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AN ANTI-HOMOMORPHISM
FOR THE BRAUER-LONG GROUP

Francis TILBORGHS

In [2], F. W. Long constructed a Brauer group BD(R, H) of dimodule
algebras for a commutative ring R and a commutative and cocommutative,
finitely generated projective Hopf algebra H over R. In this paper we will
discuss the following two questions: (1) Given any H-Azumaya algebra A,
is the (usual) opposite algebra A°also H-Azumaya? (2) Since H is finitely
generated projective, H* is also a Hopf algebra and H = H** as a Hopf
algebra. [s there any relation between BD(R, H) and BD(R, H*)?

The answer to (1) is no in general : a counter-example is given below.
But there is a natural way to give A° an H*-dimodule algebra structure and
with this structure, A° is an H*-Azumaya R-algebra. Furthermore, the
correspondence [A] — [A°] defines an isomorphism between the groups
BD(R. H) and BD(R. H*) giving the answer to (2).

We first recall some definitions.

1. Preliminaries (For more details, look at [2]). Throughout this
paper, R is a fixed commutative ring with identity, each ® is taken over R
and each map is R-linear unless otherwise stated. Moreover H is a com-
mutative and cocommutative, finitely generated projective Hopf algebra over
R, ¢ and A denote the counit and diagonalization of H, and the action of A
is denoted by A(h) = > nha, ® ko

An R-algebra A is called an H-module algebra if A is an H-module such
that the H-action map —4: H ® A = A is an R-algebra map, that is, for
heH a b€ A h—(ab) = Znlhoy— a)hey—b) and h — 1 = e(h)1.

Similarly an R-algebra A is called an H-comodule algebra if A is an
H-comodule via y4: A > A ® H such that Y, is an R-algebra map, that is,
for a, b in A, yilab) = 2aymawbe ® anby and ya(1) = 1, ® 1, where
XA((Z) = Z.‘h)a(o) R an.

An R-algebra A is called an H-dimodule algebra if A is an H-module
algebra and an H-comodule algebra such that the following diagram com-
mutes :
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H®x A— A
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T la

Let A be an H-dimodule algebra. The H-opposite A of A is an iso-
morphic copy of A as an H-dimodule and the multiplication on A is defined
by @b = 2a(an— b)aw. Let B be another H-dimodule algebra. Then
A # B is an isomorphic copy of A ®x B as H-dimodule and the multiplica-
tion on A # B is defined by (a # b)(c £ d) = Xnalby, — ¢) # bod. The
algebras A and A # B are H-dimodule algebras.

Let A be an H-dimodule algebra. We define Fi: A # A — Endx(A4)
and Ga: A £ A - Endz(A4)° by Fila # 5)(c) = Dwmalby — ¢)bo and
Gila & b)c) = 2Zwmlecay— a)cob. Both of these maps are homomorphisms
of H-dimodule algebras. A is said to be H-Azumaya if A is an H-dimodule
algebra which is an R-progenerator such that the maps F4 and G. are iso-
morphisms of H-dimodule algebras.

Let A, B be H-Azumaya algebras. We say A and B are H-Brauer
equivalent (denoted by 4 ~ 4 B) if there exist H-dimodules M, N which are
R-progenerators such that A # Endx(M) = B # Endz(N) as H-dimodule
algebras. ~ is an equivalence relation which respects the operation #.
The quotient set is a group under the multiplication induced by #, with
inverse induced by . We denote this group by BD(R, H) and call it the
Brauer group of H-dimodule algebras.

We begin by giving an example for (1).

2. Example. Let us recall first some notations and results from
Orzech ([3]). Consider the following data: a commutative ring R, a finite
abelian group G, a 2-cocycle f: GX G — U(R) of G in the units of R with
G acting trivially on U(R) and a bilinear map ¢ from GX G to U(R). Then
H= RG is a Hopf algebra and the H-dimodule algebras are just the G-
dimodule R-algebras of ([1], [3]).

