A NOTE ON ZERO COMMUTATIVE AND DUO RINGS

JEBREL M. HABEB*

In this paper we show that artinian duo rings are (finite) direct sum of local subrings and artinian duo QF-3 rings are actually QF-rings and hence exact rings in the sense of Azumaya [2] and have the self-duality.

A ring R is a left (resp. right) duo ring if every left (resp. right) ideal is a two-sided ideal. R is duo if it is both left and right duo. R is zero commutative (zc) if for all $a, b \in R$, ab = 0 implies ba = 0. R is zero insertive (zi) if for all $a, b, x \in R$, ab = 0 implies axb = 0.

It can be shown that every zc ring is zi but the converse is not true ([5]). Every duo ring is zi. The idempotents in a zi ring are central idempotents.

For $a \in R$, let $\ell(a) = \{r \in R | ra = 0\}$, i.e., the left annihilator of a in R and $r(a) = \{r \in R | ar = 0\}$, i.e., the right annihilator of a in R.

Lemma 1 ([5]). For any ring R the following are equivalent:

- (1) R is zi.
- (2) For each $a \in R$, $\ell(a)$ (equivalently r(a)) is a two-sided ideal.

Proof. (1) \Rightarrow (2) Suppose that R is zi and let $a, s \in R$ and $r \in \ell(a)$. Then ra = 0 and so rsa = 0, which implies $rs \in \ell(a)$. So $\ell(a)$ is a right ideal, but it is known to be a left ideal. So it is two-sided. Reversing the proof shows (2) \Rightarrow (1).

Lemma 2. Let e be an idempotent of R. Then the following conditions are equivalent:

- (1) e is in the center of R.
- (2) Re = eR.
- $(3) \quad \ell(e) = r(e).$

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) are clear. Now assume (2). Let $r \in R$. Then $re \in eR$ implies ere = re. Similarly, ere = er so re = er. Thus e is in the center of R, and this shows (2) \Rightarrow (1). Assume (3). Since e is an idempotent, $\ell(e) = R(1-e)$ and r(e) = (1-e)R. Therefore (3) implies

^{*}The author is supported by Yarmouk University

R(1-e)=(1-e)R. Applying then the implication (2) \Rightarrow (1) to 1-e instead of e, we know that 1-e is and hence e is in the center of R.

For a ring R let J denote the Jacobson radical of R, i.e., the intersection of all maximal left ideals of R.

Proposition 3. Let R be a left artinian ring. Then the following conditions are equivalent:

- (1) Every idempotent of R is in the center of R.
- (2) R is a direct sum of (orthogonal) local subrings.

Proof. Let e be a primitive idempotent of R. Then as is well-known, Je is a unique maximal left subideal of Re. Assume e is in the center of R. Then e is the identity element of the subring eRe = eR = Re. Moreover since ra = rea for all $r \in R$ and $a \in eRe$, every left ideal of the ring eRe = Re is a left ideal of R. Thus Je (= eJ) is a unique maximal left ideal of eRe, and therefore eRe is a local ring ([1]). Let $1 = e_1 + e_2 + \cdots + e_n$ be a decomposition of 1 as a sum of orthogonal primitive idempotents e_1 , which are all in the center of R. Then

$$R = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n = e_1Re_1 \oplus e_2Re_2 \oplus \cdots \oplus e_nRe_n$$

gives a direct decomposition of R into orthogonal local subrings. Thus $(1) \Rightarrow (2)$ is proved.

Assume conversely (2), i.e., $R = R_1 \oplus R_2 \oplus \cdots \oplus R_n$ where R_i 's are orthogonal local subrings of R. Let $1 = e_1 + e_2 + \cdots + e_{n'}$, $e_i \in R_i$ be the corresponding decomposition of 1. Thus, as is well-known, e_1, e_2, \ldots, e_n are orthogonal idempotents in the center of R and each e_i is the identity element of $R_i = e_i R e_i$. Let e be any idempotent of R. Then, since each e_i is in the center, $ee_i (= e_i e)$ is an idempotent contained in R_i . Since R_i is a local ring, $ee_i = 0$ or $ee_i = e_i$ and so ee_i is any way in the center of R. Since further $e = ee_1 + ee_2 + \cdots + ee_n$ we know that e is in the center of R. This proves $(2) \Rightarrow (1)$.

Corollary 4. Every artinian duo, every zc and every zi ring is a direct sum of local subrings.

Proof. Every duo ring is zi ring and every zc ring is zi ring and in a zi ring all idempotents are central. We now apply the above proposition.

Lemma 5. Let R be a ring with all the idempotents are central. Then

ab = 1 implies ba = 1 for all $a, b \in R$.

Proof. Let a and b be non-zero in R with ab = 1. Then $(ba)^2 = baba = ba$ is an idempotent. Since it is central, we have b(ba) = (ba) b = b(ab) = b. Now $ba = 1(ba) = (ab)(ba) = ab^2a = ab = 1$.

Lemma 5 shows that if R is a zi ring, then R is "1" commutative. In particular this is the case for every zc and every duo ring.

A left artinian ring R is a Quasi-Frobenius (QF-) ring if $\ell(r(L)) = L$ and $r(\ell(K)) = K$ for every left ideal L and every right ideal K of R. This is equivalent to the conditions that R is left artinian and R is injective as a left R-module. A ring R is a QF-3 ring if it has a unique minimal faithful left R-module. This is equivalent to the condition that the injective envelope E(I) of every simple left ideal I of R is isomorphic to Re for some primitive idempotent e in R.

Proposition 6. A QF-3 left artinian ring R is zi if and only if R is duo.

Proof. Let R be a left artinian $QF \cdot 3$ zi ring. By Corollary 4 we may assume that R is a local ring. Let I be a simple left ideal of R. Then the injective envelope E(I) of I is isomorphic to Re for some primitive idempotent e in R([1]). But R, being local, has 1 as the only primitive idempotent. So $E(I) \cong R$, i.e., R is injective thus R is actually QF ring.

Now let L be a left ideal of R. Then $\ell(r(L)) = L$. Since R is zi, $\ell(r(L))$ is a two-sided ideal by Lemma 1. Similarly every right ideal of R is two-sided, and thus R is duo.

It is well-know that every artinian QF ring has the self-duality. By [4] artinian duo rings are exact rings in the sense of Azumaya [2], so we have another example of an exact ring with self-duality.

REFERENCES

- F. W. Anderson and K. R. Fuller: Rings and Categories of modules, New York, Springer-Verlag, C 1974.
- [2] G. AZUMAYA: Exact and serial ring, J. Algebra 85 (1983), 477-489.
- [3] G. AZUMAYA: A duality theory for injective module, Amer. J. Math. 81 (1959), 249-278.
- [4] J. M. HABEB: On Azumaya's exact rings and artinian duo rings, Communications in algebra, 71 (1989), 237-245.

- [5] J. W. Simmons II: Zero commutative group algebras and algebras of small orders over the field Z₂ and other fields, Thesis. Indiana University (1982).
- [6] G. THIERRIN: On duo rings, Can. Math. Bull. 3 (1960), 167-172.
- [7] W. XUE: Artinian duo rings and self-duality, Proceedings of the American Math. Society, 105 (1989), 309-313.

MATHEMATICS DEPARTMENT YARMOUK UNIVERSIY I RBID - JORDAN

(Received June 26, 1989)