ON H-SEPARABLE POLYNOMIALS OF DEGREE 2

HIROAKI OKAMOTO and SHÙICHI IKEHATA

Throughout the present paper, B will represent a ring with 1, and D a derivation of B. Let B[X;D] be the skew polynomial ring in which the multiplication is given by bX = Xb + D(b) ($b \in B$). A monic polynomial f in B[X;D] with fB[X;D] = B[X;D]f is called a separable (resp. H-separable) polynomial if B[X;D]/fB[X;D] is a separable (resp. H-separable) extension of B. (By the way, it is well known that every H-separable extension is separable.)

In [1], one of the present authors has studied H-separable polynomials in skew polynomial rings. If the coefficient ring B is commutative, the existence of H-separable polynomials in B[X;D] have been characterized in terms of Azumaya algebras and purely inseparable extensions ([1, Theorems 3.1 and 3.3]). However, in case B is not commutative, we know few. In the present paper, we study on H-separable polynomials of degree 2 in B[X;D] together with separable polynomials of degree 2 whose discriminants are contained in the Jacobson radical J(B) of B.

We shall use the following conventions:

Z = the center of B.

 $u_r(\text{resp. } u_t) = \text{the right (resp. left) multiplication in } B \text{ effected by } u \in B.$

 $I_u = u_r - u_l$ = the inner derivation of B effected by $u \in B$.

 $B[X; D]_{(2)} =$ the set of all monic polynomials g of degree 2 in B[X; D] with gB[X; D] = B[X; D]g.

 $B^{D} = \{a \in B | D(a) = 0\}, Z^{D} = \{a \in Z | \dot{D}(a) = 0\}.$

 $D^*: B[X; D] \to B[X; D]$ be the inner derivation of B[X; D] effected by X, namely $D^*(\sum_i X^i d_i) = \sum_i X^i D(d_i)$.

First, we state the next lemma without proof.

Lemma 1 ([3, p. 82, (3, i)]). Let $f = X^2 - Xa - b$ be in B[X; D]. Then f is in $B[X; D]_{i,k}$ if and only if

$$(i) 2D = I_a,$$

(ii)
$$D^2 - a_\tau D = I_b, \text{ and }$$

(iii)
$$a, b \in B^{\nu}$$
.

Lemma 2. Suppose that $B[X; D]_{(2)}$ contains an H-separable polynomial f. Let $b_1, b_2 \in B$ and $u \in B^b$.

- (1) If $(b_1)_l D + (b_2)_l = I_u$, then $b_1 = b_2 = 0$ and $u \in \mathbb{Z}$.
- (2) If $(b_1)_r D + (b_2)_r = I_u$, then $b_1 = b_2 = 0$ and $u \in \mathbb{Z}$.

Proof. (1) As is easily seen, $(D(b_1))_t D + (D(b_2))_t + \{(b_1)_t D + (b_2)_t \} D = (b_1)_t D^2 + (D(b_1))_t D + (b_2)_t D + (D(b_2))_t = D + (b_1)_t D + (b_2)_t = D I_u = I_u D$, whence $(D(b_1))_t D + (D(b_2))_t = 0$ follows; an easy induction shows that $(D^t(b_1))_t D + (D^t(b_2))_t = 0$ $(t \ge 1)$. Then for any $h = \sum_{k=0}^{r} X^k d_k \in B[X; D]$, we see that

$$\begin{split} b_1 D^*(h) + b_2 h &= b_1 \sum_{k=0}^{T} X^k D(d_k) + b_2 \sum_{k=0}^{T} X^k d_k \\ &= \sum_{k=0}^{T} \sum_{j=0}^{k} X^j \binom{k}{j} D^{k-j}(b_1) D(d_k) \\ &+ \sum_{k=0}^{T} \sum_{j=0}^{k} X^j \binom{k}{j} D^{k-j}(b_2) d_k \\ &= \sum_{k=0}^{T} \sum_{j=0}^{k} X^j \binom{k}{j} (D^{k-j}(b_1) D(d_k) + D^{k-j}(b_2) d_k) \\ &= \sum_{k=0}^{T} X^k (b_1 D(d_k) + b_2 d_k) = \sum_{k=0}^{T} X^k I_u(d_k) = I_u^*(h). \end{split}$$

Since f is H-separable, [1, Lemma 1.5] shows that there exist $y_i, z_i \in B[X; D]$ with $\deg y_i \leq 1$, $\deg z_i \leq 1$ such that $\alpha y_i = y_i \alpha$, $\alpha z_i = z_i \alpha$ for all $\alpha \in B$ and $\sum_i D^*(y_i) z_i \equiv 1$, $\sum_i y_i z_i \equiv 0 \pmod{fB[X; D]}$. Hence, $b_1 \sum_i D^*(y_i) z_i + b_2 \sum_i y_i z_i = \sum_i (b_1 D^*(y_i) + b_2 y_i) z_i = \sum_i I_u^*(y_i) z_i = 0$, whence we obtain

$$b_1 \equiv b_1 \sum_i D^*(y_i) z_i + b_2 \sum_i y_i z_i \equiv 0 \pmod{fB[X; D]}.$$