Let A = RG$ be the H-dimodule algebra defined as follows: as an R-
module A is freely generated by elements x,, 0 € G, the multiplication is
defined by x,xr = f(o, )xs7r, the G-grading by degc(x,) = o and the G-
action by %x:) = #(o, v)xr. The H-dimodule algebra A is now an H-
Azumaya R-algebra if and only if each of the following two matrices is
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invertible :

(¢la, B)cas) ((B. @ ")cas), can = fla™', B)f(a™'B, a).
Let G = C3XCiXCs = (o)X {02) X {03y and R = C. Suppose that
¢ and f satisfy the tables below (w = exp( 2 ))

3
¢ o1 02 O3 f | o 02 O3
o 1 w 1 o0 1 w 1
o2 1 1 w o | w1 w
o3 w 1 1 03 1 w1

We shall now prove that the matrices

(¢(a, B)cas). ($(B. a ' )cas). cae = fla™", B)f(a'B. @)
are invertible: for a;. a:2, a3, B1, B2, B € Z one may proof

f( (71‘71 0'202 0'30’3, O'IBI 0_232 aaﬁz)f( 02, O )Bza;—a,a,.
f( g3, Gl)ﬁm'—‘s'mf( O3, o.z)ﬁ:az—ﬂzaa
= f( 0 . Uzﬁz 0’333. n® o,™ Jsas)f( g1, az)ﬂzm—ﬂmz.

Banm-8iaz B3a2— B203
flar, o3) f( o2, 03) )

Let ¢ = 01" 0:®03® and B = 0:"' 5,35, Then:

cas = fla™'. B)f(a”'B. a)
— (w—l )ﬂ.az—ﬂzm( 1 )5103—}33&1( w—l )Bz&a-—ﬁsazf(ﬂ, a—l)f( 0_1[9, a)
— “;5201—5102-0-5302—/3203]‘(3. ].)f( a._)’ a)

ﬁzm—ﬁlaz*'li:sﬂz—ﬂzﬂ:f( a—l a)
*

and

$la, B) = Miicidlai, 0,)5% = yPhroarfarbemn

So

(¢(a,ﬂ)ca,a): (u)ﬂl&s-v-ﬁzth+3302+/320'1—ﬁ:ﬂzvﬂa&z—ﬁzaaf( Cl_l, G)).

This matrix is invertible if and only if the matrix

(whast et BsmtBa-Mmatfaa-Mhm) jq jnyertible and this is equivalent to ¢}

being non-degenerate where ¢, is the bilinear map defined by

' 8 B B Q. a1+ B3az+ 8201 — 81a2+ B3az~ B2ax
¢1(0_l0102a20,3&3‘ a® o2 ? 0 3):”,& 3+ B2a1+ 8302+ 8201 — 8102+ Baaz~ B2aa

— ,wﬁlia;— a2+ B2012an — a3l + B3i2az)
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_ Wm (282)+ a2(283 - B+ aslbr— B2)
- 1

cf. Proposition 2.8. in [3], and it is easy to see that this is true.

Analogously, the matrix (¢(8, a™')cas) being invertible is equivalent to
the bilinear map ¢, being non-degenerate where ¢, is the bilinear map defined
by

' a Q: Q <] B B — —B8i(2a2+ Baian — 2a3)+ Balaz—ay)
¢2(0110220,33’0,110220,33)_,“,, 12a2)+ Bain 3)+ Balaz- ay

,@1(82—B3)+ a2(83— 281)- @a(282;

= % ,

and this is also true.

We shall now prove that the matrices (¢(a, £)das) and (#(B. @™ ')das)
with dgs = f(8, ') f(a, a™'B) are not invertible: the matrix (#(a, 8)das)
being invertible is equivalent to the bilinear map ¢; being non-degenerate
where ¢; is the bilinear map defined by

a Q: a 8 A Biiaz+ aai+ B2 @281 + a3t8 + B2)
¢:’!(Ul10,220,33’0,]&0,21033):”,1'2 3 23:wzx 308 + B2

and the matrix (@(8, o™ ')dqs) being invertible is equivalent to the bilinear
map ¢: being non-degenerate where ¢, is the bilinear map defined by

a a: a: — B0 — Bzl +a: —iB2+ Baj— a.
¢a’l(0'1 102 203 a’ o,lﬁno,zﬁzo,aﬁa) = p B sl +az W 1182+ B3} 253.

It is clear ¢; that ¢; and are both degenerate, so the matrices (¢(a, 8)da.s)
and ((B, a™')das) with des = f(B. a”')f(a, a'8) are not invertible.

