Math. J. Okayama Univ. 32 (1990), 61—72

PRIME IDEALS OF SKEW POLYNOMIAL RINGS
AND SKEW LAURENT POLYNOMIAL RINGS

Dedicated to Professor Takasi NAGAHARA on his 60 th birthday
Epuarno CISNEROS, MicueL FERRERO and Maria InEs CONZALEZ

0. Introduction. Let R be a ring and let R[X] be the polynomial
ring over R. The structure of R-disjoint ideals of R[X] has been studied
in [3]. In particular, we have a complete description of the prime ideals of
R[X] and a one-to-one correspondence between the set of R-disjoint prime
ideals of R[X]. the set of Q-disjoint prime ideals of Q[X] and the set of
monic irreducible polynomials of C[X], where @ is a ring of right quo-
tients of R and C is the extended centroid of R. For a skew polynomial
ring of derivation type R[X:d], where d is a derivation of R, the corre-
sponding matter has been considered in [6].

Now, let o be an automorphism of the ring R. The skew Laurent poly-
nomial ring R (X p) is the ring whose elements are of the form Z7-_, X°b;,
b; € R, where the addition is defined as usually and the multiplication by
bX = Xp(b), for all b€ R [4]. The skew polynomial ring R[X: p] is the
subring of R{X; o) whose elements are the polynomials 3.7-, X'b:, b: € R.
The purpose of this paper is to study prime ideals of R{X: p) and R[X; p].

We use § 1 as an introductory section. In § 2 we study R-disjoint prime
ideals of R (X: p). The main result states that if P is an R-disjoint ideal of
R{X; p) then P is prime if and only if R is p-prime and P = f£oQ(X: o) N
R{(X: p), where Q is the p-quotient ring of R and fy is an irreducible poly-
nomial of the center of Q{X: p). This result extends the results of [3].
We also give an intrinsic characterization for P to be a prime ideal.

In § 3 we study prime ideals of R[X: p]. We prove that there is a
one-to-one correspondence between the set of all R-disjoint prime ideals P of
R[X: p] with X ¢ P and the set of all R-disjoint prime ideals of R{(X: p).
Then we have a description of those prime ideals using the results of the
former section.

Finally, in § 4, we apply the results to get necessary and sufficient
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conditions for every prime ideal of R(X:p) (R[X; p]) to be nonsingular.

1. Prerequisites. Throughout this paper every ring has an identity
element. If R is a ring and p is an automorphism of R, then an ideal I of
R is said to be a p-ideal (p-invariant ideal) if p(I) C I (p(I) =1I). Let
P be a p-invariant ideal of R (we denote it by P <], R). Then P is said
to be o-prime (strongly p-prime) if IJ C P for any p-invariant ideals I and
J (p-ideal I and ideal J) of R implies either ] C P or J C P. The ring
R is said to be p-prime (strongly p-prime) if the ideal (0) of R is p-prime
(strongly p-prime). Clearly, if R is strongly p-prime then R is p-prime.
Our terminology is taken from [1] and does not agree with that of references
[10] and [11]. It is also convenient to remark that strongly o-prime is not
the same as p-strongly prime (see [5]).

Let R be a p-prime ring. As in ([9], Ch. 3) we define the right
(Martindale) p-quotient ring @ of R as li_r)n,e,- Homy (Iz, Rx), where &
is the filter of all non-zero p-invariant ideals of R. By C we denote the
center of Q. The automorphism p can be extended to a unique automorphism
of Q which we will denote by p again and we put C, = la € C: p(a) = al.
The ring Q inherits all basic properties of the classical Martindale’s con-
struction. In particular, we easily have the following (c.f [2], Lemma 1.2).

Lemma 1.1. (i) RC Q.

(ii) If 0 £ I<oR and f: 1> R is a homomorphism of right R-
modules, then there exists ¢ € Q such that f(r) = gr, for all r € I. More-
over, ¢ € C if and only if f is an R-bimodule homomorphism.

(ii) For any gq,,...,q in Q there exists 0 % I <1, R such that q.IC
R jfor i=1,...,n

(iv) If gI =10 for some ¢ € Q and 0 % I <, R, then ¢ = 0.

(v) Q is p-prime.

We will need also the following.

Lemma 1.2. Assume that q € Q verifies qR = Rq and p(q) = q.
Then q is invertible in Q. In particular, C, is a field.

