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A NOTE ON DERIVATIONS

Mates BRESAR

L. O. Chung and J. Luh [1] proved the following result: Let R be a
semiprime ring with a derivation d. Suppose there exists a positive integer
n such that d(x)™ = 0 for all x € R and suppose R is (n—1)!-torsion free.
Then d = 0. A. Giambruno and I. N. Herstein [2] showed that the assumption
that R must be {n—1)!-torsion free is unnecessary. In Herstein's papers
[4] and [5] some related results can be found.

The purpose of this paper is to prove two theorems ; the first one is a
generalization of the result of Chung and Luh.

Theorem 1. Let R be a semiprime ring with a derivation d. Suppose
there exist a € R and a positive inieger n such that ad(x)” = Q for all x € R
(ord(x)”a =0 for all x € R). If R is (n—1)!-torsion free then ad(x) = 0
=d(x)a for all x € R. Moreover, if R is prime. then either a =0 ord = 0.

We will use Theorem 1 in proving the following.

Theorem 2. Let R be a prime ring of characteristic not 2, and d a
nonzero derivation of R. If an additive mapping f of R is such that f(x)d(x)
=0 =d(x)f(x) forallx € R, then f= 0.

For the proof of Theorem 1 we need the lemma below.

Lemma 1([1, Lemma 1]). Let R be a m!-torsion free ring. Suppose
that t,, t,,....,tn, € R satisfy kt,+k*t,+---+k™t, =0 for k =1,2,....m.
Then t, = 0 for all i.

Proof of Theorem 1. We shall consider the case where d{x)"a = 0.
The case where ad(x)" = 0 can. of course, be discussed similarly. For the
proof we need several steps. We start with the lemma below,

Lemma A. Forallx y € R, £02 dz)*d(y)d(x)" *'a=0. (1)

Proof. A simple modification of the proof of Lemma 2 in [1].

Lemma B. Forallx, y €R. d*(x)yd(x)" 'a = 0.
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Proof. Replacing ¥ by d(x)y in (1) results in
0 = 2350 d(x) (d(x)y+d(x)d(y))d(x)" " 'a
= 20k d(x) d(x) yd(x)" " 'a
+ d(x)(20%2s d(-'l')kd()’)d(l‘)n *a);

according to (1) the above relation reduces to
xoo d(x)*d*(x) yd(x)" *'a =0 forall x, y € R. (2)

Taking y = »d(x)™' in (2) and using d(x)"a = 0 one obtains that
d(x)” 'd¥x)yd(x)" 'a = 0. The lemma will be proved by showing that
d(x)™'d x)yd(x)"'a = 0, where r >0 is any integer, implies d(x)".

d*(x)yd(x)*'a= 0. Taking y = yd(x)" in (2) we get > 3s d(x)*d*(x)-

yd(x)" ¥ '"*7a = 0 ; since d(x)"a = 0 this relation reduces to
d(x) d*(x) yd(x)" Ta+ > r2 ., dlx) *d¥(x) yd(x) " Ta = 0.
Hence, if u is an arbitrary element in R, then

(d(x)"d*(x) yd(x)" "a)ul(d(x) "d"(x) yd(x)" " a)
= —( L’Im d(x)*d*(x) yd(x) """~ ’a)u(d(x)’d”(x)yd(x)""
= — 2k re d(x) Fd* (o) (yd(x) ™ * " Taud(x) "d*(x) y ) d(a) ™ la— 0

by hypothesis. Since R is semiprime this relation implies that d(x)"d*x) -
yd(x)" 'a=0.

Lemma C. Forallx, vy, z € R, d¥(z)yd(x)" 'a= 0. (3)
Proof. Take y € R. By Lemma B we have
T(x, z) = (d*(x) +d*(2))y(d(x) +d(2))* 'a =0

for arbitrary x, z € R. Let us write (d(x)+d(2))" " as vo+v, =+ +v5y,
where v; denotes the sum of these terms in which d(x) appears as a factor in
the product j times. Since d*(x)yd(x)" 'a = d*(z)yd(z)" 'a = 0 we have

T(x, z) = 22525 d¥(x) yvra+2272) d*( 2) yvia.