In the case we consider, H* = RG* = (}1) X {¥2) X {¥3) = RG with
X1, X: and xs defined by {x:, 0;) = w for i, j=1,2,3. We can give
A an H*.dimodule algebra structure as follows: for x € 4 and y € G*,
dege+(x) = y if and only if x = y(¢)x for all 0 € G and % = y(dege(x))x.
It is easy to see that for this structure 4 = RG*§ where ¢ and g satisfy
the tables below:

¢ X1 X2 Xs g X1 X2 X3
X1 1 1 w X1 1w Wt
Xz w 1 1 x: | w? 1 1
X3 1 »w 1 X3 w 1 1

We shall now check if the matrices

(¢, Blcas), (P8, @ cas). cas = gla™', Blgla'B, a)

and
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(¢la, B)das), (H(B. a™')das). doe = g(B. a™')gla. a™'8)

are invertible., The matrix (¢(e, B)cus) being invertible is equivalent to

the bilinear map ¢ being non-degenerate where ¢, is the bilinear map
defined by

. a4, a4, a B4, B2, B S t .
<//1(X1 1X2 ZXS 3‘ X IXZ 2X3 3) = 3+ B2l +aa) wanﬂz+asuﬁl+ﬂz.

The matrix (¢(8, ™ ')cas) being invertible is equivalent to the bilinear map
¢2 being non-degenerate where ¢ is the bilinear map defined by

(,0’2( X]a: Xzazx:iaa- Xlﬁlxzﬁzxaﬂa) — w—ﬁmz—ﬁ:(an«razi — ‘w—mﬁs—az(ﬁwﬁa‘e.
It is clear that ¢! and ¢: are both degenerate, so the matrices

(¢la, B)can) (P(B, a ' )cus), cas = gla™", Bgla'B, a)

are not invertible. The matrix (¢(a, 8)d,s) being invertible is equivalent

to the bilinear map ¢3 being non-degenerate where ¢ is the bilinear map
defined by

2a2— ioa— o+ B!
¢}a( le Xzaz X3aj" Xl.ﬂl Xzﬂz Xaﬁa) —_ _wﬁll Qz— aa)+ Ba2iaz— o+ B3 2my)
ai(283— B+ az1281)+ aslBz- 81)

- W
The matrix (¢(8, a ')des) being invertible is equivalent to the bilinear map
¢4 being non-degenerate where ¢\ is the bilinear map defined by

B8 8 8 B1iaz- 2as3i— B2A2a1)+ Bl — @z;
¢’r‘( lexzmxﬂmv Xl 112 213 3) = yhrier 3 202 i —az
, B3 — 282+ @2(81~ B3)— 3i2B8:}

= W
It is clear that ¢ and ¢, are both non-degenerate, so the matrices
(¢(a, B)das) and (H(B, @ ')dos) with dos= g(B. a™')gla, a'B) are in-
vertible.

Note that if you relabel the o’s by letting 7. = o2, 7: = o, 73 = 03,
and write down the generating tables for ¢ and f° then these are identical
to the generating tables for ¢ and g as is us pointed out by Beattie. So,
using this, (¢(a, B)ces) and (#(B, a™')ceae) being invertible is equivalent
to (¢(a, B)das) and (B, a”')dus) being invertible and (¢(a, 8)das) and
(@(B. @ ')das) being invertible is equivalent to (¢(a, £)cas) and (¢(B, ')
cas) being invertible.

So we obtain that A° is an H*-Azumaya algebra but A is not. The
property “an H-Azumaya algebra is not H*-Azumaya” is not true in general.
For example, consider an Azumaya algebra A with trivial H-dimodule struc-
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ture. Then A is an H-Azumaya algebra as well as an H*-Azumaya algebra.
But that the opposite algebra A° of an H-Azumaya algebra is H*-Azumaya
is always true if H is a commutative and cocommutative, finitely generated
projective Hopf algebra. This is what we are going to show now.

3. Proposition. Let H be a commutative and cocommutative, finitely
generated projective Hopf algebra. Then H* is also a Hopf algebra and H =
H** as Hopf algebras. Let M be an H-dimodule with structure maps H @ M
M: A Q® m—>(h—\m) andM—>M®RH: m—>Z,¢m.m.v0,®m'x). Then :

(1) M is a left H*module by H* @:M > M: f@® m - (f—m) =
Zm)m:mf( mm) 3

(2) M is a right H*-comodule by M > M @z H*: m - 21 mm® @ m"
where 2 ymm®m"(h) = (h— m) for all h € H;

(3) Zi-m(fmm)”® (f o m)V = Zm(f — ™) @ m".
So M is an H*-dimodule. Furthermore, if A is an H-dimodule R-algebra,
then A is an H*-dimodule R-algebra for the H*-dimodule structure defined
above.

