ON G-EXTENSIONS OF A SEMI-CONNECTED RING

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

KAZUO KISHIMOTO and TAKASI NAGAHARA

0. Introduction. Throughout this note, A will mean a ring with an identity 1 which is not necessarily commutative. By C_A and $\mathfrak{B}(C_A)$, we denote the center of A and the set of all idempotents of C_A respectively. Then A is said to be connected (resp. disconnected) if the cardinality $|\mathfrak{B}(C_A)| = 2$ (resp. $|\mathfrak{B}(C_A)| > 2$). Moreover, A will be called to be semiconnected if $|\mathfrak{B}(C_A)| < \infty$. Let B/A be a ring extension with an identity 1 which is the common identity of B and A. B/A will be called to be a G-extension if there exists a finite group G of automorphisms of G such that G is the fixring of G in G

In [8], O. E. Villamayor and D. Zelinsky presented a Galois theory for separable G-extensions of commutative semi-connected rings.

In this note, we shall study about a G-extension B of a semi-connected ring A and $\mathfrak{B}(C_B)$. In § 1 and § 2, we shall prove that any G-extension of a semi-connected ring is also semi-connected (Theorem 5 and Theorem 8), and any G-extension of a connected ring A is A-isomorphic to a direct sum of some finite copies of a connected H-extension of A (Theorems 11 and 11'). In § 3, we shall present a Galois theory for G-extensions of semi-connected rings which is a partial generalization of [8, Theorem] to non-commutative rings (Theorem 13).

In what follows, for a G-extension B/A and any subset S (resp. H) of B (resp. G), we shall use the following conventions:

|S| = the cardinality of S.

S(H) (= S^H as an abbreviation) = $\{a \in S : \sigma(a) = a \text{ for all } \sigma \in H\}$.

H(S) (= H_S as an abbreviation) = $| \sigma \in H; \ \sigma(a) = a \text{ for all } a \in S |$.

 $HS = \{ \sigma(a) : \sigma \in H, a \in S \}.$

 $H \mid S =$ the restriction of H to S.

It is obvious that for any $a \in B$, $G|a| = |\sigma(a); \sigma \in G|$ and $|G|a| = (G: G_a)$ (the index of G_a in G).

Moreover, for e and f in $\mathfrak{V}(C_B)$, if $e \neq f$ and ef = f then we write e > f; and further, if $e \neq 0$ and $f \in \mathfrak{V}(C_B)$; $f \in f = \{0\}$ then $f \in f$ will be called to be a *primitive idempotent* in $f \in f$ (or in $f \in f$).

1. On G-extensions of commutative rings. In this section, let A be a commutative ring, and B a commutative ring which is a G-extension of A. If e_i (i=1,2) are primitive idempotents in $\mathfrak{B}(B)$ and $e_1e_2 \neq 0$ then $e_1e_2 \in \mathfrak{B}(B)$ and $e_i \geq e_1e_2 > 0$ (i=1,2), which implies $e_1 = e_1e_2 = e_2$. If e is a primitive idempotent in $\mathfrak{B}(B)$ and σ is an arbitrary element of G then $\sigma(e)$ is also a primitive idempotent in $\mathfrak{B}(B)$ and whence, there holds either $\sigma(e) = e$ or $e\sigma(e) = 0$.

By $O(\mathfrak{B}(B); G)$, we denote the set of non-zero elements e of $\mathfrak{B}(B)$ such that there holds either $\sigma(e) = e$ or $e\sigma(e) = 0$ for each $\sigma \in G$. By the preceding remarks, any primitive idempotent in $\mathfrak{B}(B)$ belongs to $O(\mathfrak{B}(B); G)$. Since $O(\mathfrak{B}(B); G) \ni 1$, this is non-empty. Moreover, we denote $\max_{e \in O(\mathfrak{B}(B); G)} |G|e|$ by $m_{O(\mathfrak{B}(B); G)}$.

Now, let e be an element of $O(\mathfrak{B}(B); G)$, and

$$G|e| = |\sigma_1(e), \sigma_2(e), ..., \sigma_m(e)|$$
 where $m = |G|e|$.

Then $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint) where $G_e = \{ \sigma \in G : \sigma(e) = e \}$. Moreover, since $\sigma_i(e) \sigma_j(e) = \delta_{ij} \sigma_i(e)$ for each $i \neq j$, $e' = \sum_{i=1}^m \sigma_i(e)$ is an idempotent of B, that is $e' \in \mathfrak{V}(B)$. Noting $\sigma(e') = e'$ for all $\sigma \in G$, we see that $e' \in \mathfrak{V}(B^c)$ and $e' \neq 0$. Hence, if B^c is connected then e' = 1, the identity of $B^c = A$.

First, we shall prove the following lemma which plays an important rôle in our considerations.

Lemma 1. Let A be a connected ring and B/A a G-extension. Then, for $e \in \mathfrak{B}(B)$, the following conditions are equivalent.

- (a) $e \in O(\mathfrak{B}(B); G) \text{ and } |G|e| = m_{O(\mathfrak{B}(B); G)}$.
- (b) e is a primitive idempotent in $\mathfrak{V}(B)$.

Proof. (a) \Rightarrow (b): We assume (a) and that e is not primitive in $\mathfrak{B}(B)$. Then, there is an element f in $\mathfrak{B}(B)$ such that $e > f \neq 0$, that is, $ef = f \neq e$, 0. Since $|G|f|| < \infty$, there is a maximal subset $|a_1, ..., a_s|$ in G|f| such that $a_1a_2 \cdots a_s \neq 0$. We set here $g = a_1a_2 \cdots a_s$. Since $\sigma(g) \neq 0$ for all $\sigma \in G$, we may set $a_1 = f$. Now, let $g \neq \sigma(g)$ for some $\sigma \in G$. Then

$$|a_1, \ldots, a_s| \supset |\sigma(a_1), \ldots, \sigma(a_s)|,$$

Since $G\{f\} \supset \{\sigma(a_1), ..., \sigma(a_s)\}$, by the maximality of $\{a_1, ..., a_s\}$ we have

$$a_1a_2\cdots a_s\sigma(a_i)=0$$
 if $\sigma(a_i)\notin\{a_1,a_2,...,a_s\}$.

