint.
- [4] Y. KURATA and H. KATAYAMA: On a generalization of QF-3' rings, Osaka J. Math. 13 (1976), 407-418.
- [5] F. F. MBUNTUM and K. VARADARAJAN: Half-exact pre-radicals, Comm. Algebra. 5 (1977), 555-590.
- [6] K. OHTAKE: Commutative rings of which all radicals are left exact, Comm. Algebra. 8 (1980), 1505-1512.
- [7] V. S. RAMAMURTHI: The smallest left exact radical containing the Jacobson radical, Annales de la Société Scientifique de Bruxelles, T. 96 (1982), 201-206.
- [8] B. STENSTRÖM: Rings of Quotients, Grundl. Math. Wiss. 217, Springer Verlag Berlin, 1975.

HAGI KŌEN GAKUIN HIGH SCHOOL HIGASHITAMACHI, HAGI 758 YAMAGUCHI, JAPAN

(Received October 16, 1989)