This implies that $b_1 = 0$, and $(b_2)_l = I_u^*$ (in B[X; D]). Since $(b_2)_l D^* = I_u^* D^* = D^* I_u^*$, we have $b_2 \equiv b_2 \sum_i D^* (y_i) z_i = \sum_i b_2 D^* (y_i) z_i = \sum_i D^* I_u^* (y_i) z_i \equiv 0 \pmod{fB[X; D]}$, whence $b_2 = 0$ follows. Since $I_u^* = 0$, we get eventually $u \in Z$. Similarly, we can prove (2).

Corollary 3. If B[X; D] contains an H-separable polynomial $f = X^2 - Xa - b$, then 2 = 0, that is, B is an algebra over GF(2).

Proof. By Lemma 1, $2D = I_a$ and $a \in B^b$. Hence, by Lemma 2, we have 2 = 0.

Next we shall prove

Lemma 4. If B[X; D] contains an H-separable polynomial $f = X^2 - Xa - b$, then there exists a finite system $\{u_i, v_i, c_i, d_i\}$ of elements in B such that

$$(iv) c_i, u_i \in Z,$$

$$(v)$$
 $(c_i)_r D = -I_{a_i}, (u_i)_r D = -I_{v_i},$

$$\sum_{i} (D(c_i)v_i + D(d_i)u_i) = 0,$$

(vii)
$$\sum_{i} v_i D(d_i) = 1,$$

(viii)
$$\sum_{i} (c_i v_i + d_i u_i) = 0, \text{ and }$$

$$(ix) \sum_{i} v_i d_i = 0.$$

Conversely, if there exists such a system $\{u_i, v_i, c_i, d_i\}$, then each polynomial in $B[X; D]_{(2)}$ is H-separable.

Proof. Choose $\{y_i, z_i\}$ as in [1, Lemma 1.5], and write $y_i = Xc_i + d_i$, $z_i = Xu_i + v_i$ (c_i , d_i , u_i , $v_i \in B$). Then, since $\alpha y_i = y_i \alpha$, $\alpha z_i = z_i \alpha$ for all $\alpha \in B$, we readily obtain (iv) and (v). Since $\sum_i D^*(y_i) z_i \equiv 1$ and $\sum_i y_i z_i \equiv 0$ (mod fB[X; D]), we obtain

(a)
$$\sum_{i} (aD(c_i)u_i + D^2(c_i)u_i + D(c_i)v_i + D(d_i)u_i) = 0,$$

(b)
$$\sum_{i} (bD(c_{i})u_{i} + D^{2}(d_{i})u_{i} + D(d_{i})v_{i}) = 1,$$

$$(c) \qquad \qquad \sum_{i} (ac_iu_i + D(c_i)u_i + c_iv_i + d_iu_i) = 0,$$

$$\sum_{i} (bc_i u_i + D(d_i)u_i + d_i v_i) = 0.$$

By (ii), (iv) and (v), $D(c_t)u_t = -I_{v_t}(c_t) = 0$, $D^2(c_t)u_t = D(c_t)au_t + I_b(c_t)u_t = D(c_t)u_ta = 0$, $D(d_t)v_t = I_{v_t}(D(d_t)) + v_tD(d_t) = -D^2(d_t)u_t + v_tD(d_t)$ and $D(d_t)u_t + d_tv_t = -I_{v_t}(d_t) + d_tv_t = v_td_t$. Hence, by (a), (b), (c) and (d), we obtain (vi), (vii) and

$$\sum_{i} (ac_i u_i + c_i v_i + d_i u_i) = 0,$$

$$\sum_{i} (b c_i u_i + v_i d_i) = 0.$$

By (iv), (v), (vi) and (vii), we see that

$$\sum_{k} c_{k} u_{k} = \sum_{i} v_{i} D(d_{i}) \sum_{k} c_{k} u_{k} = \sum_{i,k} v_{i} D(d_{i}) c_{k} u_{k}$$

$$\begin{split} &= -\sum_{i,k} v_i I_{d_k}(d_i) u_k = \sum_{i,k} v_i I_{d_i}(d_k) u_k \\ &= -\sum_{i,k} v_i D(d_k) c_i u_k = -\sum_i v_i c_i \sum_k D(d_k) u_k \\ &= \sum_i v_i c_i \sum_k D(c_k) v_k = \sum_{i,k} v_i c_i D(c_k) v_k \\ &= -\sum_{i,k} v_i I_{d_i}(c_k) v_k = 0. \end{split}$$

Hence, (e) and (f) imply (viii) and (ix).