This implies that $g\sigma(g)=0$. Hence, it follows that $g\in O(\mathfrak{V}(B);G)$. We set

$$f_0 = e - f$$
, $G|e| = |\sigma_1(e), \sigma_2(e), ..., \sigma_m(e)|$ and $h = \sum_{i=1}^m \sigma_i(g)$,

where $\sigma_1=1$ and $m=|G|e||=m_{O(\mathfrak{B}(B);|G)}$. Noting $f_0e=f_0$ and $e\,\sigma_i(e)=0$ for all $i\geq 2$, we see that

$$f_0 \sigma_i(e) = (f_0 e) \sigma_i(e) = 0 \ (i \ge 2),$$

$$f_0 \sigma_i(f) = f_0 \sigma_i(ef) = f_0 \sigma_i(e) \sigma_i(f) = 0 \ (i \ge 2)$$

and so

$$f_0\sigma_i(g) = f_0\sigma_i(fa_2\cdots a_s) = f_0\sigma_i(f)\sigma_i(a_2\cdots a_s) = 0 \ (i \ge 1).$$

This implies $f_0h=0$ and so $h\neq 1$. Now, for any $i\neq j$, we have $\sigma_i^{-1}\sigma_j=\sigma_k\tau$ for some $\tau\in G_e$ $(=\mid \sigma\in G;\ \sigma(e)=e\mid)$ and k>1. Hence

$$\sigma_{\iota}^{-1}(\sigma_{\iota}(g) - \sigma_{\iota}(g)) = g + \sigma_{\iota}\tau(g) = g + \sigma_{\iota}\tau(efa_{2}\cdots a_{s})$$
$$= g + \sigma_{\iota}(e)\sigma_{\iota}\tau(fa_{2}\cdots a_{s})$$

From this, we obtain $e\,\sigma_i^{-1}(\,\sigma_i(g)-\sigma_j(g))=eg=g\neq 0$. Therefore, it follows that $\sigma_i(g)-\sigma_j(g)\neq 0$ for each $i\neq j$. Since $g\in O(\mathfrak{B}(B)\,;\,G)$, we have $|\,G|\,g\,|\,|=m$, and so $h\in\mathfrak{B}(A)\setminus |\,0\,|=|\,1\,|$, which is a contradiction. Hence e is a primitive idempotent in $\mathfrak{B}(B)$. Thus, we obtain $(a)\Leftrightarrow (b)$.

(b) \Rightarrow (a): We set $m=m_{o(\mathfrak{A}(B);G)}$. Let f be an element in $O(\mathfrak{A}(B);G)$ such that |G|f||=m, and $G|f|=|f_1,...,f_m|$. Then, since A is connected, we have $1=\sum_{i=1}^m f_i$. Now, let e be an arbitrary primitive idempotent in $\mathfrak{A}(B)$. Then $e\in O(\mathfrak{A}(B);G)$ (which has been noted already). Since $e=\sum_{i=1}^m ef_i$, we have $ef_u\neq 0$ for some u in |1,...,m|, and $e\geq ef_u>0$. Hence $e=ef_u$. Let $f_u\neq \sigma(f_u)$ for some $\sigma\in G$. Then $\sigma(ef_u)f_u=\sigma(e)\sigma(f_u)f_u=0$. Since $(ef_u)f_u\neq 0$, we have $ef_u\neq \sigma(ef_u)$. Hence, it follows that

$$m = m_{O(\mathfrak{B}(B); G)} \ge |G| e|| = |G| e f_u|| \ge m.$$

Thus we obtain $|G|e^{\dagger}| = m$, completing the proof.

Lemma 2. Let A be a connected ring and B/A a G-extension. Then, there exists a primitive idempotent e in B, and G|e| coincides with the set of all the primitive idempotents in B. Moreover, $|\mathfrak{B}(B)| = 2^m$ for m = |G|e|.

Proof. By Lemma 1, B contains a primitive idempotent e. Set m=|G|e| and $G|e|=|\sigma_1(e),\ldots,\sigma_m(e)|$. Then the elements $\sigma_t(e)$'s are orthogonal to each other and $\sum_{i=1}^m \sigma_i(e)=1$. Now, let f be an arbitrary element of $\mathfrak{B}(B)$. If $f\sigma_u(e)\neq 0$ $(1\leq u\leq m)$ then $0< f\sigma_u(e)\leq \sigma_u(e)$ and so $f\sigma_u(e)=\sigma_u(e)$. Hence $f=\sum_{i=1}^m f\sigma_i(e)$, which is the sum of the $\sigma_u(e)$'s with $f\sigma_u(e)\neq 0$. In particular, any primitive idempotent of B is contained in $|\sigma_1(e),\ldots,\sigma_m(e)|$. From this, the rest of our assertions follows immediately.

Lemma 3. Let B/A be a G-extension. Let e be a primitive idempotent of B and set $G \mid e \mid = \mid \sigma_1(e), \ldots, \sigma_m(e) \mid$ where $m = \mid G \mid e \mid \mid$. Then $\sum_{i=1}^m \sigma_i(e)$ is a primitive idempotent of A.

Proof. We set $f = \sum_{i=1}^{m} \sigma_i(e)$. Then, one will easily see that $f \in A$. Moreover, each $\sigma_i(e)$ $(1 \le i \le m)$ is a primitive idempotent of B. Since $\sigma_i(e) \ne \sigma_j(e)$ for each pair $i \ne j$ $(1 \le i, j \le m)$, the $\sigma_i(e)$ are orthogonal to each other. Hence we have $f \in \mathfrak{B}(A)$. We assume that f is not primitive in $\mathfrak{B}(A)$. Then, there are non-zero elements f_1 and f_2 in $\mathfrak{B}(A)$ such that $f = f_1 + f_2$ and $f_1 f_2 = 0$. It is obvious that $f_1 = f_1 f = \sum_{i=1}^{m} f_i \sigma_i(e) = \sum_{i=1}^{m} \sigma_i(f_1 e)$. Hence $f_1 e \ne 0$. Since e is primitive in $\mathfrak{B}(B)$ and $e \ge f_1 e > 0$, we obtain $e = f_1 e$. Therefore, it follows that $f_1 = \sum_{i=1}^{m} \sigma_i(e) = f$, which is a contradiction. Thus, f is primitive in $\mathfrak{B}(A)$.

Lemma 4. Let B/A be a G-extension. Let f be a primitive idempotent of A. Then, there exists a primitive idempotent e of B such that $f = \sum_{i=1}^{m} \sigma_i(e)$ for $G|e| = |\sigma_1(e), ..., \sigma_m(e)|$ where m = |G|e|.

Proof. Obviously, Af is a connected ring with an identity f. Since $Bf^c = Af$, Bf/Af is a $(G \mid Bf)$ -extension. Hence by Lemma 2, there exists a primitive idempotent e in Bf. Then, one will easily see that e is also a primitive idempotent in B. We set m = |G|e||, $G|e| = |\sigma_1(e), \ldots, \sigma_m(e)|$ and $f' = \sum_{i=1}^m \sigma_i(e)$. Since $\sigma(e) \in Bf$ for every $\sigma \in G$, we have $f' \in Bf$. Hence by Lemma 3, f' is a non-zero idempotent of $A \cap Bf = Af$. Since Af is connected, it follows that f' = f, completing the proof.

