AN ANTI-HOMOMORPHISM FOR THE BRAUER-LONG GROUP

FRANCIS TILBORGHS

In [2], F. W. Long constructed a Brauer group BD(R, H) of dimodule algebras for a commutative ring R and a commutative and cocommutative, finitely generated projective Hopf algebra H over R. In this paper we will discuss the following two questions: (1) Given any H-Azumaya algebra A, is the (usual) opposite algebra A° also H-Azumaya? (2) Since H is finitely generated projective, H^* is also a Hopf algebra and $H \cong H^{**}$ as a Hopf algebra. Is there any relation between BD(R, H) and $BD(R, H^*)$?

The answer to (1) is no in general: a counter-example is given below. But there is a natural way to give A° an H^* -dimodule algebra structure and with this structure, A° is an H^* -Azumaya R-algebra. Furthermore, the correspondence $[A] \to \overline{[A^{\circ}]}$ defines an isomorphism between the groups BD(R, H) and $BD(R, H^*)$ giving the answer to (2).

We first recall some definitions.

1. Preliminaries (For more details, look at [2]). Throughout this paper, R is a fixed commutative ring with identity, each \otimes is taken over R and each map is R-linear unless otherwise stated. Moreover H is a commutative and cocommutative, finitely generated projective Hopf algebra over R, ε and Δ denote the counit and diagonalization of H, and the action of Δ is denoted by $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$.

An R-algebra A is called an H-module algebra if A is an H-module such that the H-action map $\neg_A \colon H \otimes A \to A$ is an R-algebra map, that is, for $h \in H$, $a, b \in A$, $h \neg (ab) = \sum_{(h)} (h_{(1)} \neg a)(h_{(2)} \neg b)$ and $h \neg 1 = \varepsilon(h)1$.

Similarly an R-algebra A is called an H-comodule algebra if A is an H-comodule via $\chi_A \colon A \to A \otimes H$ such that χ_A is an R-algebra map, that is, for a, b in A, $\chi_A(ab) = \sum_{(a),(b)} a_{(0)}b_{(0)} \otimes a_{(1)}b_{(1)}$ and $\chi_A(1) = 1_A \otimes 1_H$, where $\chi_A(a) = \sum_{(b)} a_{(0)} \otimes a_{(1)}$.

An R-algebra A is called an H-dimodule algebra if A is an H-module algebra and an H-comodule algebra such that the following diagram commutes:

$$\begin{array}{cccc}
H \otimes_R A & \xrightarrow{\neg_A} & A \\
I \otimes \chi_A \downarrow & & \downarrow \chi_A \\
H \otimes_R A \otimes_R H & \xrightarrow{\neg_A \otimes I} & A \otimes_R H
\end{array}$$

Let A be an H-dimodule algebra. The H-opposite \overline{A} of A is an isomorphic copy of A as an H-dimodule and the multiplication on \overline{A} is defined by $\overline{ab} = \sum_{(a)} \overline{(a_{(1)} - b) a_{(0)}}$. Let B be another H-dimodule algebra. Then A # B is an isomorphic copy of $A \otimes_R B$ as H-dimodule and the multiplication on A # B is defined by $(a \# b)(c \# d) = \sum_{(b)} a(b_{(1)} - c) \# b_{(0)}d$. The algebras \overline{A} and A # B are H-dimodule algebras.

Let A be an H-dimodule algebra. We define F_A : $A \sharp \overline{A} \to \operatorname{End}_R(A)$ and G_A : $\overline{A} \sharp A \to \operatorname{End}_R(A)^\circ$ by $F_A(a \sharp \overline{b})(c) = \sum_{(b)} a(b_{(1)} - c)b_{(0)}$ and $G_A(\overline{a} \sharp b)(c) = \sum_{(b)} (c_{(1)} - a)c_{(0)}b$. Both of these maps are homomorphisms of H-dimodule algebras. A is said to be H-Azumaya if A is an H-dimodule algebra which is an R-progenerator such that the maps F_A and G_A are isomorphisms of H-dimodule algebras.

Let A, B be H-Azumaya algebras. We say A and B are H-Brauer equivalent (denoted by $A \sim_H B$) if there exist H-dimodules M, N which are R-progenerators such that $A \not \equiv \operatorname{End}_R(M) \cong B \not \equiv \operatorname{End}_R(N)$ as H-dimodule algebras. \sim_H is an equivalence relation which respects the operation \sharp . The quotient set is a group under the multiplication induced by \sharp , with inverse induced by $\check{}$. We denote this group by BD(R, H) and call it the Brauer group of H-dimodule algebras.

We begin by giving an example for (1).

