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SELF-DUALITY FOR FINITE NORMALIZING
EXTENSIONS OF SKEW FIELDS

JuLius KRAEMER*
In this paper we shall prove the following

Theorem. If the ring R is a finite normalizing extension of a skew field,
then R has weakly symmetric self-duality.

Before giving the proof we shall require some definitions, and we should
like to provide some examples.

All our rings have an identity # 0, and all our ring extensions and mod-
ules are unitary. If ;M; and N; are bimodules, then Homz(M, N) is an S-
T-bimodule in the natural way. A ring extension R = D is finite normalizing
if there is a subset |b,,..., b,] C R such that R = >", b,D with b,D = Db,
for all i = 1,..., n. We assume that the reader is familiar with the theory of
(Morita-)duality as, e.g., presented in Anderson, Fuller [1, §§ 23, 24]. A
ring R has self-duality if there is an R-bimodule which defines a duality ; and
R has weakly symmetric self-duality (wssd) if there is an R-bimodule U which
defines a duality such that zRe/Je = yHomg(eR/eJy, Uy) (with J = Ra(R))
for every primitive idempotent e € R. For other terminology we would refer
to [1].

Finite normalizing extensions of skew fields occur quite frequently. The
most common examples are the finite dimensional algebras over fields. Other
examples are

(1) finite incidence rings over skew fields (Haack [10]; they coincide
with Mitchell’s tic tac toe rings over skew fields [14, 10.8]), in particular
rings with quivers that are trees (Fuller, Haack [8]), and thus the heredi-
tary artinian rings of the finite representation types A,, Dn, E;, E; and F;
(n=1, m2 4, see Dlab, Ringel [7] for definitions). For this class of
rings the existence of wssd has been shown in [10].

(2) £-hereditary semidistributive rings which are indecomposable (see
Caballero [5] and the references cited there); the existence of wssd is
shown there.

*The author is grateful to the Deutsche Forschungsgemeinschaft, which supported this
work with a postdoctoral grant.
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(3) split exact trivial extensions of semisimple rings (see Camillo,
Fuller, Haack [6]). The existence of wssd has already been observed by
W. Miiller [17] and has been shown in [6], for instance. See also Question
(1) at the end of the paper.

(4) crossed monoid rings over skew fields. Let D be a skew field, M
a finite monoid with the neutral element e, and R = @Dyey Ry a strongly M-
graded ring with R, = D (that is R is a ring with RyRy = Ryy for all x,y €
M), I, forallx € M, Ry = Dx=xD=+ 0 for some x € Ry, then R is a
crossed monoid ring of M over D. Particular examples of such rings are the
twisted monoid rings of M over D (that isdx = xd for allx € M andd € D),
the skew monoid rings of M over D (that is Xy = (xy) for all x, y € M), and
the semigroup ring of M over D (that is d% = xd and xy = (xy)  for allx, y
EMandd € D). If R is the semigroup ring of M over D, then the exis-
tence of wssd has been proved in a more general setting in Fuller, Haack

(9l.

In most of the cases the proofs given for the examples mentioned above
are rather lengthy and depend on the special situation which has been assum-
ed. Here we shall give a relatively short proof in a more general situation.

Proof of the Theorem. Let R = D be a finite normalizing extension with
a skew field D, and let |b,,..., b,] € R such that R = >\, b,D with ;D =
Db, (i=1,...,n). Then {b,...., by} contains a basis of the D-vectorspace
R, hence we can assume without restriction that R = @@L, 5,D. We shall
show that the injective cogenerator Uy = Homy(Ry, Dy)s can be made into an
R-bimodule which defines a wssd.

Proof of the existence of self-duality. For i = 1,...,n there are auto-
morphisms g4: D— D, d—d withdb, = bd. Letv,: Ry— Dy, 2, bd;,—d;
be the j-th projection; we claim that U= ; Dv; with v;d = g(d)v;, in
particular Dv; =v;D (d € D, j=1,...,n ) : Evidently U= @,Dv;, and
ford € Dand j, k= 1,...,n we calculate (v;d )(b,) = v,{dby) = Ssertu(d) =
(15(d )v;)(by) (with the Kronecker symbol 8;:), hence v;d = p(d)v;.

If T= End(U), then U is a T-R-bimodule, and from the adjointness
of the Hom- and Tensor-functors we infer that F': T— Homy(U,.D,), 1 —
(u— (#u)(1)) is a D-T-biisomorphism with the inverse G(t )(u)(r) = #(ur)
(t € Homy(U, D), u€ U, r € R). Let t,: Uy— Dy, 2;v,d;, — d; be the
k-th projection; then Homy(U,, Dy} = @, D, with dix = tip(d), in particu-
lar Di, = t;D(d € D, k= 1,...,n), as is shown with the same arguments
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as above. Denote t, = G(ix) € T; then T = D, t,D with di, = tju (d)
(dE€D, k= 1,....,n).