Proof. We refer to Long in [2] for a proof that H* is also a finitely
generated projective Hopf algebra. For a proof of (1) and (2) we refer to
Long in [2] and Pareigis in [4].

(3). Using (1) we obtain
2r-m (fm)” @ (f m m)" = Dimpmes (M) @ (mio)f (ma)) (*)

and
2iw(f = m®) @ m” = Dmpmo(m®)o f (m*)n) & m™ (4%),
Let h be an element of H. We let (*) work on A and we obtain:

Ztmum.og(m(ox)‘m(m(m)m(h)f( mm) = Z(m)(h — m(m)f(mu;)
= Zlh—-m(h 1 m):of((h 1 m)u;)
= f—(h— m).

Now we let (**) work on 4 and we obtain :

Zim)(m’i“")(’m‘ol)xolf((mw))m)mm(h) = Z(m)mm(h)(f_' ‘mm)
= f = (Zmm" (h)m"™)
=f—(h—m)

proving (3).



AN ANTI-HOMOMORPHISM FOR THE BRAUER-LONG GROUP 49

Let A be an H-dimodule R-algebra. Then we obtain:
(3) fﬁ (ab) = Z(ab)(ab)(of((ab)(l;) = Z:awmam)blo;f(ambm)
= Z(a‘xbxfzaw;b(mfm(am)fm(bm)
= an)Z(a;a(nJm(au))zlb;bmfz)(bu:) = Zm(fm_‘ a)(fm_‘ b)
(b)  Lan(ab)®(ab) (h) = (h—(ab)) = Lim(r" — a)(h” — b)
— Z(h’zia:‘alma(l)(h(l))Z(mbio)bﬂ)(h(?))
= Zm:ma‘°’b'1°’2sh>a"’(h‘“)b‘“(h":‘)
= 2ama”d"(a"b™)(h).
So in this case A turns out to be an H*-dimodule R-algebra.

4. Notation. For any H-dimodule M, if we consider the H*-dimodule
structure, we write My.. Elements of M. are denote by b* for b € M.

5. Lemma. Let A be an H-dimodule algebra. Then (Ax*) is isomorphic
to A as H-dimodule. Multiplication on (Ay*) is given by:

a*b* = (Z‘nb:b(m(bn)ﬁ a))*.

Proof. For a,b € A. we obtain:

a*b* = (2(0}(0“)—' b)ﬂ-lm)* = (Zmb,bm)am(bm)a'm)* = (Zw)ba‘m(bu:—‘ a))*-

6. Lemma. Let A. B be H-dimodule algebras. Then (Ays) £ (By+) is
isomorphic to A Q@r B as H-dimodule. Multiplication on (A, 1 (By+ is
given by :

(a* # b*)(C* ﬁ d*) = Z(c:(aCio;)* # ((Cmﬁ b)d)*.

Proof. For a,c € A and b, d € B, we obtain:

(a* # b*)(c* # d*) = Lima*(6*" — c*) # b*d*
= Dera*cb*V(ck) # b*Od¥
= Dwe{ace)® # (6" (cun))bd)*
= Z:cv(acwx)* # ((cmﬁ b)d)*

7. Lemma. Let A be an H-dimodule algebra. Then the R-linear map
 from (A°),. # ((A%),) to (A # A)>defined by f(a™* # b°%) = (b # a)°is
an isomorphism of H*-dimodule algebras.

Proof. Let a, b, c,d be elements of A. Then we obtain:
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F((a®* # 5% (c>* # %)) = f(Tiala®u®)* # (o 6)**d™)

= f(Z(cndu(aoC(o)o)* # (dw)o( coda) b)o)*)
= f(Z(c:«d)(Cm)(l)o* # ((C(hdﬂ) — b)drox)o*)
= (Zwyd‘;(c:l)dﬂ)_—' b)d:m # Cima)o
= (Z‘.(c,\gcu)ﬁ b # Cima)o
=((d#c)b#a)o=(b#a)d #c)°
= f(a®™* # bT*)f(cO* # do%).

Since H* is cocommutative (resp. commutative) it is easy to see that f is

an H*-module (resp. H*-comodule) homomorphism.