2. Example. Let us recall first some notations and results from Orzech ([3]). Consider the following data: a commutative ring R, a finite abelian group G, a 2-cocycle $f: G \times G \to U(R)$ of G in the units of R with G acting trivially on U(R) and a bilinear map ϕ from $G \times G$ to U(R). Then H = RG is a Hopf algebra and the H-dimodule algebras are just the G-dimodule R-algebras of ([1], [3]).

Let $A=RG_{\mathcal{F}}^{\sigma}$ be the H-dimodule algebra defined as follows: as an R-module A is freely generated by elements x_{σ} , $\sigma \in G$, the multiplication is defined by $x_{\sigma}x_{\tau}=f(\sigma,\tau)x_{\sigma\tau}$, the G-grading by $\deg_G(x_{\sigma})=\sigma$ and the G-action by ${}^{\sigma}(x_{\tau})=\phi(\sigma,\tau)x_{\tau}$. The H-dimodule algebra A is now an H-Azumaya R-algebra if and only if each of the following two matrices is

invertible:

$$(\phi(\alpha,\beta)c_{\alpha,\beta}), (\phi(\beta,\alpha^{-1})c_{\alpha,\beta}), c_{\alpha,\beta} = f(\alpha^{-1},\beta)f(\alpha^{-1}\beta,\alpha).$$

Let $G = C_3 \times C_3 \times C_3 = \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle \times \langle \sigma_3 \rangle$ and $R = \mathbb{C}$. Suppose that ϕ and f satisfy the tables below $\left(w = \exp\left(\frac{2\pi i}{3}\right)\right)$:

φ	σ_1	σ_2	σ_3	f	σ_1	σ_2	σ_3
σ_1	1 1 w	w	1	σ_1	$\frac{1}{w^2}$	w	1
σ_2	1	1	w	σ_2	w^2	1	w
σ_3	w	1	1	σ_3	1	w^2	1

We shall now prove that the matrices

$$(\phi(\alpha,\beta)c_{\alpha,\beta}), (\phi(\beta,\alpha^{-1})c_{\alpha,\beta}), c_{\alpha,\beta} = f(\alpha^{-1},\beta)f(\alpha^{-1}\beta,\alpha)$$

are invertible: for α_1 , α_2 , α_3 , β_1 , β_2 , $\beta_3 \in \mathbb{Z}$ one may proof

$$f(\sigma_{1}^{\alpha_{1}}\sigma_{2}^{\alpha_{2}}\sigma_{3}^{\alpha_{3}}, \sigma_{1}^{\beta_{1}}\sigma_{2}^{\beta_{2}}\sigma_{3}^{\beta_{3}})f(\sigma_{2}, \sigma_{1})^{\beta_{2}\alpha_{1}-\beta_{1}\alpha_{2}}.$$

$$f(\sigma_{3}, \sigma_{1})^{\beta_{3}\alpha_{1}-\beta_{1}\alpha_{3}}f(\sigma_{3}, \sigma_{2})^{\beta_{3}\alpha_{2}-\beta_{2}\alpha_{3}}$$

$$= f(\sigma_{1}^{\beta_{1}}\sigma_{2}^{\beta_{2}}\sigma_{3}^{\beta_{3}}, \sigma_{1}^{\alpha_{1}}\sigma_{2}^{\alpha_{2}}\sigma_{3}^{\alpha_{3}})f(\sigma_{1}, \alpha_{2})^{\beta_{2}\alpha_{1}-\beta_{1}\alpha_{2}}.$$

$$f(\sigma_{1}, \sigma_{3})^{\beta_{3}\alpha_{1}-\beta_{1}\alpha_{3}}f(\sigma_{2}, \sigma_{3})^{\beta_{3}\alpha_{2}-\beta_{2}\alpha_{3}}.$$

Let $\alpha = \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \sigma_3^{\alpha_3}$ and $\beta = \sigma_1^{\beta_1} \sigma_2^{\beta_2} \sigma_3^{\beta_3}$. Then:

$$c_{\alpha,\beta} = f(\alpha^{-1}, \beta) f(\alpha^{-1}\beta, \alpha)$$

$$= (w^{-1})^{\beta_1\alpha_2 - \beta_2\alpha_1} (1)^{\beta_1\alpha_3 - \beta_3\alpha_1} (w^{-1})^{\beta_2\alpha_3 - \beta_3\alpha_2} f(\beta, \alpha^{-1}) f(\alpha^{-1}\beta, \alpha)$$

$$= w^{\beta_2\alpha_1 - \beta_1\alpha_2 + \beta_3\alpha_2 - \beta_2\alpha_3} f(\beta, 1) f(\alpha^{-1}, \alpha)$$

$$= w^{\beta_2\alpha_1 - \beta_1\alpha_2 + \beta_3\alpha_2 - \beta_2\alpha_3} f(\alpha^{-1}, \alpha)$$

and

$$\phi(\alpha,\beta) = \prod_{i,j=1}^{3} \phi(\sigma_i, \sigma_j)^{\beta_j \alpha_i} = w^{\beta_1 \alpha_3 + \beta_2 \alpha_1 + \beta_3 \alpha_2}.$$