There are ax, Gk, a5k, afix € D(i, j, k=1, ...,n) such that b;b;, =
2ebeaise, viby = 2N vedhu, tive = Dloveale, bty = 2iokalt. In order to
prove that R has self-duality it is now sufficient to show that a;;, = af¥
(i, j,k=1,...n). ThenH: T— R, X, tid, = 3., bd, is an isomorphism of
rings and our statement follows because R is artinian and U, is of finite
length (see, e.g., Azumaya [4, Theorem 6], Morita [15, Theorem 6.3], or
B. Miiller [16, Theorem 7]).

For i, j, k= 1,...,n we evaluate as follows.

(vkb,-)(b,) = (2o veaks)(b;) = #j(a'ku) and
(vebi)(b;) = vi(bib;) = vi(2l0beas;0) = asn:

(Evi)(b;) = (- v ) (1) = F(&5)(vib;) = t,(20 ¢ vearie) = @iy and
(t'jvk)(b.z) = (Ze Waj*kn)(bz) = ,Ui(a;kki)i

(tity-ve)(1) = (t'i'tfivk)(l) = F(;)(tv) = ti(Zavaa}"u) = aj*ki and
(tty ve)(1) = F(Z e tealD)(ve) = 20 te(vi) i (a5%) = ux'(a%).

Hence a;;x = wipup '(a5%) (4, j, k= 1,...,n).

On the other hand there holds that db,b; = b,b,u4(d) = 2 xbrtisiuld)
and dbb; = d- 2 byayyx = 2k bruxld )ay;, thus, comparing coefficients,
1(d )aijk = anmip(d) (d € D, i, j, k= 1,...,n). If we put d = i (ayx),
then af;x = aynpyptx (aix), hence ayx = pyppxay) for i, j, k= 1,...,n
(we can cancel if a;x *+0).

Then a;x = o (i, j, k= 1,....,n), thus R has self-duality.

Proof of the existence of wssd. Via H the T-R-bimodule U is an R-
bimodule which defines a self-duality. Denote J = Ra(R) and V = So(U).
Note that V is an R/J-bimodule because V is the left and the right annihilator
of J. We have shown in [11, II.5] that U defines a wssd if and only if Ve
#+ 0 for every central primitive idempotent ¢ € R/J. (From this wssd fol-
lows rather immediately if R is a finite dimensional algebra over D, since in
this case (ru)(r) = u(r'r) (r.r' € R, w € U), as is easily shown.)

It is no problem to show that R/J = (D+J)/J is a finite normalizing
extension. We shall identify (D+J)/J = D/(D n J) = D/0 with D, and
we shall denote residues moduloJ by — . From R = Y2, 5,D it follows that
there is a subset K C |1,..., n|such that R = @y d,D with db, = byux(d)
(d€ D, k€ K).

It is well-known that &: V— Homy(Rp, Dp). u—> (r —> u(r)) is a D-R-
biisomorphism. If we: Rp— Dy, Siexbidi—dx (k € K), then Homy(Ry, Dy)



106 J. KRAEMER

= @ Dwy with wed = u(d)wy (d € D, k€ K). Let v, = ¢ Yw,) € V;
then V= @, Dy, with v,d = u(d)¥. (d € D, k € K). There are dy; € D
with vy = 23 vidy, (kK € K ), and we calculatefor k € K, i,j = 1,...,n:

;k(bi) = (Z?=1de;cj)(bi) = ﬂi(d;ci)u tj(;k) = tj(zzz:lvid'kt) = dy;. (1)

Let é= Y;cx b,d; € R be a central primitive idempotent._Then e =
diexb,d; € R with e=¢. From ¢ central we infer ;e byul(d)d; =
Yexdbd; =de=ed = ;e b;bsd (d € D), hence, comparing coefficients,

dd= u(d)d;, d€D,jeEK); (2)
in particular d? = u,(d;)d;, thus
o dy=uddy) (G € K). (3)

Now we shall show that ev = ve for v € V. It is sufficient to show that
evy, = vie (k € K) because de = ed (d € D) and V = @, Dv, with Dy, =
wD(k € K). In order to prove this we have to show that (evy)(b;) =
(vie )b,) (k€ K, i=1,...,n). Let vpb, = D sexVoare with ax;e € D (k €
K, i=1,...,n). If we use the identification of R and T via H and that V is
the annihilator of J, then we calculate