Combining Lemma 3 with Lemma 4, we obtain the following

Theorem 5. Let B/A be a G-extension. Let $\mathfrak{B}(B)'$ (resp. $\mathfrak{B}(A)'$) be the set of non-zero primitive idempotents in $\mathfrak{B}(B)$ (resp. $\mathfrak{B}(A)$). Then

- $(i) \quad |\mathfrak{V}(A)'| \le |\mathfrak{V}(B)'| \le |\mathfrak{V}(A)'| |G|.$
- (ii) $|\mathfrak{V}(A)| \leq |\mathfrak{V}(B)| \leq 2^{|\mathfrak{V}(A)||G|}$ if either $|\mathfrak{V}(A)| < \infty$ or $|\mathfrak{V}(B)| < \infty$.

In virtue of Theorem 5, we obtain the following

- Corollary 6. Let B/A be a G-extension. Then, B has a primitive idempotent if and only if A has a primitive idempotent.
- Corollary 7. Let B/A be a G-extension. Then, B is semi-connected if and only if A is semi-connected.
- 2. On G-extension of rings. Throughout the rest of this note, B will mean a ring which is not necessarily commutative.

Firstly, in virtue of Corollary 7, we shall prove the following

Theorem 8. Let B/A be a G-extension. If A is semi-connected then so is B.

Proof. Since $\sigma(C_B) = C_B$ for all $\sigma \in G$, C_B/C_B^G is a $(G \mid C_B)$ -extension. Moreover, we have $C_B^G = C_B \cap A \subset C_A$, and so, $\mathfrak{V}(C_B^G) \subset \mathfrak{V}(C_A)$. Hence, if C_A is semi-connected then so is C_B^G , and whence C_B is semi-connected by Corollary 7.

Lemma 9. Let B/A be a G-extension. Let e be an arbitrary element of $O(\mathfrak{B}(C_B); G)$. Then, for any $\tau \in G$, $B\tau(e)/A\tau(e)$ is a $(\tau G_e \tau^{-1} | B\tau(e))$ -extension, $G_{\tau(e)} = \tau G_e \tau^{-1}$, and $A\tau(e) \cong A(\sum_{i=1}^m \sigma_i(e))$ for $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint).

Proof. Firstly, by making use of the same methods as in the proof of [6, Lemma 2.14], we shall prove that Be/Ae is a $(G_e|B_e)$ -extension. For $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint), we have $G|e| = |\sigma_1(e), \ldots, \sigma_m(e)|$ and m = |G|e|. We may assume that $\sigma_1 = 1$. Set here $f = \sum_{i=1}^m \sigma_i(e)$. Then $f \in \mathfrak{B}(C_A)$ since $\sigma(f) = f$ for all $\sigma \in G$. Noting $B = Bf \oplus B(1-f)$ (direct sum), one will easily see that $Bf^c = A \cap Bf = Af$. Now, clearly we have

 $Ae \subset Be^{G_e}$. For any $a_1 \in Be^{G_e}$, we set

$$a_i = \sigma_i(a_1) \ (i = 1, ..., m), \quad \text{and} \quad a = a_1 + ... + a_m.$$

Then $a \in Bf$. Let τ be an arbitrary element of G. Since

$$\bigcup_{i=1}^{m} \sigma_i G_e \text{ (disjoint)} = G = \tau G = \bigcup_{i=1}^{m} \tau \sigma_i G_e \text{ (disjoint)},$$

there exist elements τ_1, \ldots, τ_m in G_e such that

$$|\tau\sigma_1,\ldots,\tau\sigma_m|=|\sigma_1\tau_1,\ldots,\sigma_m\tau_m|,$$

and then $\tau(a) = \sum_{i=1}^m \tau \sigma_i(a_1) = \sum_{i=1}^m \sigma_i \tau_i(a_1) = \sum_{i=1}^m \sigma_i(a_1) = a$. Hence we obtain that $a \in Bf^G = Af$, and so $a_1 = ae \in Afe = Ae$. Therefore, it follows that $Be^{Ge} = Ae$, that is, Be/Ae is a $(G_e|Be)$ -extension (cf. [4, Lemma 1.1] and [7, Lemma 10]). Now, it is obvious that $G_{\tau(e)} \supset \tau G_e \tau^{-1}$. For any $\sigma \in G_{\tau(e)}$, we have $\sigma \tau(e) = \tau(e)$, which implies $\tau^{-1} \sigma \tau \in G_e$, and so $\sigma \in \tau G_e \tau^{-1}$. Hence we obtain $G_{\tau(e)} = \tau G_e \tau^{-1}$. Noting $\tau(e) \in O(\mathfrak{V}(C_B); G)$, we see that $B\tau(e)/A\tau(e)$ is a $(\tau G\tau^{-1}|B\tau(e))$ -extension. If ae = 0 for $a \in A$ then

$$0 = \sum_{i=1}^{m} \sigma_i(ae) = a \sum_{i=1}^{m} \sigma_i(e) = af$$
.

This implies that $Af \cong Ae$, and so $Af \cong A\tau(e)$.

Lemma 10. Let B/A be a G-extension. Let e be an arbitrary element of $O(\mathfrak{B}(C_B); G)$, and $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint). If $\sum_{i=1}^m \sigma_i(e) = 1$ then B is a direct sum of $(\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e))$ -extensions $B\sigma_i(e)/A\sigma_i(e)$ with $A\sigma_i(e) \cong A$ ($a\sigma_i(e) \leftrightarrow a$), $1 \leq i \leq m$.

Proof. One will easily see that $G[e] = |\sigma_1(e), ..., \sigma_m(e)|$, m = |G|e|, and so, $\sigma_i(e) \neq \sigma_i(e)$ for each $i \neq j$. If $\sum_{i=1}^m \sigma_i(e) = 1$ then

$$B = B\sigma_1(e) \oplus \cdots \oplus B\sigma_m(e)$$

and for each i $(1 \le i \le m)$, $B\sigma_i(e)/A\sigma_i(e)$ is a $(\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e))$ -extension with $A\sigma_i(e) \cong A$ by Lemma 9.