So

$$(\phi(\alpha,\beta)c_{\alpha,\beta})=(w^{\beta_1\alpha_3+\beta_2\alpha_1+\beta_3\alpha_2+\beta_2\alpha_1-\beta_1\alpha_2+\beta_3\alpha_2-\beta_2\alpha_3}f(\alpha^{-1},\alpha)).$$

This matrix is invertible if and only if the matrix $(w^{\beta_1\alpha_3+\beta_2\alpha_1+\beta_3\alpha_2+\beta_2\alpha_1-\beta_1\alpha_2+\beta_3\alpha_2-\beta_2\alpha_3})$ is invertible and this is equivalent to ϕ_1 being non-degenerate where ϕ_1 is the bilinear map defined by

$$\phi'_{1}(\sigma_{1}^{\alpha_{1}}\sigma_{2}^{\alpha_{2}}\sigma_{3}^{\alpha_{3}}, \sigma_{1}^{\beta_{1}}\sigma_{2}^{\beta_{2}}\sigma_{3}^{\beta_{3}}) = w^{\beta_{1}\alpha_{3}+\beta_{2}\alpha_{1}+\beta_{3}\alpha_{2}+\beta_{2}\alpha_{1}-\beta_{1}\alpha_{2}+\beta_{3}\alpha_{2}-\beta_{2}\alpha_{3}}$$

$$= w^{\beta_{1}(\alpha_{3}-\alpha_{2})+\beta_{2}(2\alpha_{1}-\alpha_{3})+\beta_{3}(2\alpha_{2})}$$

$$= w^{\alpha_1(2\beta_2) + \alpha_2(2\beta_3 - \beta_1) + \alpha_3(\beta_1 - \beta_2)}.$$

cf. Proposition 2.8. in [3], and it is easy to see that this is true.

Analogously, the matrix $(\phi(\beta, \alpha^{-1})c_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ϕ_2' being non-degenerate where ϕ_2' is the bilinear map defined by

$$\phi_{2}'(\sigma_{1}^{\alpha_{1}}\sigma_{2}^{\alpha_{2}}\sigma_{3}^{\alpha_{3}},\sigma_{1}^{\beta_{1}}\sigma_{2}^{\beta_{2}}\sigma_{3}^{\beta_{3}}) = w^{-\beta_{1}(2\alpha_{2})+\beta_{2}(\alpha_{1}-2\alpha_{3})+\beta_{3}(\alpha_{2}-\alpha_{1})}$$

$$= w^{\alpha_{1}(\beta_{2}-\beta_{3})+\alpha_{2}(\beta_{3}-2\beta_{1})-\alpha_{3}(2\beta_{2})},$$

and this is also true.

We shall now prove that the matrices $(\phi(\alpha, \beta)d_{\alpha,\beta})$ and $(\phi(\beta, \alpha^{-1})d_{\alpha,\beta})$ with $d_{\alpha,\beta} = f(\beta, \alpha^{-1})f(\alpha, \alpha^{-1}\beta)$ are not invertible: the matrix $(\phi(\alpha, \beta)d_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ϕ'_3 being non-degenerate where ϕ'_3 is the bilinear map defined by

$$\phi_3'(\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\sigma_3^{\alpha_3}, \sigma_1^{\beta_1}\sigma_2^{\beta_2}\sigma_3^{\beta_3}) = w^{\beta_1(\alpha_2+\alpha_3)+\beta_2\alpha_3} = w^{\alpha_2\beta_1+\alpha_3(\beta_1+\beta_2)}$$

and the matrix $(\phi(\beta, \alpha^{-1})d_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ϕ_{\bullet} being non-degenerate where ϕ_{\bullet} is the bilinear map defined by

$$\phi_4'(\sigma_1^{\alpha_1}\sigma_2^{\alpha_2}\sigma_3^{\alpha_3}, \sigma_1^{\beta_1}\sigma_2^{\beta_2}\sigma_3^{\beta_3}) = w^{-\beta_2\alpha_1 - \beta_3(\alpha_1 + \alpha_2)} = w^{-\alpha_1(\beta_2 + \beta_3) - \alpha_2\beta_3}.$$

It is clear ϕ'_3 that ϕ'_4 and are both degenerate, so the matrices $(\phi(\alpha, \beta)d_{\alpha,\beta})$ and $(\phi(\beta, \alpha^{-1})d_{\alpha,\beta})$ with $d_{\alpha,\beta} = f(\beta, \alpha^{-1})f(\alpha, \alpha^{-1}\beta)$ are not invertible.