8. Lemma. The following diagram is commutative :

—_— EA"} He

(AO)H‘ #((AO)M‘) - Endn((/‘lo)u')

2! l1d
(A # A)° Enda(A)

Proof. For a, b,c € A, we obtain:
(1) (Gof)a™* # b*)(c) = G(b # a)(c) = Tie(cwy ™ a)cua.
(2) Fya,(a* # %) (%)
= Z(b)aﬂ*((bo*)lll_, C°*)(b°*)'°)
= (thx:cya °c O(mbd”(co:n)bdm)*

= (Z-:c)aocoxox(com_‘ ba))* = (Z(cn(Cmﬁ b)Cm)a)o*-

9. Corollary. The map G. is an isomorphism of H-dimodule algebras if
and only if F,.,. is an isomorphism of H*-dimodule algebras.

In a similar way, we obtain:

10. Lemma. Let A be an H-dimodule algebra. Then the R-linear map

g from ((A°) ) (A uto (A # A)°defined by g(a®* # b°*) = (b # a)° is

an isomorphism of H*-dimodule algebras.

11. Lemma. The following diagram is commutative :
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(A% 4o

—_— G
((A%)4s) # (A°)ye—— Enda((4°)4)°

el J

(A g A)° Endgz(A4)°

A°

12. Corollary. The map F. is an isomorphism of H-dimodule algebras
if and only if G, is an isomorphism of H*-dimodule algebras.

So we obtain the following result:

13. Theorem. Let H be a commutaiive and cocommutative, finitely
generated projective Hopf algebra. Then an H-dimodule algebra A is an H-
Azumaya R-algebra if and only if A°is an H*-Azumaya R-algebra. So there
is a one-one correspondence between the H-Azumaya R-algebras and the H*-
Azumaya R-algebras.

14. Lemma. Let A, B be H-dimodule R-algebras. Then the R-linear
map f from ((A # B)°)u« to (B°)ys # (A°)-defined by f((a $ b)*) = po*

# a°* is an H*-dimodule R-algebra isomorphism.
Proof. For a,c € A and b, d € B we obtain:

flla # 6)°*(c #d)*) = f(((c # d)(a # 5))¥)
=f((2.'d;0(du:—‘ a) ¥ di:b)°*)
= Z:d)(dro)b)c* # (C(dm_' a))°*
= Z(d,(bodw)o)* # ((dm_' a)oco)*
— (bo* # ao*)(do* # c°*)
= f((a # 5)°*)f((c # d)°%).

15. Lemma. Let A be an H-dimodule algebra. Then the R-linear map
g from ((A°)*) to ((A)°)y* defined by g(a®*) = a* is an H*-dimodule iso-

morphism.
Proof. For a,b € A, we obtain:

g(a*b°*) = g(Xu( b by — a)°)*) = g(2 (b, — a)biar)*)
= Ew;((b:n_' a)bw))o* = (Ef_l)o* = (a)o*({;)o*
= g(a®*)g(b°*).

We conclude from the foregoing:
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16. Theorem. Let H be a commutative and cocommutative, finitely
generated projective Hopf algebra. Then the assignment [A] — [A°] defines
an isomorphism of groups 8 between BD(R, H) and BD(R, H*).

17. Remarks. 1. If we restrict § to BM(R, H) (resp. BC(R, H))
the image becomes BC(R, H*) (resp. BM(R, H*)). Furthermore, if [4] €
BM(R, H) or [A] € BC(R, H), 8([A]) = [A].

2. Let BAz(R, H) denote the set of central classes in BD(R, H).
This is not always a group as is noted by M. Orzech in [3]. Consider the
anti-isomorphism of groups between BDg(R, H) and BD (R, H*) which maps
[A] to [A9]. If we restrict this anti-isomorphism to BAzg(R, H), then the
image is BAze(R, H*¥). Using this, we may conclude that BAz¢(R, H) is
a group if and only if BAzg(R, H*) is a group and that BAz«(R, H) is the
whole of BDg(R, H) if and only if BAz.(R, H*) is the whole of BD.(R, H*).

18. Application. Let F be a field, char F= p > 0 and H = F[X]/
(X?—X). H is a Hopf algebra via Alx) =x® 14+1 ® x, e(x) = 0 and
S{x) = —x. The dual H* of H is FC, where C, is the cyclic group of
order p (cf. Proposition 5.1. in [2]). So BD(F, H) = BD(F, C,).
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