(E;k)(bl) = (e;kbi)(l) = F(e )(;chi) = (21 EKt.id_‘i)(ZBEK’;EakM) =
21. 0ex#;l(d'j)° tj(':;ﬂ)' Ekiﬂ = (1)
Ej.eexﬂfl(d})d}jakn = (3)
Ej, sek d;‘d’ljaki!?

and if we use in addition that er —re € J (r € R), then we calculate

(;kg).(bi) = (';ke b)) = ;k(ebi) = ;k(bie) = (;kbt)(e) =
(Zeex ;ﬂakif)(e) = Zﬂex;e(eakw) =
Eeex;e(Zjekbjd})akw: (1)
Z;'nexﬂj(d'ﬂj)d'jama = (2)
ZIJ" LEK d}dbjakiﬂ
(k€ K,i=1,....n). Hence ev = ve forv € V.
From eV == 0 (because V is a faithful R/J-module) we infer now the
existence of a wssd, and the theorem is proved. []

Corollary. Every factor ring of R has wssd.

Proof. 1f A< R is a two-sided ideal, then it is no problem to show
that R/A=2 (D+A)/A=D/(DNA)=D/0=D is a finite normalizing
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extension of a skew field, thus our statement follows from the Theorem. []
The following two questions arise.

(1) Let R = D be a finite normalizing extension of the skew field D.
Does R have almost symmetric self-duality (assd), i.e. is there an R-bimodule
U which defines a self-duality such that So(U) = R/Ra(R ) as R-bimodules ?
(Equivalently : Is there some u € So(U) with So(U) = Ru = uR and ru =
ur for all r € R? Note that from wssd there follows the existence of some
u € So(U) with So(U) = Ru = uR ; and compare also [16, Section 2].)
We have introduced this concept, which is derived from Azumaya [3], in our
paper [12]. It is stronger than wssd (i.e. if U defines an assd, then U de-
fines a wssd), and it plays an important role in the representation theory of
rings, as one sees from the following argument. Let sV define an assd and
denote J = Ra(S ), B= S/J. Then Homs(J*/J* s, Bs) = Homs(sJ!/J* ", sB)
as S-bimodules for i = 0, as can be derived from Rosenberg, Zelinsky [18]
(see [12, Corollary 9(2)]). In the case of i = 1 this biisomorphism is, or
can be transformed into, the duality condition used by W. Miiller [17], Dlab,
Ringel [7], Auslander, Platzeck, Reiten [2] and others. In certain cases
this biisomorphism is equivalent to the existence of assd (see [2, 5.7]); we
have generalized this in our paper [13].

It can be shown that finite dimensional algebras over fields have assd (the
proof uses that semisimple algebras are symmetric Frobenius algebras).
From [6, 3.1, 3.2] there follows that the rings of Example (3) have assd.
Hereditary artinian rings of the finite representation types A,, Dn, Es, E;
and Fs (n =1, m = 4 cf. Example (1)) also have assd (see [13, 4.7(2)];
the proof needs different methods than the ones which we have used here). It
can be shown that hereditary artinian rings of the finite representation types
B,, Cn(m = 2) and F, have wssd, but in general they do not have assd. In
the case of m = 2 an example has been given in [13, 5.9(3)], which can
easily be generalized to the cases of m = 3 and F.

(2) Is it possible to generalize the Theorem? What happens, e.g., if
we substitute the skew field by a finite product of complete noetherian valua-
tion rings, called D ? (See below for definitions. Note that D has wssd) In
this case there are the following difficulties which must be solved.

(i) In general D has zero divisors, so we cannot cancel, as we have
done in the proofs of ai;x = s (assx) and dy = ud;).

(ii) In general Rj is not a free module, so we cannot assume that the
44 are automorphisms of D.
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(iii) If R=X",5,D with biﬁ = Db, (i=1,...,n), then in general
there is not a subset I C {1,..., n} such that R = €, b,D.

So, in order to derive results, it is necessary to make additional as-
sumptions and to modify the calculations.

The most common examples of such rings are Artin algebras (see [11,
I. 7]) and complete noetherian serial rings, in particular artinian serial
rings.

(Definitions. A module is called uniserial if its submodules are linearly
ordered with respect to inclusion. Let S be a ring and denote J = Ra(S ).
A module Ms is called complete if M = lim(M/MJ"), the inverse limit (see
Rotman [19, Chapter 2] for details), and S is a complete noetherian valua-
tion ring if Ss and sS are complete, noetherian and uniserial. The ring S is
called serial if S5 and sS are finite direct sums of uniserial modules; and S
is an Artin algebra if S is artinian and a finitely generated module over its
centre.)
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