In the case we consider, $H^* = RG^* = \langle \chi_1 \rangle \times \langle \chi_2 \rangle \times \langle \chi_3 \rangle \cong RG$ with χ_1 , χ_2 and χ_3 defined by $\langle \chi_i, \sigma_j \rangle = w^{\sigma_{ij}}$ for i, j = 1, 2, 3. We can give A an H^* -dimodule algebra structure as follows: for $x \in A$ and $\chi \in G^*$, $\deg_{G^*}(x) = \chi$ if and only if $f^* = \chi(\sigma)x$ for all $\sigma \in G$ and $f^* = \chi(\deg_G(x))x$. It is easy to see that for this structure $A = RG^*_g$ where f and f satisfy the tables below:

	χ 1			g	χ1	X 2	<i>X</i> 3
χ1	1 w 1	1	w	χ1	1 w² w	w	w²
χ_2	w	1	1	χ2	w ²	1	1
χ ₃	1	w	1	χ 3	w	1	1

We shall now check if the matrices

$$(\psi(\alpha,\beta)c'_{\alpha,\beta}), (\psi(\beta,\alpha^{-1})c'_{\alpha,\beta}), c'_{\alpha,\beta} = g(\alpha^{-1},\beta)g(\alpha^{-1}\beta,\alpha)$$

and

$$(\psi(\alpha,\beta)d'_{\alpha,\beta}), (\psi(\beta,\alpha^{-1})d'_{\alpha,\beta}), d'_{\alpha,\beta}=g(\beta,\alpha^{-1})g(\alpha,\alpha^{-1}\beta)$$

are invertible. The matrix $(\psi(\alpha, \beta)c'_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ψ'_1 being non-degenerate where ψ'_1 is the bilinear map defined by

$$\psi_1(\chi_1^{\alpha_1}\chi_2^{\alpha_2}\chi_3^{\alpha_3},\chi_1^{\beta_1}\chi_2^{\beta_2}\chi_3^{\beta_3}) = w^{\beta_1\alpha_3+\beta_2(\alpha_1+\alpha_3)} = w^{\alpha_1\beta_2+\alpha_3(\beta_1+\beta_2)}.$$

The matrix $(\psi(\beta, \alpha^{-1})c'_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ψ'_2 being non-degenerate where ψ'_2 is the bilinear map defined by

$$\psi_2(\chi_1^{\alpha_1}\chi_2^{\alpha_2}\chi_3^{\alpha_3},\chi_1^{\beta_1}\chi_2^{\beta_2}\chi_3^{\beta_3}) = w^{-\beta_1\alpha_2-\beta_3(\alpha_1+\alpha_2)} = w^{-\alpha_1\beta_3-\alpha_2(\beta_1+\beta_3)}.$$

It is clear that ψ'_1 and ψ'_2 are both degenerate, so the matrices

$$(\psi(\alpha,\beta)c'_{\alpha,\beta}), (\psi(\beta,\alpha^{-1})c'_{\alpha,\beta}), c'_{\alpha,\beta} = g(\alpha^{-1},\beta)g(\alpha^{-1}\beta,\alpha)$$

are not invertible. The matrix $(\psi(\alpha, \beta)d'_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ψ'_3 being non-degenerate where ψ'_3 is the bilinear map defined by

$$\psi_{3}'(\chi_{1}^{\alpha_{1}}\chi_{2}^{\alpha_{2}}\chi_{3}^{\alpha_{3}}, \chi_{1}^{\beta_{1}}\chi_{2}^{\beta_{2}}\chi_{3}^{\beta_{3}}) = w^{\beta_{1}(2\alpha_{2}-\alpha_{3})+\beta_{2}(\alpha_{3}-\alpha_{1})+\beta_{3}(2\alpha_{1})} = w^{\alpha_{1}(2\beta_{3}-\beta_{2})+\alpha_{2}(2\beta_{1})+\alpha_{3}(\beta_{2}-\beta_{1})}.$$

The matrix $(\psi(\beta, \alpha^{-1})d_{\alpha,\beta})$ being invertible is equivalent to the bilinear map ψ'_4 being non-degenerate where ψ'_4 is the bilinear map defined by

$$\psi'_{4}(\chi_{1}^{\alpha_{1}}\chi_{2}^{\alpha_{2}}\chi_{3}^{\alpha_{3}},\chi_{1}^{\beta_{1}}\chi_{2}^{\beta_{2}}\chi_{3}^{\beta_{3}}) = w^{\beta_{1}(\alpha_{2}-2\alpha_{3})-\beta_{2}(2\alpha_{1})+\beta_{3}(\alpha_{1}-\alpha_{2})}$$

$$= w^{\alpha_{1}(\beta_{3}-2\beta_{2})+\alpha_{2}(\beta_{1}-\beta_{3})-\alpha_{3}(2\beta_{1})}$$