Now, in virtue of Lemma 2 and Lemma 10, we shall prove the following

Theorem 11. Let A be a connected ring, and B/A a G-extension. Then, there is a primitive idempotent e in C_B , and for

$$G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$$
 (disjoint),

there holds that

- (i) $|\mathfrak{V}(C_B)| = 2^m$, m = |G|e|, G|e| coincides with the set of all the primitive idempotents of C_B , and
- (ii) B is a direct sum of connected $(\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e))$ -extensions $B\sigma_i(e)/A\sigma_i(e)$ with $A\sigma_i(e) \cong A$ $(1 \le i \le m)$.

Proof. As in the proof of Theorem 4, C_B/C_B^G is a $(G | C_B)$ -extension. Since $C_B^G = C_B \cap A \subset C_A$, C_B^G is a connected ring. Hence by Lemma 2, there is a primitive idempotent e in C_B , for which (i) holds. Now, since $\sum_{i=1}^m \sigma_i(e) = 1$ and the $\sigma_i(e)$ are orthogonal to each other, we have $C_{B\sigma_i(e)} = C_B\sigma_i(e)$ ($1 \le i \le m$). Obviously, each $C_B\sigma_i(e)$ is a connected ring with an identity $\sigma_i(e)$. Hence the rings $B\sigma_i(e)$ are connected. The other assertions follow immediately from Lemma 10.

Corollary 12. Let A be a connected ring, and B/A a G-extension with |G| = n.

- (i) The following conditions are equivalent.
 - (a) B is ring isomorphic to $A^{(n)}$, a direct sum of n-copies of A.
 - (b) There exists a primitive idempotent e in C_B with |G|e|| = n.
 - (c) C_B contains C_A , C_B is ring isomorphic to $C_A^{(n)}$ and $B \cong C_B \otimes_{C_A} A$.

Moreover, if this is the case, G[e] is a G-normal bases for B/A, and G is an outer group.

- (ii) If n is prime, then the following conditions are equivalent.
 - (a') B is ring isomorphic to $A^{(n)}$.
 - (b') B is disconnected.

Proof. Let S be the set of primitive idempotents of C_B . Then S is non-empty by Theorem 11. Let e be an arbitrary element of S. Then, we have $S = G\{e\}$ by Theorem 11.

- (a) \Rightarrow (b): Since $B \cong A^{(n)}$, we have $|S| \ge n$, and so $|G|e| \ge n$. On the other hand, it is obvious that $|G|e| \le |G| = n$. Hence |G|e| = n.
- (b) \Rightarrow (a): Since |G|e| = n, we have $G_e = \{1\}$. Hence, by Theorem 11, we obtain $B = \sum_{\tau \in G} \bigoplus A_{\tau}(e)$ and $A_{\tau}(e) \cong A$. Moreover, G|e| is a G-normal bases for B/A.
- (a) \iff (c): This will be easily seen, and by (c), G is an outer group. Clearly $|G|e^{\{\}}|$ is a divisor of |G|. Noting this fact, one will easily see the assertion (ii).

Next, we shall make some remarks on G-Galois extensions of rings.

Lemma 9'. Let B/A be a G-Galois extension. Let e be an arbitrary element of $O(\mathfrak{B}(C_B); G)$. Then, for any $\tau \in G$, $B\tau(e)/A\tau(e)$ is a $(\tau G_e \tau^{-1}|B\tau(e))$ -Galois extension with $\tau G_e \tau^{-1}|B\tau(e) \cong \tau G_e \tau^{-1}$.

Proof. Since B/A is G-Galois, there is a G-Galois coordinate system $\{u_i, v_i; i = 1, ..., r\}$ in B such that $\sum_i u_i \sigma(v_i) = \delta_{1,\sigma} (\sigma \in G)$. Let τ be an element of G_e . Then we have

$$\sum_{i} e u_{i} \tau(e v_{i}) = e \sum_{i} u_{i} \tau(v_{i}) = e \delta_{1,\tau}.$$

If $\tau | Be = 1$ then

$$e = e \sum_{i} u_{i}v_{i} = \sum_{i} e u_{i}ev_{i} = \sum_{i} e u_{i}\tau(ev_{i}) = e \delta_{i,\tau}$$

and whence $\tau = 1$. This implies that $G_e \cong G_e | Be$. Moreover, $|eu_i, ev_i; i = 1, ..., r|$ is a $(G_e | Be)$ -Galois coordinate system for Be/Be^{Ge} . Since $Be^{Ge} = Ae$ (Lemma 9), Be/Ae is a $(G_e | Be)$ -Galois extension. Now, for any $\tau \in G$, since $\tau(e) \in O(\mathfrak{B}(C_B); G)$ and $G_{\tau(e)} = \tau G_e \tau^{-1}$, we obtain our assertion by the above remark.

By Lemma 9', Lemma 10 and Theorem 11, we obtain the following

Lemma 10'. Let B/A be a G-Galois extension. Let e be an arbitrary element of $O(\mathfrak{A}(C_B); G)$, and $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint). If $\sum_{i=1}^m \sigma_i(e)$ = 1 then B is a direct sum of $(\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e))$ -Galois extensions $B\sigma_i(e)/A\sigma_i(e)$ with $A\sigma_i(e) \cong A$ and $\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e) \cong \sigma_i G_e \sigma_i^{-1} (1 \le i \le m)$.

Theorem 11'. Let A be a connected ring, and B/A a G-Galois extension. Then, there is a primitive idempotent e in C_B , and for $G = \sigma_1 G_e \cup \cdots \cup \sigma_m G_e$ (disjoint), B is a direct sum of connected $(\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e))$ -Galois extensions $B\sigma_i(e)/A\sigma_i(e)$ with $A\sigma_i(e) \cong A$ and $\sigma_i G_e \sigma_i^{-1} | B\sigma_i(e) \cong \sigma_i G_e \sigma_i^{-1} (1 \le i \le m)$.

3. A Galois theory of strong G-extensions of semi-connected rings. In [8], O. E. Villamayor and D. Zelinsky presented a Galois theory for a G-extension S/R such that R is a semi-connected commutative ring and S is a projective and separable commutative R-algebra. In this section, we shall present a partial generalization of this theory to non-commutative rings (Theorem 13).

Throughout this section, B will mean a semi-connected ring with $P = |e_1, ..., e_n|$, the set of all central primitive idempotents of B, and B/A will mean a G-extension (where G is a finite group of automorphisms of B). Moreover, for any subset S (resp. H) of B (resp. G), we shall use the notations S(H) and H(S) instead of S^H and H_S respectively.