Proof. I=qR N R is a p-invariant ideal of R. If gr = 0, for some
r € R, then Ir =0 and so r = 0. Hence the map f: ] —» R defined by
flgr) = r is a(well defined) right homomorphism. Then the element of @
corresponding to f is an inverse of q.
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When R is prime, the center Z(Q[X; o]) of Q[X: o] has been de-
scribed in ([8], Proposition 2.3). Repeating the arguments in [8] we can
prove the following lemma.

Firstly, suppose that o* is an inner automorphism of Q for some k =
1. Then there exists the smallest non-zero natural number m such that o™
is an inner automorphism of @ determined by a p-invariant element 4 €

Q. We have:

Lemma 1.3. (i) If o* is not an inner automorphism of Q for all
k21, then Z(Q(X: p)) = Z(Q[X: p]) = Co.

(i1) If o is an inner automorphism of Q for some k =1, then
Z(Q{X:p)) = Colz) and Z(Q[X:p)) = Colz], where 2z = X™b~". m
and b as above.

The automorphism p of R can be extended to an automorphism of
R(X;p)(and R[X; p]) by the natural way. We denote the extension by o
again. If I is an ideal of R (X p), then I is a p-invariant ideal. We say
that I is R-disjoint if IN R = 0.

An element of R[X; p] is called a polynomial and a proper polynomial
if its constant term is non-zero. In case that f is a proper polynomial, the
degree of f and the leading coefficient of f are defined in the obvious manner
and denoted by of and lc(f). respectively.

If I is a non-zero R-disjoint ideal of R (X; p). there exists a proper
polynomial of minimal degree n in I. The integer n is said to be the min-
imality of I and denoted by Min(/). We denote by 7(I) the p-invariant
ideal of R of all the leading coefficients of proper polynomials of minimal
degree in I (together with 0).

2. Prime ideals of R(X;p). If P is a prime ideal of R(X; p).
then PN R is a p-prime ideal of R. By factoring out PN R and
(PN R){X; p) from R and R{X; p), respectively. we may assume that R
is p-prime and P is R-disjoint. So, throughout this section we assume
that R is p-prime. We denote by @ the (right) p-quotient ring of R and
by Z the center of Q(X; p).

We begin with the following.

Lemma 2.1. Let I be a non-zero R-disjoint ideal of R{(X: p) with
Min(I) = n. Then there exists a unique monic proper polynomial fi €
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Q<{X: p) such that for any polynomial f € I with of = n we have f =
file(f). In addition, X~ "f; € Z.

Proof. If a € ¢(I), then there exists a unique
f=X"a+X"'an1t+Fa € I

Therefore the map a;: v(I) = R defined by ala) = a: is a (well defined)
homomorphism of right R-modules, i = 0, 1,..., n (where an = a). Since
7(I) is a p-invariant ideal there are elements gn =1, gn-1,..., go in @
such that ga =4a,. i=0,1,.... n. Define fi = X"+ X" 'gn1+--+qo €
Q (X : p), which is clearly the unique proper polynomial such that f=
file(f), for any polynomial f € I with of = n.

Now we show that X~ "f, € Z. For any a € 7(I), pla) € z(I). Thus
fia €1 and fp(a) € I. Hence (fi—p(fi))o(a) = fip(@)— p(fi2) € T and
since A(fi—p(f))) < n, we have (fi—p(f1))z(I) = 0. This implies that
o(fi) = fi and so Xfi = fiX. Also, for any a € ¢(I) and b € R, bfia € I
and fip™(b)a € I. Since 3(bfi—f1p™(b)) < n it follows as above that bf; =

fip™(b). Now we can get easily the required relation.

The polynomial f; constructed in the above lemma will be called the
canonical polynomial of the non-zero R-disjoint ideal I.

Corollary 2.2. Let fi be the canonical polynomial of the R-disjoini
ideal I of R(X; p). Then 12 fiQ{X:p) N R{X: p).

Proof. Suppose f € I is a polynomial. Since f; is monic there exist
polynomials & and 7 in Q{X; p) such that f = fih+r, where either r = 0
or or < &fi = Min(I). Take a non-zero p-invariant ideal J of R such that
hJ and rJ are contained in R<{X; p). We get easily rz(I)J C I and so
rr(I)J = 0. Since z(I)J #+ 0 it follows that »r = 0, i.e., f= fih €
SQX: p) N R(X: p).

Now, if f is an arbitrary element of I, there exists an integer ¢t = 0
such that X’ € I is a polynomial. Then X'’f € fiQ(X; p) and so f €
X'iQ(X; p) N RLX5 p) = fiQ(X 5 p) N RLX; o).