It is clear that ψ'_3 and ψ'_4 are both non-degenerate, so the matrices $(\psi(\alpha,\beta)d'_{\alpha,\beta})$ and $(\psi(\beta,\alpha^{-1})d'_{\alpha,\beta})$ with $d'_{\alpha,\beta}=g(\beta,\alpha^{-1})g(\alpha,\alpha^{-1}\beta)$ are invertible.

Note that if you relabel the σ 's by letting $\tau_1 = \sigma_2$, $\tau_2 = \sigma_1$, $\tau_3 = \sigma_3$, and write down the generating tables for ϕ and f°, then these are identical to the generating tables for ψ and g as is us pointed out by Beattie. So, using this, $(\phi(\alpha, \beta)c_{\alpha,\beta})$ and $(\phi(\beta, \alpha^{-1})c_{\alpha,\beta})$ being invertible is equivalent to $(\psi(\alpha, \beta)d'_{\alpha,\beta})$ and $(\psi(\beta, \alpha^{-1})d'_{\alpha,\beta})$ being invertible and $(\phi(\alpha, \beta)d_{\alpha,\beta})$ and $(\phi(\beta, \alpha^{-1})d_{\alpha,\beta})$ being invertible is equivalent to $(\psi(\alpha, \beta)c'_{\alpha,\beta})$ and $(\psi(\beta, \alpha^{-1})c'_{\alpha,\beta})$ being invertible.

So we obtain that A° is an H^* -Azumaya algebra but A is not. The property "an H-Azumaya algebra is not H^* -Azumaya" is not true in general. For example, consider an Azumaya algebra A with trivial H-dimodule struc-

ture. Then A is an H-Azumaya algebra as well as an H^* -Azumaya algebra. But that the opposite algebra A° of an H-Azumaya algebra is H^* -Azumaya is always true if H is a commutative and cocommutative, finitely generated projective Hopf algebra. This is what we are going to show now.

- 3. Proposition. Let H be a commutative and cocommutative, finitely generated projective Hopf algebra. Then H^* is also a Hopf algebra and $H \cong H^{**}$ as Hopf algebras. Let M be an H-dimodule with structure maps $H \otimes_R M \to M$: $h \otimes m \to (h \multimap m)$ and $M \to M \otimes_R H$: $m \to \sum_{(m)} m_{(0)} \otimes m_{(1)}$. Then:
- (1) M is a left H^* -module by $H^* \otimes_R M \to M : f \otimes m \to (f \multimap m) = \sum_{(m)} m_{(0)} f(m_{(1)});$
- (2) M is a right H^* -comodule by $M \to M \otimes_R H^*$: $m \to \sum_{(m)} m^{(0)} \otimes m^{(1)}$ where $\sum_{(m)} m^{(0)} m^{(1)}(h) = (h \multimap m)$ for all $h \in H$;
- (3) $\sum_{(f \neg m)} (f \neg m)^{(0)} \otimes (f \neg m)^{(1)} = \sum_{(m)} (f \neg m^{(0)}) \otimes m^{(1)}$. So M is an H^* -dimodule. Furthermore, if A is an H-dimodule R-algebra, then A is an H^* -dimodule R-algebra for the H^* -dimodule structure defined above.

Proof. We refer to Long in [2] for a proof that H^* is also a finitely generated projective Hopf algebra. For a proof of (1) and (2) we refer to Long in [2] and Pareigis in [4].

(3). Using (1) we obtain

$$\sum_{(f \multimap m)} (f \multimap m)^{(0)} \otimes (f \multimap m)^{(1)} = \sum_{(m) \in m_{(0)}} (m_{(0)})^{(0)} \otimes (m_{(0)})^{(1)} f(m_{(1)}) (*)$$

and

$$\sum_{(m)} (f - m^{(0)}) \otimes m^{(1)} = \sum_{(m)(m^{(0)})} (m^{(0)})_{(0)} f((m^{(0)})_{(1)}) \otimes m^{(1)} (**).$$

Let h be an element of H. We let (*) work on h and we obtain:

$$\sum_{(m)(m_{(0)})} (m_{(0)})^{(0)} (m_{(0)})^{(1)} (h) f(m_{(1)}) = \sum_{(m)} (h - m_{(0)}) f(m_{(1)})$$

$$= \sum_{(h - m)} (h - m)_{(0)} f((h - m)_{(1)})$$

$$= f - (h - m).$$

Now we let (**) work on h and we obtain:

$$\sum_{(m)(m^{(0)})} (m^{(0)})_{(0)} f((m^{(0)})_{(1)}) m^{(1)}(h) = \sum_{(m)} m^{(1)}(h) (f - m^{(0)})$$

$$= f - (\sum_{(m)} m^{(1)}(h) m^{(0)})$$

$$= f - (h - m)$$

proving (3).

