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ON WEAKLY PERIODIC RINGS, PERIODIC
RINGS AND COMMUTATIVITY THEOREMS

JuLEE GROSEN, Hisao TOMINAGA and ApiL YAQUB

Throughout, R will represent a ring with center Z. Let N, E be the
set of nilpotent elements of R and the set of idempotents of R, respectively;
let N* be the subset of N consisting of all-elements in R which square to
zero, For each integer n > 1, we put E, =lx€ R |x"= x!}. Call an
element x of R potent if x € P = Un-2 En. A ring R will be called peri-
odic if for each x € R, there exist distinct positive integers n, m for which
x" = x™. By [4, Proposition 2], R is periodic if and only if for each x €
R, there exists f(X) € X*Z[X] such that x— f(x) € N. If every element
of R is expressible as a sum of a potent element and a nilpotent element :
R = P+N, R is called a weakly periodic ring. It is well-known that if R
is periodic then it is weakly periodic (see, e.g.[1]). Whether R is weakly
periodic implies that R is periodic is apparently not known, except in the
presence of additional hypotheses ([2]. [3] and [7]).

The major purpose of this paper is to prove the following theorems.

Theorem 1. Lei P be an h-properiy, that is. a ring-property which is
inherited by every subring and every homomorphic image. Then the following
statements are equivalent :

1) For any weakly periodic ring satisfying P. its commutator ideal
is nil.

2) For every prime p, Mo(GF(p)) fails to satisfy P.

Theorem 2. Let R be a ring. Suppose that R = <E UN). IfNis
an ideal of R and nE = 0 for some positive integer n, then R- is periodic.

Theorem 3. Let R be a weakly periodic ring with 1, and let D, (resp.
D.) be the set of right (vesp. left) zero-divisors of R. Suppose that N is
commutative and Dr C E+N. Then N is an ideal of R and R= R/N is
either Boolean or a field.

Theorem 4. Let R be a weakly periodic ring. Suppose that 1) for each
x € R there exists f(X) € X*Z[X] such that x—f(x) € Cx(N), and 2)
for each x € N+E,(n> 1) and a € N. [(ax+x)""'—(xa+2)" " z] = 0.
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Then R is commutative.

Theorem 5. Let R be a ring with 1, and n > 1 a fixed integer. Sup-
pose that [x—x", y—y™] = 0 for all x,y € R.

(1) Let Q be the intersection of the set of non-units of R with the set
of quasi-regular elements of R. If (xy)"—x"y" € Z for all x,y € R\Q,
and (n—1) [a, x] = 0 implies [a.x] = 0 for all a € N, x € R, then R is
commulative.

(2) If (xy)"—(yx)" € Z for all x,y € R, then R is commutative.

(3) If[x".y"] € Z for all x,y € R. then R is commutative.

Obviously, Theorem 3 generalizes [5, Theorem 3.3], and Theorem 4
shows that [5, Theorems 2.1, 2.2 and 2.3] are still valid without the hy-
pothesis that R is a periodic ring.

In advance of proving our theorems, we state three lemmas.

Lemma 1. Let R be a weakly periodic ring. Then the Jacobson radical
J of R is nil. If, furthermore, xR C N for all x € N, then N=J and R

is periodic.

Proof. Let x be an arbitrary element of J, and write x = b—a, where
b"=b(n>1)and e € N. Then x+a= b= 58"= (x+a)” Noting that
x is in J, we see that a—a™ € J, whence a € J follows. This proves that
b"=b=x+a€ J. Since b”' is an idempotent with b = »" 'h, we get
b= 0, so that x= —a € N. The latter assertion is almost clear.

Lemma 2. If R is a weakly periodic division ring, then it is a field.

Proof. Obviously, for each x € R there exists an integer n > 1 such
that x” = x. Hence R is commutative, by Jacobson’s theorem.

Lemma 3. Suppose that R satisfies the following condition :
(C) for each x,y € R there exist f(X), g(X) in X*Z[X] such that
[x— flx),y—g(y)] = 0.
If for each a € N* and x € R, there exists a positive integer k such that
la.x]x (= [[a,x]s-1.2]) = O, then R is commutative.

Proof. By [6, Theorem C and Lemma 1 (2)], we seé that [a,x] = 0
for all ¢ € N* and x € R. Hence, [6, Lemma 2] shows that R = Cx(N*)

is commutative.
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Proof of Theorem 1. Since M,(GF(p)) is a periodic ring, it remains
only to prove that 2) implies 1). Let J be the Jacobson radical of a weakly
periodic ring R satisfying P, and let R’ be a primitive homomorphic image
of R. If R’ is not a division ring then, by the structure theorem of primitive
rings, we can easily see that there exists a prime p such that M,(GF(p))
is a factorsubring of R'. But this contradicts 2). Hence R’ has to be a
division ring, so R' is a field by Lemma 2. We have thus seen that R/J
is commutative, that is the commutator ideal C(R ) of R is contained in J.
Hence, by Lemma 1, C(R) is nil, which proves the theorem.