Conversely, suppose that there exist elements c_i , d_i , u_i , v_i in B satisfying (iv)-(ix). Put $y_i = Xc_i + d_i$ and $z_i = Xu_i + v_i$. Then, the above computation and [1, Lemma 1.5] enable us to see that every polynomial in $B[X; D]_{(2)}$ is H-separable.

As an immediate consequence of Lemma 4 (putting $u_i = c_i = 0$), we have the following

Corollary 5. If there exists a system $|d_i, v_i|$ of elements in Z such that

(viii)
$$\sum v_i D(d_i) = 1$$
, and

(iv)
$$\sum_{i} v_i d_i = 0,$$

then each polynomial in $B[X; D]_{(2)}$ is H-separable.

Corollary 6. If the ideal of Z generated by D(Z) coincides with Z, then each polynomial in $B[X; D]_{(2)}$ is H-separable.

Proof. By assumption, there exists a system $\{v_i, d_i\}_{i=1}^n$ of elements in Z such that $\sum_{i=1}^n v_i D(d_i) = 1$. We set here $v_{n+1} = -\sum_{i=1}^n v_i d_i$ and $d_{n+1} = 1$. Then, we have $\sum_{i=1}^{n+1} v_i D(d_i) = \sum_{i=1}^n v_i D(d_i) + v_{n+1} D(d_{n+1}) = 1$, and $\sum_{i=1}^{n+1} v_i d_i = \sum_{i=1}^n v_i d_i + v_{n+1} d_{n+1} = 0$. Thus the assertion follows from Corollary 5.

Corollary 7. If D(Z) contains an invertible element, then each polynomial in $B[X; D]_{(2)}$ is H-separable.

Now, we consider the following conditions:

- (C_1) B is a commutative ring.
- (C_2) The ideal of Z generated by D(Z) contains a non zero divisor.
- (C_3) Z is a semiprime ring.

We shall prove the following theorem, which is the first main results of this paper.

Theorem 8. Assume that there holds one of the conditions (C_1) - (C_3) . Then the following are equivalent:

- (a) B[X; D] contains an H-separable polynomial f of degree 2.
- (b) $B[X; D]_{(2)}$ is non-empty, Z is a projective Z^{b} -module of rank 2 and $\operatorname{Hom}_{Z^{b}}(Z, Z) = Z[D|Z]$, that is, Z/Z^{b} is a purely inseparable Galois extension of exponent 1 in the sense of S. Yuan [6].
- (c) $B[X; D]_{(2)}$ is non-empty, and there exist v_i , $d_i \in Z$ such that $\sum_i v_i D(d_i) = 1$ and $\sum_i v_i d_i = 0$.

When this is the case, every polynomial in $B[X; D]_{(2)}$ is H-separable, and $f-g \in Z^{D}$ for each $f, g \in B[X; D]_{(2)}$.

Proof. Careful scrutiny of the proof of [1, Theorem 3.3] shows that (b) and (c) are equivalent without assuming (C_1) - (C_3) , and $(c) \Rightarrow (a)$ by Corollary 5. It remains therefore to prove $(a) \Rightarrow (c)$. In virtue of [1, Theorem 3.3], the case of (C_1) is obvious. Let $\{u_i, v_i, c_i, d_i\}$ be a finite system of elements of B as in Lemma 4. In case (C_2) holds, (v) shows that $c_i = u_i = 0$, and therefore $\{d_i, v_i\}$ is a system of elements of Z, and (c) is satisfied. Now, suppose (C_3) . By (v) and (v), we have

$$c_k^2 = \sum_i v_i D(d_i) c_k^2 = -\sum_i v_i I_{d_k}(d_i) c_k = \sum_i v_i I_{d_i}(d_k) c_k$$

= $-\sum_i v_i c_i D(d_k) c_k = \sum_i v_i c_i I_{d_k}(d_k) = 0,$

whence $c_k = 0$. Similarly, we can show $u_k = 0$. Thus, we obtain (c).

Now, let $f = X^2 - Xa - b$ be an H-separable polynomial in B[X; D]. For any $g = X^2 - Xu - v \in B[X; D]_{t^2}$, we have $D^2 - u_r D = I_v$ and $v \in B^D$ (Lemma 1). Since $D^2 - a_r D = I_b$ and $b \in B^D$, we have $(u - a)_r D = I_{b-v}$ and $b - v \in B^D$. Then, by Lemma 2, we have u = a and $v - b \in Z^D$. The rest of the assertion is clear by Lemma 4.