Let A be an H-dimodule R-algebra. Then we obtain:

(a)
$$f - (ab) = \sum_{(ab)} (ab)_{(0)} f((ab)_{(1)}) = \sum_{(a)(b)} a_{(0)} b_{(0)} f(a_{(1)} b_{(1)})$$

 $= \sum_{(ab)(b)(f)} a_{(0)} b_{(0)} f^{(1)}(a_{(1)}) f^{(2)}(b_{(1)})$
 $= \sum_{(f)} \sum_{(a)} a_{(0)} f^{(1)}(a_{(1)}) \sum_{(b)} b_{(0)} f^{(2)}(b_{(1)}) = \sum_{(f)} (f^{(1)} - a)(f^{(2)} - b)$
(b) $\sum_{(ab)} (ab)^{(0)} (ab)^{(1)}(h) = (h - (ab)) = \sum_{(b)} (h^{(1)} - a)(h^{(2)} - b)$
 $= \sum_{(a)} \sum_{(a)} a^{(0)} a^{(1)}(h^{(1)}) \sum_{(b)} b^{(0)} b^{(1)}(h^{(2)})$
 $= \sum_{(a)(b)} a^{(0)} b^{(0)} \sum_{(b)} a^{(1)}(h^{(1)}) b^{(1)}(h^{(2)})$
 $= \sum_{(a)(b)} a^{(0)} b^{(0)}(a^{(1)} b^{(1)})(h).$

So in this case A turns out to be an H^* -dimodule R-algebra.

- 4. Notation. For any H-dimodule M, if we consider the H^* -dimodule structure, we write M_{H^*} . Elements of M_{H^*} are denote by b^* for $b \in M$.
- 5. Lemma. Let A be an H-dimodule algebra. Then $\overline{(A_H^*)}$ is isomorphic to A as H-dimodule. Multiplication on $\overline{(A_H^*)}$ is given by:

$$\overline{a^*b^*} = \overline{(\sum_{(b)} b_{(0)}(b_{(1)} - a))^*}.$$

Proof. For $a, b \in A$, we obtain:

$$\overline{a^*b^*} = \overline{(\sum_{(a)}(a^{(1)} - b)a^{(0)})^*} = \overline{(\sum_{(a)(b)}b_{(0)}a^{(1)}(b_{(1)})a^{(0)})^*} = \overline{(\sum_{(b)}b_{(0)}(b_{(1)} - a))^*}.$$

6. Lemma. Let A, B be H-dimodule algebras. Then $(A_{H^*}) \sharp (B_{H^*})$ is isomorphic to $A \otimes_R B$ as H-dimodule. Multiplication on $(A_{H^*}) \sharp (B_{H^*})$ is given by:

$$(a^* \sharp b^*)(c^* \sharp d^*) = \sum_{(c)} (ac_{(0)})^* \sharp ((c_{(1)} - b)d)^*.$$

Proof. For $a, c \in A$ and $b, d \in B$, we obtain:

$$(a^* \sharp b^*)(c^* \sharp d^*) = \sum_{(b)} a^* (b^{*(1)} \neg c^*) \sharp b^{*(0)} d^*$$

$$= \sum_{(b)} c_1 a^* c_{(0)}^* b^{*(1)} (c_{(1)}^*) \sharp b^{*(0)} d^*$$

$$= \sum_{(b)} (ac_{(0)})^* \sharp (b^{(1)} (c_{(1)}) b^{(0)} d)^*$$

$$= \sum_{(c)} (ac_{(0)})^* \sharp ((c_{(1)} \neg b) d)^*.$$

7. Lemma. Let A be an H-dimodule algebra. Then the R-linear map f from $(A^{\circ})_{H^{\bullet}} \sharp \overline{((A^{\circ})_{H^{\bullet}})}$ to $(\overline{A} \sharp A)^{\circ}$ defined by $f(a^{\circ *} \sharp \overline{b^{\circ *}}) = (\overline{b} \sharp a)^{\circ}$ is an isomorphism of H^* -dimodule algebras.