Let I be a non-zero R-disjoint ideal of R{X; p) and let f; be the ca-
nonical polynomial of I. Since X 2/V'f, € Z it follows that fiQ(X; p) is
an ideal of Q{X; p). We define the closure [I] of I by [I] = fi@Q(X: p) N
R{(X: p). The ideal I is said to be closed if [I] = I

It is convenient to have an intrinsic characterization of a closed ideal.



PRIME IDEALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS 65

Firstly, if I is an R-disjoint ideal of R{X: p) and f = X"a+ X" 'an_,
+::-+ao is a proper polynomial of minimal degree = in I, then g = arp’(f)—
p™(fr)p’la) € I(r €R, j€ Z) and 9g < n. So we have

(*): arp’(f) = p™(fr)p’(a), for all r € R, j € Z.

Now, let I'x be the set of all proper polynomials in R{X: p) which
satisfy the condition (*). For f € Iz with fe(f) = a we put

[(fle=1g € R{(X; p): there is 0 = J <1, R such that
0(g)Ja C R{(X: p)f. for all i € Z].

Hereafter we denote I and [f]x simply by I" and [f] and we use %
and [ f]q for the corresponding subsets of Q(X; p). Note that I'{ =1 fo €
I'e: fo is monic} is equal to the set of all the monic proper polynomials g
of Q(X; p) such that X~%g € Z. In particular, if I is an R-disjoint ideal
of R(X: p), then the canonical polynomial f; of I is in I¢.

Lemma 2.3. If f € I then[f] is an R-disjoint ideal of R{(X; p)
which contains f as a proper polynomial of minimal degree.

Proof. Write f = X"a+---+ao. It is easy to see that [ f] is an ideal of
R(X: p). Also, by condition (*), p*(f)ra = p* ™(a)p™(r)f € R(X; p)f.
for all r € R, i€ Z. Then f € [f].

Suppose there exists a proper polynomial 0 + h € [ f] with ah < 3.
Then there exists a non-zero p-invariant ideal J of R with AJa C R{(X: p)f.
Take b € J such that hba # 0. Then hba = gf, for some g = X™bn+ -+
X®bs (s < m), and we may assume that g is chosen with m—s being min-
imal. If m = 0, then p™(bm)a = 0. Using (*) and the p-primeness of R
we easily get bnf = 0. Thus gf = (g—X"bn)f. Hence we may assume
that m < 0. In this case we have bsao = 0. Again, using (*), we get
bsf = 0 and so gf = (g—X°bs)f, a contradiction.

Proposition 2.4. Let I be an R-disjoint ideal of R (X; p) and let f
be any polynomial of minimal degree n in I. Then f € I' and [I] = [f].

Proof. We have already seen that f &€ J". Let f; be the canonical
polynomial of I. Then f= fia, where a = fe(f). Suppose h = fig € I,
g € Q{X: p), and let J be a non-zero p-invariant ideal of R with gJ C
R(X: p). Hence p'(h)Ja = fip'(g)Ja = X"0"(gJ)X ™fia € R{(X: p)f, for
every i € Z, and it follows that A € [f]. Consequently [I] C [f].
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Conversely, suppose g € [f] and let L be a non-zero p-invariant ideal
of R such that p(g)La € R{X; p)f, for all i € Z. There exists t =0
with X'g € R[X; p]. Since f; is monic there exist h and r in Q[X; p]
such that X‘g = fih+r, where either r = 0 or or < n. We easily get
p(r)La C fiQ[X: o] for every i € Z, hence p'(r)La = 0 and so r = 0.
Thus g = fiX"'h € [I] and the proof is complete.

Corollary 2.5. Let I be a non-zero R-disjoint ideal of R{X: p). Then
[I] is the largest ideal H of R{X; p) which contains I and satisfies Min
(H) = Min(I). In particular, [[I]] = [I].

Proof. 1t is clear that Min([I]) = Min(I). If H D I and Min(H) =
Min(I), choose a polynomial f of minimal degree in I. Then H C [H] =

/1 =11].

Next we will need the following

Lemma 2.6. A Q-disjoint ideal J of Q{X; o) is closed if and only if
J = foQ{(X; p) for some monic proper polynomial fo € I.