Now, we set

$$S_i = Be_i$$
 and $H_i = G(|e_i|)|Be_i$

where $i=1,\ldots,n$. Obviously, there holds that the e_i are orthogonal, $\sum_{i=1}^n e_i = 1$ and $\sum_{i=1}^n \oplus S_i = B$. As is seen in [8], by G^* , we denote the set of automorphisms σ of B such that for each i $(1 \le i \le n)$, $\sigma | S_i = g_i | S_i$ for some g_i in G. Then, one will easily see that G^* is a group and $G \subset G^* = (G^*)^* (= G^{**})^*$ as an abbreviation). If $G = G^*$ then G will be called to be a fat group. Moreover, if for each i $(1 \le i \le n)$, $H_i(S_i(N)) = N$ for every subgroup N of H_i then B/A will called to be a strong G-extension.

First, we consider a G-extension B/A such that

(I) G is transitive on the set P.

Let f be a non-zero idempotent of $C_B \cap A$. Then, there exists an element e in P such that $fe \neq 0$. Since e is a primitive idempotent of C_B , we have fe = e. Hence $f\sigma(e) = \sigma(e)$ for all $\sigma \in G$. This implies f = 1. Moreover, if $a \in A$ and ae = 0 for some $e \in P$ then $a\sigma(e) = 0$ for all $\sigma \in G$ and so a = 0, which implies $A \cong Ae$ (cf. Theorem 11). Thus we obtain the following

(I, i) $C_B \cap A$ is connected, and $A \cong Ae$ $(a \leftrightarrow ae)$ for every $e \in P$. We set

$$\Re(G) = H_1 \times \cdots \times H_n$$
 (direct product).

Since G is transitive on P, there is a subset $|\sigma_1, ..., \sigma_n|$ in G such that $\sigma_1 = 1$ and $\sigma_i(e_1) = e_i$ (i = 1, ..., n). Then for $E_1 = G(|e_1|)$,

$$G(\{e_i\}) = \sigma_i E_1 \sigma_i^{-1} \ (1 \le i \le n) \text{ and } G = \sigma_1 E_1 \cup \cdots \cup \sigma_n E_1 \text{ (disjoint)}.$$

Let $\mathfrak{S}(G)$ be the symmetric group of permutations on the set $\{1, ..., n\}$. Now, we define compositions

$$\Re(G) \times B \to B$$
 and $\Im(G) \times B \to B$

by

$$(\tau_1, \ldots, \tau_n)(b_1 + \cdots + b_n) = \tau_1(b_1) + \cdots + \tau_n(b_n)$$

and

$$((u, v)\cdots(r, s)(i, j))(b_1+\cdots+b_n)$$

$$= (u, v)(\cdots(r, s)((i, j)(b_1+\cdots+b_n))\cdots)$$

$$= (u, v)(\cdots(r, s)(b_1+\cdots+b_{i-1}+\sigma_i\sigma_j^{-1}(b_j)+b_{i+1}+\cdots+b_{j-1}+\sigma_j\sigma_j^{-1}(b_j)+b_{j+1}+\cdots+b_n)\cdots)$$

respectively, where $b_i \in S_i$, $\tau_i \in H_i$ for i = 1, ..., n, and the (i, j)'s are transpositions in $\mathfrak{S}(G)$.

Under the above situations, we shall prove that

(I, ii) $\Re(G) \cap \mathfrak{S}(G) = |1|$, $\Re(G)\mathfrak{S}(G) = \mathfrak{S}(G)\Re(G)$ and $\Re(G)$ is a normal subgroup of $\Re(G)\mathfrak{S}(G)$.

Proof. It is obvious that $\Re(G) \cap \mathfrak{S}(G) = |1|$. Now, let $(i, j) \in \mathfrak{S}(G)$, $\tau = (\tau_1, ..., \tau_m) \in \Re(G)$, and set

$$\tau^* = (\tau_1, \ldots, \tau_{i-1}, \sigma_i \sigma_j^{-1} \tau_j \sigma_j \sigma_i^{-1}, \tau_{i+1}, \ldots, \tau_{j-1}, \sigma_j \sigma_i^{-1} \tau_i \sigma_i \sigma_j^{-1}, \tau_{j+1}, \ldots, \tau_n).$$

Then, for $b_1 + \cdots + b_n \in B$ $(b_i \in S_i, i = 1, ..., n)$, we have

$$\begin{aligned} &(i,j)\,\tau(b_i) = (i,j)\,\tau_i(b_i) = \,\sigma_i\,\sigma_i^{-1}\,\tau_i(b_i), \\ &(i,j)\,\tau(b_i) = (i,j)\,\tau_j(b_i) = \,\sigma_i\,\sigma_j^{-1}\,\tau_j(b_j), \quad \text{and} \\ &(i,j)\,\tau(b_k) = \,\tau_k(b_k) \text{ for } k \neq i,j. \end{aligned}$$

Hence

$$\tau^{*}(i,j)(b_{i}) = \tau^{*}\sigma_{i}\sigma_{i}^{-1}(b_{i}) = \sigma_{i}\sigma_{i}^{-1}\tau_{i}\sigma_{i}\sigma_{i}^{-1}\sigma_{i}\sigma_{i}^{-1}(b_{i})
= \sigma_{i}\sigma_{i}^{-1}\tau_{i}(b_{i}) = (i,j)\tau(b_{i}),
\tau^{*}(i,j)(b_{i}) = \tau^{*}\sigma_{i}\sigma_{i}^{-1}(b_{i}) = \sigma_{i}\sigma_{i}^{-1}\tau_{i}\sigma_{i}\sigma_{i}^{-1}\sigma_{i}\sigma_{i}^{-1}(b_{i})
= \sigma_{i}\sigma_{i}^{-1}\tau_{i}(b_{i}) = (i,j)\tau(b_{i}), \text{ and }
\tau^{*}(i,j)(b_{k}) = \tau^{*}(b_{k}) = \tau_{k}(b_{k}) = (i,j)\tau(b_{k}) \text{ for } k \neq i,j.$$

Thus, we obtain $\tau^*(i, j) = (i, j)\tau$. Therefore, it follows that $p\Re(G) = \Re(G)p$ for all $p \in \mathfrak{S}(G)$, completing the proof.

(I, iii)
$$G^* = \Re(G) \Im(G) \supset G$$
, $B(G^*) = A$ and $\Re(G^*) = \Re(G)$.

Proof. It is easily seen that $G^* \supset \Re(G)$, $\mathfrak{S}(G)$ and $\Re(G)\mathfrak{S}(G)$.