Proof. Let a, b, c, d be elements of A. Then we obtain:

$$f((a^{\circ*} \sharp \overline{b^{\circ*}})(c^{\circ*} \sharp \overline{d^{\circ*}})) = f(\sum_{(c)}(a^{\circ}c_{(0)}{}^{\circ})^{*} \sharp \overline{(c_{(1)} - b)^{\circ*}d^{\circ*}})$$

$$= f(\sum_{(c)|d)}(a^{\circ}c_{(0)}{}^{\circ})^{*} \sharp \frac{(d_{(0)}{}^{\circ}(c_{(1)}d_{(1)} - b)^{\circ})^{*}}{((c_{(1)}d_{(1)} - b)d_{(0)})^{\circ*}})$$

$$= f(\sum_{(c)|d)}(c_{(1)}d_{(1)} - b)d_{(0)} \sharp c_{(0)}a)^{\circ}$$

$$= (\sum_{(c)}(\overline{d})(\overline{c_{(1)}}d_{(1)} - b)d_{(0)} \sharp c_{(0)}a)^{\circ}$$

$$= ((\overline{d})(\overline$$

Since H^* is cocommutative (resp. commutative) it is easy to see that f is an H^* -module (resp. H^* -comodule) homomorphism.

8. Lemma. The following diagram is commutative:

$$(A^{\circ})_{H^{*}} \sharp \overline{((A^{\circ})_{H^{*}})} \xrightarrow{F_{(A^{\circ})_{H^{*}}}} \operatorname{End}_{R}((A^{\circ})_{H^{*}})$$

$$f \downarrow \qquad \qquad \downarrow Id$$

$$(\overline{A} \sharp A)^{\circ} \xrightarrow{G_{A^{\circ}}} \operatorname{End}_{R}(A)$$

Proof. For $a, b, c \in A$, we obtain:

(1)
$$(G \circ f)(a^{\circ *} \sharp \overline{b^{\circ *}})(c) = G(\overline{b} \sharp a)(c) = \sum_{(c)} (c_{(1)} \neg a) c_{(0)} a.$$

(2)
$$F_{(A^\circ)_{H^\bullet}}(a^{\circ *} \sharp \overline{b^{\circ *}})(c^{\circ *})$$

$$= \sum_{(b)} a^{\circ *} ((b^{\circ *})^{(1)} - c^{\circ *})(b^{\circ *})^{(0)}$$

$$= (\sum_{(b)(c)} a^\circ c^{\circ}_{(0)} b^{\circ (1)}(c^{\circ}_{(1)} - b^{\circ}))^*$$

$$= (\sum_{(c)} a^\circ c^{\circ}_{(0)}(c^{\circ}_{(1)} - b^{\circ}))^* = (\sum_{(c)} (c_{(1)} - b)c_{(0)}a)^{\circ *}.$$

9. Corollary. The map G_A is an isomorphism of H-dimodule algebras if and only if $F_{(A^0)}$, is an isomorphism of H^* -dimodule algebras.

In a similar way, we obtain:

- 10. Lemma. Let A be an H-dimodule algebra. Then the R-linear map g from $((A^{\circ})_{H^{\bullet}}) \# (A^{\circ})_{H^{\bullet}}$ to $(A \# \overline{A})^{\circ}$ defined by $g(\overline{a^{\circ *}} \# b^{\circ *}) = (b \# \overline{a})^{\circ}$ is an isomorphism of H*-dimodule algebras.
 - 11. Lemma. The following diagram is commutative:

$$\overline{((A^{\circ})_{H^{\bullet}})} \sharp (A^{\circ})_{H^{\bullet}} \xrightarrow{G_{(A^{\circ})_{H^{\bullet}}}} \operatorname{End}_{R}((A^{\circ})_{H^{\bullet}})^{\circ} \\
\downarrow Id \\
(A \sharp \overline{A})^{\circ} \xrightarrow{F_{A^{\circ}}} \operatorname{End}_{R}(A)^{\circ}$$

12. Corollary. The map F_A is an isomorphism of H-dimodule algebras if and only if $G_{(A^0)}$, is an isomorphism of H*-dimodule algebras.

So we obtain the following result:

- 13. Theorem. Let H be a commutative and cocommutative, finitely generated projective Hopf algebra. Then an H-dimodule algebra A is an H-Azumaya R-algebra if and only if A° is an H*-Azumaya R-algebra. So there is a one-one correspondence between the H-Azumaya R-algebras and the H*-Azumaya R-algebras.
- 14. Lemma. Let A, B be H-dimodule R-algebras. Then the R-linear map f from $((A \# B)^\circ)_{H^*}$ to $(B^\circ)_{H^*} \# (A^\circ)_{H^*}$ defined by $f((a \# b)^{\circ *}) = b^{\circ *} \# a^{\circ *}$ is an H^* -dimodule R-algebra isomorphism.