Proof. Suppose that f, € Tq and n = 9(f,). Since X~ "f; € Z is clear
that f,Q(X; p) is an ideal of Q(X: p). Let I be an ideal of Q(X; p)
such that 1D foQ(X;: p) and Min(I) = n. If g € I, using the division
argument we get g = foh, h € Q{(X; p). Consequently, I = £i,Q(X; p) is
closed by Corollary 2.5.

Conversely, assume that J is a closed ideal of Q (X ; p). Consider the
non-zero R-disjoint ideal I=J N R{(X; p) of R{X; p) and the canonical
polynomial f;. It is clear that a(f;) = Min(I) = Min(J) and we can easily
see that J = fiQ(X: p).

Before proceeding to apply the former results to study prime ideals
we recall the following.

Lemma 2.7 (c.f. [1], Lemma 1.4 and Proposition 1.6). Let P be
a non-zero R-disjoint ideal of R{(X; p). Then P is prime if and only if R
is p-prime and P is maximal with respect to PN R = 0.

Let f be a proper polynomial in [:. We say that f is irreducible in
I'x when the following condition holds : if there exist g € I'x and a proper
polynomial A € R{(X: p) such that f = gh, then 9g = 9f. Similarly, we
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define the irreducibility of a proper polynomial in .
Now we can prove the main result of this section.

Theorem 2.8. Let R be a p-prime ring and P a non-zero R-disjoint
ideal of R{(X: p). Then the following conditions are equivalent.

(i) P is prime.

(ii) P is closed and every f € P with of = Min(P) is irreducible
in Ik.

(iii) P = fQ{X:p0) N R{(X; p), where f, is a monic proper polyno-

mial in ['q which is irreducible in I.

Proof. (i) — (ii). P is closed by Lemma 2.7. Suppose f € P and
of = Min(P). If f=gh, g € Iz, then f € gR(X; p) C [g]. It is easy to
see that this implies [f] C [g]. Then P = [f] = [g] and so o = 9f.
Thus f is irreducible in I%.

(ii) — (iii). If P is closed then P= f,Q{(X: p) N R{(X; p). for f» €
I'q. Suppose fp = gh, where g € TI',. Let J be a non-zero p-invariant ideal
of R with g/ C R{(X; p)and hJ C R{(X; p). Put n = Ofr and s = g and
choose b, b, in J such that a = p"(b1)b. = 0. We have foa = b, frb, =
bighb: = 8o°(b\)hb: € P, 3(fra) = Min(P) and go®(b,) € I'x. Hence gg =
o(go°(b1)) = a( fra) = Ofp. Consequently, fy is irreducible in I.

(iii) > (i). Let L be an R-disjoint ideal of R{X;: p) with L D P.
Replacing L by [L] we may assume that L is closed, i.e., L = hQ{X: o) N
R{(X: p) for some ho, € I'q. If fo = hog+r, where either r = 0 or or <
Oho, we easily get r = 0. Then fi = hog and irreducibility gives oh, =
9fo, s0 ho = fo. Consequently, P = L and P is prime by Lemma 2.7.

If there exists a non-zero R-disjoint ideal of R{(X: p), then Z % C,
by Lemma 2.1. Hence we know that Z = C,(z). where z = X™b~'. m and
b~' as in Lemma 1.3. Using this notation we have.

Corollary 2.9. Let P be a non-zero R-disjoint ideal of R(X: p).
Then the following conditions are equivalent.

(i) P is prime.

(i1) P = gQ{X:p0) N R(X: p), for some monic proper polynomial
go € Cylz] which is irreducible in Co(z] and g F z.

Proof. (i) — (ii). If P is prime, then P = f,Q(X; p) N R{(X: p),
where fo € T and it is irreducible in ;. Since X~ %°f, € Z we easily
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get ofo = ms, for some s = 1. Then gy = fob~° is a monic proper polyno-
mial in C,[2]. The irreducibility of f, in Iy implies the irreducibility of
go in Colz]. Finally P = g,Q(X; p) N R{(X; p).

(ii) » (i). It is easy to revert the arguments.

Corollary 2.10. There is a one-to-one correspondence between the fol-
lowing.

(i) The set of all R-disjoint prime ideals of R{X; p).

(ii)  The set of all Q-disjoint prime ideals of Q{(X; p).

(iii) The set of all maximal ideals of Z.

Moreover, this correspondence associates the R-disjoint prime ideal P
of R{(X; p). the Q-disjoint prime ideal P* of Q{(X: p) and the maximal
ideal M of Z if P* N R{X: p) = P and MQ(X; p) = P*.