Let σ be an arbitrary element of G^* . Then, for each i $(1 \le i \le n)$, we have $\sigma | S_i = g_i | S_i$ for some $g_i \in G$. Moreover, since $\sigma(e) \in P$ for all $e \in P$, there exists an element p in $\mathfrak{S}(G)$ such that $\sigma(e_i) = p(e_i)$ for $i = 1, \ldots, n$. Then

$$p^{-1}\sigma | S_i = p^{-1}g_i | S_i = p^{-1}g_i | Be$$
 and $p^{-1}\sigma(e_i) = e_i$

where $i=1,\ldots,n$. One will easily see that for each $j=1,\ldots,n$, $p^{-1}|S_j=h_j|S_j$ for some $h_j\in G$. Hence $p^{-1}g_i|S_i=\tau_i$ for some $\tau_i\in H_i$ ($i=1,\ldots,n$). Therefore, it follows that $p^{-1}\sigma\in\Re(G)$ and $\sigma\in p\Re(G)\subset \Im(G)$. Thus, we obtain $G^*=\Im(G)\Re(G)$. The other assertions will be easily seen.

(I, iv) If K is a subgroup of G which is transitive on P then $G^* = \Re(G) \mathfrak{S}(K)$.

Proof. As is easily seen, we have $\mathfrak{S}(K)\mathfrak{R}(G)\subset G*$. Now, let $p\in\mathfrak{S}(G)$. Then, there is an element q in $\mathfrak{S}(K)$ such that $q(e_i)=p(e_i)$, that is, $q^{-1}p(e_i)=e_i$ for $i=1,\ldots,n$. This implies that $q^{-1}p\in\mathfrak{R}(G*)=\mathfrak{R}(G)$ (by (I, iii)) and so $p\in q\mathfrak{R}(G)\subset\mathfrak{S}(K)\mathfrak{R}(G)$. Hence we obtain $\mathfrak{S}(G)\subset\mathfrak{S}(K)\mathfrak{R}(G)$. Therefore, it follows that

$$G^* = \mathfrak{S}(G)\mathfrak{R}(G) \subset \mathfrak{S}(K)\mathfrak{R}(G)\mathfrak{R}(G) = \mathfrak{S}(K)\mathfrak{R}(G)$$

and whence $G^* = \mathfrak{S}(K)\mathfrak{R}(G) = \mathfrak{R}(G)\mathfrak{S}(K)$.

Moreover, we have

(I, v) Let B/A be a strong G-extension. If K is a subgroup of G^* such that B(K) = A then $K^* = G^*$.

Proof. By (I, i), $C_B \cap A$ is connected. Since B(K) = A, it is easily seen that K is transitive on P. Hence, by (I, iii) and (I, iv), we have

$$G^* = (G^*)^* = \Re(G^*)\mathfrak{S}(K) = \Re(G)\mathfrak{S}(K).$$

Moreover, since B(G) = A = B(K), by Theorem 11, we have

$$S_i(\mathfrak{R}(G)|S_i) = Ae_i = S_i(\mathfrak{R}(K)|S_i)$$
 for $i = 1, ..., n$.

Since $\Re(G) = \Re(G^*) \supset \Re(K)$ and B/A is a strong G-extension, we obtain

$$\Re(G)|S_i = \Re(K)|S_i$$
 for $i = 1, ..., n$.

Hence $\Re(G) = \Re(K)$. Therefore, it follows that $G^* = \Re(K) \Im(K) = K^*$.

Next, we consider a G-extension B/A such that

(II) G is not necessarily transitive on P.

As is easily seen, we have a decomposition of P into G-orbits such that

$$P = P_1 \cup \cdots \cup P_r$$
 (disjoint)

where $GP_i = P_i$ and G is transitive on P_i for each i $(1 \le i \le r)$. We set $f_i = \sum_{e \in P_i} e, i = 1, ..., r$. Then

$$B = Bf_1 \oplus \cdots \oplus Bf_{\tau}$$
 and $A = Af_1 \oplus \cdots \oplus Af_{\tau}$.

Moreover, we set $G_i = G | Bf_i$, i = 1, ..., r. Then

$$G \subset G_1 \times \dots \times G_r, \ G^* = G_1^* \times \dots \times G_r^* \quad \text{and} \quad B(G^*) = Bf_1(G_1^*) + \dots + Bf_r(G_r^*) \\ = Bf_1(G_1) + \dots + Bf_r(G_r) \\ = Af_1 + \dots + Af_r = A.$$

Hence by (I, ii) and (I, iii), we obtain

(II, i) $B(G^*) = B(G) = A$. If B/A is a strong G-extension then this is also a strong G^* -extension, and for any subgroup K of G^* , B/B(K) is a strong K-extension.

Next, we shall prove the following

(II, ii) Let B/A be a strong G-extension. If K is a subgroup of G* then G*(B(K)) = K*.

Proof. Case 1:
$$B(K) = A$$
. We set $K_i = K | Bf_i$, $i = 1, ..., r$. Then $K_i \subset G_i^*$ and $Bf_i(K_i) = Af_i$ $(i = 1, ..., r)$.

Since each Bf_i/Af_i is a strong G_i -extension, it follows from (I, v) that $K_i^* = G_i^*$ for i = 1, ..., r. Hence we obtain

$$K^* = K_1^* \times \cdots \times K_r^* = G^* = G^*(A) = G^*(B(K)).$$

Case 2: $B(K) \supseteq A$. We set T = B(K). Then $B(G^*(T)) = T$ and

B/T is a strong $G^*(T)$ -extension by (II, i). Since $K \subset G^*(T)$, it follows from Case 1 that $K^* = G^*(T)^*$. Moreover, we have $B(G^*(T)^*) = B(G^*(T)) = T$ by (II, i). Since $G^*(T)^* \subset G^{**} = G^*$, we see that $G^*(T)^* \subset G^*(T)$ and so $G^*(T)^* = G^*(T) = G^*(B(K)) = K^*$.

An intermediate ring T of B/A is said to be G^* -subfixed if for every $e \in P$, $Be(G^*(Te)) = Te$, and $\sum_{e' \in G^*(T)|e|} e' \in T$. Clearly $G^*(Te) \mid Be \subset G^{**}(T) \mid Be$. By this and Lemma 3, our condition is equivalent to that

- (a) for every $e \in P$, $Be(G^*(T \cup \{e\})) = Te$, and
- (β) for every primitive idempotent g of $C_B \cap T$, $G^*(T)$ is transitive on the set $|e| \in P$; eg $\neq 0$.

Now, we shall prove the following

(II, iii) Let B/A be a G-extension. If K is a subgroup of G^* then B(K) is G^* -subfixed.