Corollary 1. Let P be an h-property. Suppose that for each prime p,
M,(GF(p)) fails to satisfy P. Then every weakly periodic ring satisfying
P is periodic.

Corollary 2. Let R be a weakly periodic ring, and m > 1 an integer.
Suppose that for each xi,...,xm € R, there exists a monic monomial (word)
w and a polynomial f in Z{X:,.... Xn) such that

(1w (x1, s X n)Em—Xnf(X1, .o )21, 1] = 0.
Then R is periodic.

Proof of Theorem 2. As is well-known, R/N is a subdirect sum of
subdirectly irreducible rings R; (i € I). Since R/N is generated by central
idempotents as ring, R; is generated by an identity element as ring. Noting
that nE = 0, we see that R; is a homomorphic image of Z/nZ. It is easy
to see that Z/nZ satisfies the polynomial identity X**—X* = 0 for some
positive integer k. Also R/N satisfies the same identity. Thus, R is peri-
odic by [4, Proposition 2].

Corollary 3. Suppose that R= (E U N) and nE = 0 for some posi-
tive integer n. If N is commutalive then R is periodic. In pariicular, if
R satisfies the condition (C) then R is periodic.

Proof. By [2, Theorem 2], N is a commutative ideal. The latter as-
sertion is clear by [6, Theorem C].

Proof of Theorem 3. In view of [2, Theorem 2], N is an ideal of R
and R is periodic by [4, Proposition 2]. As is easily seen, D, = D, =
R\U. where U is the set of units in R. Hence R = E U U is commutative,
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by Jacobson's theorem. Suppose now that there exists an idempotent & +
0,1 in R. Then, for eachx € R, ex & U and(1—¢&)x & U. Hence ez°* =
(ex)? = ex and (1—&)x* = (1 —¢)x, whence z°* = % follows.

Proof of Theorem 4. By 1), we can easily see that N is commutative.
Hence, by [2, Theorem 2], N is a commutative ideal.

Now, let x€ N+En(n> 1) and a € N. Then x—x" € N and x’—
™' € N. In particular, R satisfies the condition (C). Further, noting
that N* C Z, we have

[a.x™'], x] = [(ax+x) ™' —(xa+x)™". x] = 0.

Combining this with [a, z’—x™'] = 0, we get [[a, x*], x] = 0. Hence, by
[6, Lemma 1 (2)],

[a,x*] = 0 for all x € R and @ € N.

In particular, this proves that EC Z,

The usual argument then shows that we may assume, without loss of
generality, that R is a local ring with radical N and characteristic p® for
some prime p (see [1, Lemma 1 (d)]). In order to see that R is commuta-
tive, it is enough to show that [a,x] = 0 for all x € R and a € N (see
Lemma 3). Obviously, 2 [a,x] = [a,(x+1)*] = 0. Incasep # 2, [a,x] =
0 is immediate. Henceforth, we assume p = 2. Further, we may assume
that x & N. Then, by x"—x € N with some n > 1, # = x+ N generates a
finite field GF(2*). Hence [a, x**—x] = 0, and therefore [a, x] = [a.z*"] =
[a. (*)*"] = 0.

Proof of Theorem 5. In view of Lemma 3, it is enough to show that
[a,x]s =0 for all a € N* and x € R. By [6, Theorem C], N is a com-
mutative ideal, so N°C Z. If a € N and x € R, then [a, x—x"] = [a—a",
x—x"] = 0, and hence [a,x] = [a, x"].

(1) Let a € N*. If x € R\Q then, since N*°C Z, (n—1)[a, x]z =
[(n—=1Dla, "], x] = [(x(1+a))"—x™(1+a)", x] = [((1 +a)x)"—
(1+ a)"x". x] = 0, and therefore [a,x].= 0. If x€ Q, then 1— xe
R\Q. so[a,x]. = [a,1—x]. = 0, by the above.

(2) Let a € N*, x € R. Then, since N°C Z, [a,x].=[[a,x"], x]
= [((1+a)e)"—(x(1+a))" x] = 0.

(3) Let ae N*, x€ R. Then, since N°C Z, [a,x])s = [[a,x]), "]
= [[a.x"]. x"]: = [[{x+ax)", ] =[(x+xa)™, =], ] = O.
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