Proof. If there is no non-zero R-disjoint ideal of R (X p), then the
same is true of Q(X; p) and Z = C, is a field. This establish the result

in this case. The other case can easily be proved using Lemma 2.6,
Theorem 2.8 and Corollary 2.9.

In particular, we have

Corollary 2.11. Assume that there exists a non-zero R-disjoint ideal
of R{X; p). Then there is a one-to-one correspondence between the fol-
lowing.

(i) The set of all R-disjoint prime ideals of R{(X: p).

(ii) The set of all prime ideals of C,[t] which are different of tCo[t].

where 1 is an indeterminate.

Remark 2.12. Using the results on closed ideals we can also give
a one-to-one correspondence between the set of all closed ideals of R (X : p),
the set of all closed ideals of Q(X: p) and the set of all the ideals of Z,
as in Corollary 2.10. It follows that an intersection of closed (prime)
ideals of R (X; p) is non-zero if and only if it is a finite intersection.

3. Prime ideals of R[X; p]. It is quite easy to describe the prime
ideals of R[X; p]. based on the results of the former section.

Firstly, let I be an ideal of R[X: p]. We say that X is regular modulo
I if the following condition holds: Xf € I implies f € I and gX € I implies
g €1, for any f,g in R[X:p]. It is easy to see that if P is a prime
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ideal of R[X; p] with X & P, then X is regular modulo P.
We begin this section with the following.

Lemma 3.1. There is a one-to-one correspondence via coniraction be-
tween the following.

(i) The set of all R-disjoint ideals of R (X p).

(ii) The set of all R-disjoint ideals I of R[X;: p] such that X is
regular modulo 1.

Proof. 1f I is an R-disjoint ideal of R(X: p). then I = IN R[X; p]
is an R-disjoint ideal of R[X: o] and X is regular modulo I,. On the other
hand, if J is an R-disjoint ideal of R[X; p] such that X is regular modulo
J we put (J) = 2uzo X%J. Then(J) is an ideal of R{X: p) such that
(J) N R[X;p] =J. The rest is clear.

If P is a prime ideal of R[X; o], then either X € P and P =
(PNR)+XR[X; p] or X is regular modulo P and P N R is a strongly
p-prime ideal of R ([1], Lemma 1.3). Since the prime ideals of the first
type are determined by the prime ideals of R, we are interested in the
prime ideals P with X & P. In this case, by factoring out P N\ R we may
asume PN R = 0 and R is strongly p-prime. We recall the following.

Lemma 3.2 (c.f. [1], Proposition 1.6). Let P be an R-disjoint
ideal of R[X; p] with X & P. Then P is prime if and only if R is strongly
o-prime and P is maximal with respect to PN R = 0.

As an immediate consequence of our former results we have the fol-
lowing corollaries.

Corollary 3.3. Let R be a strongly p-prime ring. Then there is a
one-to-one correspondence via coniraction between the following.

(i) The set of all R-disjoint prime ideals of R (X p).

(ii) The set of all R-disjoint prime ideals P of R[X; p] with X & P.

Corollary 3.4. Let R be a strongly p-prime ring and let P be a non-
zero R-disjoint ideal of R[X: o). Then P is prime if and only if one of
the following conditions is fulfilled.

(i) R is prime and P = XR[X; p].

(ii) P = fiQ[X: p] N R[X: p]. where fo is a monic irreducible poly-
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nomial in C,2] which is different of 2(z = X™b™' as above).

Remark 3.5. We also have a one-to-one correspondence between the
set of all R-disjoint prime ideals of R[X; o], the set of all Q-disjoint
prime ideals of Q[X: o] and the set of all maximal ideals of C,[2], when
Z(Q[X; p]) # Co.

On the other hand, it is also possible to define a closure operator in
the set of R-disjoint ideals of R[X: p] so that the prime ideals become
closed. But we do not see any good reason to study this notion.

4. Nonsingular prime ideals. In this section we denote by S(R) the
(right) singular ideal of R([7], p.30). We recall that a prime ideal P of
R is said to be (right) nonsingular if S(R/P) = 0. From the results in
([3], §4) it follows that every prime ideal of the polynomial ring R[X] is
nonsingular if and only if every prime ideal of R is nonsingular.

The purpose of this section is to apply the results in the former sec-
tions to get necessary and sufficient conditions for every prime ideal of

R{X; p)(R[X; p]) to be nonsingular. We have the following.