Proof. Let e be an arbitrary element of P. Then, we have $e \in O(\mathfrak{B}(C_B); G)$. Hence, it follows from Lemma 9 that

$$B(K)e = Be(K(|e|))$$

$$= Be(K(B(K) \cup |e|)) \supset Be(G*(B(K) \cup |e|)) \supset B(K)e.$$

This implies that B/B(K) satisfies the condition (α) . Now, we have a decomposition of P into K-orbits such that

$$P = P_1 \cup \cdots \cup P_s$$
 (disjoint)

where $KP_i = P_i$ and K is transitive on P_i for each i $(1 \le i \le s)$. We set $g_i = \sum_{e \in P_i} e$, i = 1, ..., s. Then $\sum_{i=1}^s g_i = 1$. Hence, it follows from Lemma 3 that $|g_i|$; i = 1, ..., s coincides with the set of primitive idempotents of $C_B \cap B(K)$, and $|e \in P|$; $eg_i \ne 0$ $|e \in P|$; $eg_i \ne 0$ on which $G^*(B(K))$ is transitive. Thus, we see that B(K) is G^* -subfixed.

(II, iv) Let B/A be a G-extension. If T is an intermediate ring of B/A which is G^* -subfixed then $B(G^*(T)) = T$.

Proof. Let $\{g_1, ..., g_s\}$ be the set of primitive idempotents of $C_B \cap T$. Then

$$B = Bg_1 \oplus \cdots \oplus Bg_s$$
 and $T = Tg_1 \oplus \cdots \oplus Tg_s$.

We set K = G*(T) and $|e| \in P$; $g_1e \neq 0$ | $|e|_{11}, ..., e_{1s_1}|$. Then

$$g_1 = e_{11} + \dots + e_{1s_1}$$
 and $\sigma(e_{1l}) \in \{e_{11}, \dots, e_{1s_1}\}$

for all $\sigma \in K$ and $j = 1, ..., s_1$. Hence by the condition (α) , we have

$$Bg_{1}(K) \subset \bigcap_{i=1}^{s_{1}} (Be_{11} \oplus \cdots \oplus Be_{1(i-1)} \oplus Te_{1i} \oplus Be_{1(i+1)} \oplus \cdots \oplus Be_{1s_{i}})$$

$$= Te_{11} \oplus \cdots \oplus Te_{1s_{i}}.$$

Moreover, by the condition (β) , there exist elements $\sigma_2, \ldots, \sigma_{s_1}$ in K such that $\sigma_i(e_{11}) = e_{1i}, i = 2, \ldots, s_1$. Let $c = t_1e_{11} + t_2e_{12} + \cdots + t_{s_1}e_{1s_1}$ ($t_i \in T$) be an arbitrary element of $B_{g_1}(K)$. Then

$$c = \sigma_2(c) = t_1 e_{12} + t_2 \sigma_2(e_{12}) + \cdots + t_{s_1} \sigma_2(e_{1s_1}).$$

Hence $t_2e_{12}=t_1e_{12}$. By a similar way, we have

$$c = t_1(e_{11} + e_{12} + \cdots + e_{1s_1}) = t_1g_1 \in Tg_1.$$

Hence we obtain $Bg_1(K) = Tg_1$. Moreover, by a similar way, it follows that

$$Bg_i(K) = Tg_i$$
 for $i = 1, ..., s$.

This shows that $B(K) = Tg_1 + \cdots + Tg_s = T$, completing the proof.

Now, combining (II, ii) with (II, iii) and (II, iv), we obtain the following theorem which is one of our main results.

Theorem 13. Let B/A be a strong G-extension. Then, there exists a 1-1 dual correspondence between the set of intermediate G^* -subfixed subrings T of B/A and the set of fat subgroups K of G^* in the usual sense of Galois theory: $T \hookrightarrow K$ with $G^*(T) = K$ and B(K) = T.

Corollary 14. Let B_i (i = 1, ..., t) be semi-connected rings, and each B_i a G_i -Galois extension of a subring A_i . Let

$$B = B_1 \oplus \cdots \oplus B_t$$
, $A = A_1 \oplus \cdots \oplus A_t$, and $G = G_1 \times \cdots \times G_t$

which is an automorphism group of B by the composition:

$$(\sigma_1, \ldots, \sigma_t)(b_1 + \cdots + b_t) = \sigma_1(b_1) + \cdots + \sigma_t(b_t)$$

where $\sigma_i \in G_i$ and $b_i \in B_i$ (i = 1, ..., t). Then B/A is a strong G-extension to which Theorem 13 applies.

Proof. It is obvious that B(G) = A and $G | B_i \cong G_i$ (i = 1, ..., t).

Hence it suffices to prove that our assertion holds for t=1. We set $B=B_1$ and $G=G_1$. Let e be an arbitrary primitive idempotent of C_B . Then we have $e \in O(\mathfrak{A}(C_B); G)$. Hence by Lemma 9', Be is a Galois extension of Ae with a Galois group H=G(|e|)|Be. Therefore, it follows from [5, Proposition 2.2] that H(Be(N))=N for any subgroup N of H. Thus B/A is a strong G-extension.

In [8], O. E. Villamayor and D. Zelinsky proved the following theorem, which can be also proved by making use of Theorem 13.

Theorem 15 (O. E. Villamayor and D. Zelinsky). Let S be a commutative ring with identity element 1 which is a G-extension of a semi-connected ring R such that S is projective and separable over R. Let H be the group of all R-algebra automorphisms of S. Then, S is semi-connected, $G^* = H$ and there exists a 1-1 dual correspondence between the set of separable R-subalgebras of S and the set of fat subgroups of H in the usual sense of Galois theory.

 ${\it Proof.}$ By Corollary 7, ${\it S}$ is semi-connected. Hence, by Theorem 13, it suffices to prove that

- (1) S/R is a strong G-extension, $G^* = H$, and
- (2) for an intermediate ring T of S/R, T is separable over R if and only if T is H-subfixed.

Let $P = |e_1, ..., e_n|$ be the set of primitive idempotents of S, and $|f_1, ..., f_r|$ the set of primitive idempotents of R. Then

$$S = Sf_1 \oplus \cdots \oplus Sf_r$$
, $Sf_i(G|Sf_i) = Rf_i$ $(i = 1, ..., r)$

and each Sf_i is projective and separable over Rf_i . Hence, it suffices to prove that our assertion holds for r=1, and so, let R be connected. Then G is transitive on P. By (I, i), $R \cong Re \ (a \leftrightarrow ae)$ for each $e \in P$ and Se is projective and separable over Re. By Lemma 9, Se/Re is a (G(|e|)|Se)-extension. Since Se is connected, we see that Se/Re is (G(|e|)|Se)-Galois by CHR Galois theory [1]. Hence S/R is a strong G-extension. Moreover, we have G(|e|)|Se = H(|e|)|Se. Noting HP = P and $\sum_{e' \in Pe'} e' = 1$, one will easily see that H is a finite group and so S/R is a strong H-extension. Since S(G) = R = S(H), it follows from (I, v) that $G^* = H^* = H$. To see (2), let T be an intermediate ring of S/R with $|g_1, \ldots, g_S|$, the set of primitive idempotents of T, and set $P_t = |e| \in P$: $eg_t \neq 0$ for $i = 1, \ldots, s$. Then

$$S = Sg_1 \oplus \cdots \oplus Sg_s$$
 and $T = Tg_1 \oplus \cdots \oplus Tg_s$.