Thus, if t, = d*(x)yve_,a+d*(z)yv.a, then we can write T(x, 2) = t,+---
+1tpy. Clearly, T(kx, z) = kt,+k*t,+.--+k" 't,_, for every integer
k. Since T(kx,z) =0, k=1,...,n—1 we have t,_, =0 by Lemma 1.
Note that v, = d(x)}™*'. Thus 0 = t,_, = d*(x) yy_,a +d*(z)vd(x)" 'a.
Using this relation and Lemma B, for every u € R we then have
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(d*(2)yd(x)"™ 'a)u(d*(z) yd(x)" 'a)
= —d*x)(yvp_,0ud¥z)y)d(x)" 'a = 0.

Hence d*(z)yd(x)" 'a = 0 by the semiprimeness of R.

Lemma D. Forall x € R, d(x)’a = 0.
Proof. Replacing z by x* in (3) yields
(d¥(x)x+2d(x) 4+ xd*(x))yd(x)" 'a = 0.

By Lemma B this relation reduces to 2d(x)’yd(x)"'a= 0. Of course,
we may assume that » > 3. Then R is 2-torsion free by assumption and
so d(x)®yd(x)" 'a= 0. Since the element y is arbitrary we also have
d(x)" 'ayd(x)® 'a= 0, hence d(x)" 'a= 0 by the semiprimeness of R.
Since n is any integer larger than 2 we have by induction d(x)*a = 0.

Lemma E. Forallxe R, d(x)a=0.

Proof. By Lemma D we may assume that n = 2. Hence, by (3) we
have d(z)yd(x)a = 0 for all x, y, z € R. In particular, d*(x)ayd*(x)a= 0
and also d*(z)d{x)ayd*(z)d(x)a = 0 which imply

d¥(x)}a= 0 for all x € R, (4)
d(z)d(x)a=0 forallx,z€ R (5)

by the semiprimeness of R. A linearization of d(x)*a = 0 gives
d(x)d(y)a+d(y)d(x)a= 0 for all x, y € R. (6)

By replacing y by yd(x) in (6) we get d(x)d(y)d(x)a+d(x)yd*(x)a+
d(y)d(x)’a+yd*(x)d(x)a = 0. Now according to (4), (5) and d(x)%a =0
this relation reduces to

d(x)d(y)d(x)a=0 forall x, y € R. (7)
Linearizing (7) we obtain ‘
d(x)d(y)d(z)a+d(z)d(y)d(x)a=0 for all x, y, z € R. (8)
By taking y = yd(z) in (8) we get

d(x)d(y)d(z)*a+d(x)yd*(z)d(z)a
+d(z)d(y)d(z)d(x)a+d(z)yd*(z)d(x)a = 0.
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Hence, using (5) and d(z)’a = 0 we conclude that d(z)d(y)d(z)d(x)a = 0.
Put y = yd(x)u in this relation. Then we have

d(z)d(y)d(x)ud(z)d(x)a+d(z)yd (x)ud(z)d(x)a
+d(z)yd(x)d(u)d(z)d(x)a =0 for all x, y, 2, u € R. (9)

By replacing ¥y by d(u)z in (7) we obtain d(x)d*(u)zd(x)a+d(x)d(u)d(z)-
d(x)a= 0. By (3) this relation reduces to d(x)d{u)d(z)d(x)a = 0. Thus
the last term in (9) is equal to zero. By (3) the second term in (9) is equal
to zero as well.