Theorem 4.1. Every prime ideal of R{X; p) is nonsingular if and
only if every p-prime ideal of R is nonsingular.

Theorem 4.2. FEvery prime ideal of R[X; p) is nonsingular if and
only if every prime ideal and every strongly o-prime ideal of R are nonsin-
gular.

The proof of Theorem 4.1 is a trivial consequence of the next lemmas.
Theorem 4.2 can be shown similarly.

We denote by rz(a) the right annihilator of ¢ in R. Also, if I is a
right ideal of R, I{X) denotes the right ideal of R (X: p) whose elements
can be written in the form XZ7._, . X%, b, € I. Finally we put T = R{X: p).

Lemma 4.3. S(T) = S(R){X; p).

Proof. Suppose that @ € S(R) and let I be a non-zero right ideal of
T. f IN R =+ 0, then it is clear that there exists 0 =5 € IN R such
that @b = 0. Assume I N R = 0 and suppose that ag = 0 for every non-zero
polynomial g € I. Hence there exists a non-zero polynomial f € I such that
d(af) is of minimal degree s, say, af = X°0°(a)as+---+aas. Since asR +



PRIME IDEALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS 71

0 and p°(a) € S(R), there exists r € R with asr #+ 0 and p°(a)asr = 0.
Thus 0 = fr € I and 8(afr) < s, a contradiction. Therefore rr(a) N I =+
0 and so ¢ € S(T).

Now, let f= Y7 X’%b: € S(T), bn#+ 0(¢t <n). If I is a non-zero
right ideal of R, then there exists 0 = h € I{(X) with fh = 0. It follows
that 7x(bs) N I+ 0. Hence b, € S(R) and so X"b, € S(T). Thus f—
X"n € S(T) and repeating this argument we get f € S(R){X: p). This
completes the proof.

Lemma 4.4. Assume that R is p-prime and S(R) = 0. Then every
prime ideal P of T such that P N\ R = 0 is nonsingular.

Proof. If P = 0, then P is nonsingular by Lemma 4.3. Thus we may
assume P =+ 0. Let fr be the canonical polynomial of P. We have P =
frQ(X:p0) N R{X;p). If S(T/P)=1/P=+0, then IR P and so I N
R +0. Take 0 +# a € IN R and suppose J is a non-zero right ideal of
R. Since 0 = (J(X)+P)/P and ri(a+ P) is an essential right ideal of
T/ P, there exists 0 # f € J(X) such that af € P. We may assume that
f is a polynomial, If 8f < Min{P) = n, then we get aa; = 0 for every
left coeflicient a; of f. If Of = n we write f = hfp+r, where &, r € Q{(X)
and r is a polynomial with either r = 0 or 9r < n. Using the fact that f»
is monic and f € JQ(X) we easily get r € JQ(X;p). Also ar = af—
ahfr € Q(X: p)fr and so ar = 0. Choose a non-zero p-invariant ideal L
of R such that rL C J(X). Then arb = 0 for some 0 = rb € J(X). It
follows that rx(a) N J #+ 0 and therefore a € S(R) = 0. a contradiction.

Lemma 4.5. If P is a prime nonsingular ideal of R{X: p) with P N
R = 0, then R is nonsingular.

Proof. If P = 0, then R is nonsingular by Lemma 4.3. Assume P #+
0 and suppose rx(a) is an essential right ideal of R for some ¢ € R. Let
J/P # 0 a right ideal of T/P. If g and f are proper polynomials of minimal
degree m and n in J and P, respectively, then 0 < m < n, Assume m = n.
Therefore grp'(a)—p "(br)p'(f) € J, for every r € R, where a = £c(f)
and b = fc(g). Hence grX'a € P, for every r € R, i € Z, and it follows
that g € P. A standard argument shows that J = P.

Thus we may assume m < n. If ag #+ 0 for every g € J such that
dg = m, then there exists h € J, 8h = m, such that ah #+ 0 and 3(ah) is
minimal. We get a contradiction as in the proof of I.emma 4.3. Consequently
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there exists 0 + g € J with 9g = m and ag = 0. This gives (a+P)(g+
P) =0 in T/P, where 0 #+ g+P & J/P. Therefore a+P € S(T/P) =
0 and so e € PN R = 0. The proof is complete.

Remark 4.6. All this paper was devoted to consider right questions.
There are, of course, similar results for the left p-quotient ring of R and
left nonsingular prime ideals.
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