Proof. For $a, c \in A$ and $b, d \in B$ we obtain:

$$f((a \sharp b)^{\circ *}(c \sharp d)^{\circ *}) = f(((c \sharp d)(a \sharp b))^{\circ *})$$

$$= f((\sum_{(d)}c(d_{(1)} \lnot a) \sharp d_{(0)}b)^{\circ *})$$

$$= \sum_{(d)}(d_{(0)}b)^{\circ *} \sharp (c(d_{(1)} \lnot a))^{\circ *}$$

$$= \sum_{(d)}(b \circ d_{(0)}^{\circ})^{*} \sharp ((d_{(1)} \lnot a)^{\circ}c \circ)^{*}$$

$$= (b \circ * \sharp a \circ *)(d \circ * \sharp c \circ *)$$

$$= f((a \sharp b)^{\circ *})f((c \sharp d)^{\circ *}).$$

15. Lemma. Let A be an H-dimodule algebra. Then the R-linear map g from $\overline{((A^{\circ})_{H^{*}})}$ to $((\overline{A})^{\circ})_{H^{*}}$ defined by $g(\overline{a^{\circ *}}) = \overline{a}^{\circ *}$ is an H*-dimodule isomorphism.

Proof. For $a, b \in A$, we obtain:

$$\begin{array}{l}
g\overline{(a^{\circ*}b^{\circ*})} = g(\overline{\sum_{(b)}(b_{(0)}\circ(b_{(1)} - a)^{\circ})^{*}}) = g(\overline{\sum_{(b)}((b_{(1)} - a)b_{(0)})^{\circ*}}) \\
= \overline{\sum_{(b)}((b_{(1)} - a)b_{(0)})^{\circ*}} = (\bar{b}\bar{a})^{\circ*} = (\bar{a})^{\circ*}(\bar{b})^{\circ*} \\
= g(\overline{a^{\circ*}})g(\overline{b^{\circ*}}).
\end{array}$$

We conclude from the foregoing:

- 16. Theorem. Let H be a commutative and cocommutative, finitely generated projective Hopf algebra. Then the assignment $[A] \to \overline{[A^\circ]}$ defines an isomorphism of groups θ between BD(R, H) and $BD(R, H^*)$.
- 17. Remarks. 1. If we restrict θ to BM(R, H) (resp. BC(R, H)) the image becomes $BC(R, H^*)$ (resp. $BM(R, H^*)$). Furthermore, if $[A] \in BM(R, H)$ or $[A] \in BC(R, H)$, $\theta([A]) = [A]$.
- 2. Let BAz(R, H) denote the set of central classes in BD(R, H). This is not always a group as is noted by M. Orzech in [3]. Consider the anti-isomorphism of groups between $BD_{\mathfrak{g}}(R, H)$ and $BD_{\mathfrak{g}}(R, H^*)$ which maps [A] to $[A^{\circ}]$. If we restrict this anti-isomorphism to $BAz_{\mathfrak{g}}(R, H)$, then the image is $BAz_{\mathfrak{g}}(R, H^*)$. Using this, we may conclude that $BAz_{\mathfrak{g}}(R, H)$ is a group if and only if $BAz_{\mathfrak{g}}(R, H^*)$ is a group and that $BAz_{\mathfrak{g}}(R, H)$ is the whole of $BD_{\mathfrak{g}}(R, H)$ if and only if $BAz_{\mathfrak{g}}(R, H^*)$ is the whole of $BD_{\mathfrak{g}}(R, H^*)$.
- 18. Application. Let F be a field, char F = p > 0 and $H = F[X]/(X^p X)$. H is a Hopf algebra via $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\varepsilon(x) = 0$ and S(x) = -x. The dual H^* of H is FC_p where C_p is the cyclic group of order p (cf. Proposition 5.1. in [2]). So $BD(F, H) = BD(F, C_p)$.

REFERENCES

- [1] F. W. Long: A Generalization of the Brauer Group of Graded Algebras, Proc. London Math. Soc. 29 (1974), 237-256.
- [2] F. W. Long: The Brauer Group of Dimodule Algebras, J. of Algebra 30 (1974), 559-601.
- [3] M. ORZECH: On the Brauer Group of Modules having a Grading and an Action, Canad. J. Math. 28 (1976), 533-552.
- [4] B. PAREIGIS: When Hopf Algebras are Frobenius Algebras, J. Algebra 18 (1971), 588 -
- [5] M. E. SWEEDLER: Hopf Algebras, Benjamin, New York, 1969.

FREE UNIVERSITY OF BRUSSELS, VUB
FACULTY OF APPLIED SCIENCES
B-1050 BRUSSELS
BELGIUM

(Received March 14, 1989)