Hence (9) reduces to
d(z)d(y)d(x)ud(z)d(x)a =0 for all x, y, 2, u € R. (10)

We multiply (6) from the left by d(y) and by (7) it follows that d(y)*d(x)a
=0 for all x, y € R. A linearization gives d(y)d(z)d(x)a+d(z)d(v)d(x)a
= 0. Since the element u in (10) is arbitrary we also have d(z)d(y)d(x)
aud(y)d(z)d(x)a = 0. Combining the last two relations we obtain d{z)-
d(y)d(x)aud(z)d(y)d(x)a = 0 for all x, y, z, u € R. Since R is semiprime
this relation implies

d(2)d(y)d(x)a=0 forall x, y, z € R. (11)

Substituting xz for z and applying (11), we then get d(x)zd(y)d(x)a = 0 for
all x, y, z € R which yields d(y)d(x)a = 0 since R is semiprime. Now, by
replacing vy by xy we see that d(x)yd(x)a = 0, hence d(x)a = 0.

Lemma F. Forallx € R, ad(x) = 0.

Proof. By Lemma E we have 0 = d(xy)a = d(x)ya+xd(y)a = d(x)ya.
Hence (ad{(x))y{ad(x)) = a(d{x)ya)d(x) = 0 and so ad(x) = 0 since R is

semiprime.

From the proof of Lemma F we also see that if R is prime then either a
=0 or d(x) = 0 for all x € R. The proof of Theorem 1 is thus completed.

We leave as an open question the following : does Theorem 1 remain
true without assuming that R is (n—1) !-torsion free?

Our next goal is to prove Theorem 2. First we need two preliminary
results. The next lemma is more general than Lemma 3.10 in [3].

Lemma 2. Let R be a prime ring. Ifa, b, c € R are such that axb =
cxa for all x € R, then either a = 0 or ¢ = b.
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Proof. In axb = cxa replace x by xay. Then we have axayb = cxaya.
But ayb = cya and cxa = axb. hence we get ax(c—b)ya = 0. Since R is
prime this gives a = 0 or ¢ = b.

Proposition 1. Let R be a prime ring of characteristic not 2. and
let d be a nonzero derivation of R. If a € R is such that d(x)ad(x) =0
for all x € R, then a = 0.

Proof. A linearization of d(x)ad(x) = 0 gives d{(x)ad(y)+d(y)ad(x)
= 0. Replacing » by yz we obtain

d(x)ad(y)z+d{x)ayd(z) +d(y)zad(x) + yd( 2 )ad({x) = 0.

Since d(x)ad(y) = —d(y)ad(x) and d(z)ad(x) = —d(x)ad(z) we then have
d(y)[2. ad(x)] = [y, d(x)a]d(z) where [u, ] denotes the commutator wv—
vu, Using the last relation we get

d(y)[z. ad(x)]y+d(y)z[y. ad(x)] = d(y)[2zy. ad(x)]
= [y, d(x)a]d(zy) = [y. d(x)ald(z)y+[y. d(x)a]zd(y)
= d(y)[z. ad(x)]y+[y. d(x)alzd(y).

Thus
d(y)z[y, ad(x)] = [y. d(x)a]zd(y) for all x. y, z € R. (12)

Fix x € R. By (12) and Lemma 2 it follows that for every y € R
either d(y) = 0 or [v. ad(x)] = [y. d(x)a]. In other words, R is the union
of its subsets G =]y € Rld(y) =0} and H=1{y € R|[y, ad(x)—d(x)a]
= 0| : note that both are additive subgroups of R. But a group cannot be
the union of two proper subgroups, hence G = R or H = R. Since we have
supposed that d # 0 we are forced to conclude that H = R. That is.
[d(x). a] is in the center of R for arbitrary x € R . According to d(x)ad(x)
= 0 we then have

d(x)’a = d(x)[d(x). a] = [d(x). a]d(x) = —ad(x)’.

Multiplying from the left by d(x) we obtain d(x)’a=0. Now apply Theorem 1.
With this the proposition is proved.

Proof of Theorem 2. Linearizing d(x)f(x) = 0 we get d(x)f(y)+d(y)-
Sf(x) = 0. Multiplying this relation from the right by d(x), since f(x)d(x)
=0, it reduces to d(x)f(y)d(x) = 0. The result now follows immediately
from Proposition 1.
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