Let ρ be an automorphism of B, and $B[X; \rho]$ the skew polynomial ring in which the multiplication is defined by $\alpha X = X\rho(\alpha)$ ($\alpha \in B$). We define a separable (resp. H-separable) polynomial in $B[X; \rho]$ in the same way as in the case of B[X; D]. In [4], Nagahara has studied separable polynomials of degree 2 in $B[X; \rho]$ whose discriminants are in the Jacobson radical J(B) of B. Now, we shall prove the following theorem for B[X; D], which corresponds to the results of Nagahara [4, Theorems 1 and 2].

Theorem 9. Let $f = X^2 - Xa - b \in B[X; D]$.

(1) Then the following are equivalent:

- (a) f is separable in B[X; D] and $\delta(f) = a^2 + 4b \in J(B)$.
- (b) f is H-separable in B[X; D] and $a \in J(B)$.

When this is the case, D(Z) contains an invertible element.

- (2) If D(Z) contains an invertible element, (a), (b) are equivalent to
- (c) f is in $B[X; D]_{(2)}$ and $a \in J(B)$.

Proof. (1) (a) \Rightarrow (b). In virtue of [2, Theorem 1.8] there exists $y = Xc + d \in B[X; D]$ such that $\alpha y = y\alpha \ (\alpha \in B)$ and $(X-\alpha)(Xc+d) + (Xc+d)X \equiv 1 \pmod{fB[X; D]}$. By a brief computation, we obtain

$$(x)$$
 $c \in Z$,
 (xi) $c_r D = -I_d$,
 (xii) $D(d) + 2bc - ad = 1$,
 $(xiii)$ $D(c) + ac + 2d = 0$.

Then, we see that

$$\begin{split} D(d)D(c) &= D(D(d)c) - D^{2}(d)c \\ &= -D^{2}(d)c & \text{(by (xi))} \\ &= -|D(d)a + I_{b}(a)|c & \text{(by (ii))} \\ &= -D(d)ac = -D(d)ca = 0 \text{ (by (iii), (x), (xi))} \end{split}$$

Hence

Furthermore

$$\delta(f)(2c) = \delta(f)(2c + 2dD(c)) = 2\delta(f)(c + dD(c)) = 4.$$

$$\delta(f)(1 - 2bc) = \delta(f) - \delta(f)(2c)b = a^2 + 4b - 4b = a^2.$$

Then, noting that $\delta(f) \in J(B)$, we see that 2, $a^2 \in J(B)$. By (i), $Ba \subseteq aB+2B$. Hence it follows that $(BaB)^2 = BaBaB \subseteq Ba(aB+2B)B \subseteq Ba^2B+2B \subseteq J(B)$. Thus $BaB \subseteq J(B)$, and so $a \in J(B)$. Then we see that D(d) = 1 - (2bc - ad) is invertible in B by (xii). Since D(d)c = 0, we obtain c = 0, and so $d \in Z$. Then f is H-separable by Corollary 7.

- (b) \Rightarrow (a). By Corollary 3, we have 2=0. Consequently, $\delta(f)=a^2+4b=a^2\in J(B)$.
 - (2) This is clear by the proof of (1) (and Corollary 7).

In virtue of Theorems 8 and 9, we have the following which contains [3, Corollary 3.13].

Corollary 10. If B[X; D] contains a separable polynomial f of degree 2 with $\delta(f) = a^2 + 4b \in J(B)$, then $B[X; D]_{(2)} = |f + z|z \in Z^b| = |g \in B[X; D]|g$ is a separable polynomial of degree $2| = |g \in B[X; D]|g$ is an H-separable polynomial of degree 2|.

Combining Theorem 9 and [1, Theorem 3.1], we have the following which corresponds to [5, Theorem 2.1].

Corollary 11. Suppose that B is a commutative ring. Let $f = X^2 - Xa - b \in B[X; D]_{(2)}$. Then f is a separable polynomial with $\delta(f) = a^2 + 4b \in J(B)$ if and only if B[X; D]/fB[X; D] is an Azumaya B^D -algebra with $a \in J(B)$.

REFERENCES

- [1] S. IKEHATA: Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ. 23 (1981), 19-32.
- [2] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.
- [3] T. NAGAHARA: On separable polynomials of degree 2 in skew polynomial rings, M. J. Okayama Univ 19 (1976), 65-95.
- [4] T. NAGAHARA: Some H-separable polynomials of degree 2, Math. J. Okayama Univ. 26 (1984), 87-90.
- [5] T. NAGAHARA: A note on imbeddings of non-commutative separable extensions in Galois extensions, Houston J. Math. 12 (1986), 411-417.
- [6] S. YUAN: Inseparable Galois theory of exponent one, Trans. Amer. Math. Soc. 149 (1970), 163-170.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
TSUSHIMA-NAKA, OKAYAMA-SHI, JAPAN 700

(Received January 11, 1990)