Now, we assume that T is H-subfixed. Then S(H(T)) = T by Theorem 13. Hence, it follows from Lemma 9 that for each $e \in P_i$ $(1 \le i \le s)$,

$$Se(H(T)(\{e\})) = Te = Se(H(Te))$$
 and $Te = Tg_ie \cong Tg_i$

since $H(T)\{e\} = P_i$ and $\sum_{e' \in P_i} e' = g_i$. Since Se is connected and Se/Re is Galois, we see that Te is separable over $Re \cong R$ and so Tg_i is separable over $Rg_i \cong R$ $(1 \le i \le s)$. Thus T is separable over R. To see the converse, we assume that T is separable over R. Let e be an element in P. Then, as is noted in the above, Se/Re is a $H(\{e\})|Se$ -Galois extension. Moreover Te/Re is separable. Hence Se(H(Te)|Se) = Te by CHR Galois theory. Since

$$T \subset Te \oplus T(1-e) \subset Se \oplus S(1-e) = S.$$

any automorphism in H(Te)|Se can be extended in a T-algebra automorphism of S. This implies that $Se(H(T \cup \{e\})) = Te$. Next, let e_1 and e_2 be any elements of P_i $(1 \le i \le s)$. Then, it follows from [2, Proposition 1.5 and Lemma 1.6] that

$$Te_1 = Tg_ie_1 \cong Tg_i \cong Tg_ie_2 = Te_2$$

which is defined by $ae_1 \rightarrow ag_1 \rightarrow ae_2 \ (a \in T)$. This isomorphism $Te_1 \rightarrow Te_2$ can be extended to an isomorphism $\varphi: Se_1 \rightarrow Se_2$ by an extension theorem in CHR Galois theory for connected rings (cf. [1, Lemma 4.1] and [2, Lemma 1.3 and Corollary 1.8]). Since

$$S = Se_1 \oplus Se_2 \oplus S(g_i - e_1 - e_2) \oplus S(1 - g_i)$$

$$\supset Te_1 \oplus Te_2 \oplus T(g_i - e_1 - e_2) \oplus T(1 - g_i)$$

$$\supset T(e_1 + e_2 + (g_i - e_1 - e_2) + (1 - g_i)) = T,$$

 φ can be extended to a T-automorphism φ' of S such that $\varphi'(e_1)=e_2$ and $\varphi'(e_2)=e_1$. This implies that H(T) is transitive on P_i for $i=1,\ldots,s$. Thus T is H-subfixed.

Remark. Let S be a commutative separable algebra over a finite field GF(p) consisting of p elements where p is a positive integer. Let H be the group of all automorphisms of S. Then S is finitely generated over GF(p) and H is of finite order. By $\mu(S)$, we denote the cardinality of the set of (ring-) isomorphism classes of maximal ideals of S. Then S is

projective and separable over S(H),

$$S(H) \cong GF(p)^{(r)}$$
 (a direct sum of r-copies of $GF(p)$)

where $r = \mu(S)$ and, there exists a 1-1 dual correspondence between the set of intermediate rings of S/S(H) and the set of fat subgroups of H in the usual sense of Galois theory.

The proof is as follows: Since S is projective and separable over GF(p), S is a direct sum of a finite number of finite fields which are of characteristic p. Let P be the set of primitive idempotents of S, and φ a map of P into the set of integers defined by $\varphi(e) = \operatorname{Dim}_{GF(p)} Se\ (e \in P)$. Then, one will easily see that $|\operatorname{image} \varphi| = \mu(S)$. We set here

image
$$\varphi = \{ n_1, \dots, n_r \} \ (n_1 < n_2 < \dots < n_r, \ r = \mu(S))$$

$$P_i = \{ e \in P; \ \varphi(e) = n_i \}, \ f_i = \sum_{e \in P_i} e \ (1 \le i \le r), \ \text{and}$$

$$R = \mathrm{GF}(p) f_1 + \dots + \mathrm{GF}(p) f_r.$$

Then, by [4, Remark 1.1], it will be easily seen that $S(H) = R \cong \mathrm{GF}(p)^{(r)}$. Now, let T be an intermediate ring S/R. Since there are no nilpotent elements in S, T is a semi-simple ring which is a direct sum of finite fields. Therefore, T is separable over $\mathrm{GF}(p)$, and in particular, R is separable over $\mathrm{GF}(p)$. Hence S and T are projective and separable over R (cf. [2, Proposition 1.5]). Applying Theorem 15 to the H-extension S/R, we obtain our assertion.

Next, we consider a direct sum S^* of a finite number of finite fields. As is easily seen, S^* is a direct sum of some separable $GF(p_i)$ -subalgebras S_i , $i=1,\ldots,m$, where $0 < p_1 < p_2 < \cdots < p_m$ and the p_i are prime integers. Let H^* be the group of all automorphisms of S^* . Then, for each $a \in S_i$, we have $\sigma(a) \in S_i$ for all $\sigma \in H^*$ ($i=1,\ldots,m$). We set here

$$H_i = H*(S_1 + \cdots + S_{i-1} + S_{i+1} + \cdots + S_m)$$

for i=1,...,m. Then, since $S^*=S_1\oplus\cdots\oplus S_m$, each restriction $H_i|S_i$ coincides with the group of all automorphisms of S_i (i=1,...,m). Moreover, we have

$$H^* = H_1 \times \cdots \times H_m$$
 (direct product), and $S^*(H^*) = S_1(H_1) + \cdots + S_m(H_m)$.

Further, for any intermediate ring T of $S^*/S^*(H^*)$, we have

$$S_i(H_i) \subset T \cap S_i \subset S_i$$
 $(i = 1, ..., m)$, and

$$T = (T \cap S_1) + \cdots + (T \cap S_m).$$

Hence, from the preceeding remarks, one will easily see that

$$S^*(H^*) \cong GF(p_1)^{(r_1)} \oplus \cdots \oplus GF(p_m)^{(r_m)}$$
 where $r_i = \mu(S_i)$ $(i = 1, ..., m)$

and, there exists a 1-1 dual correspondence between the set of intermediate rings of $S^*/S^*(H^*)$ and the set of fat subgroups of H^* in the usual sense of Galois theory.

References

- [1] S. U. CHASE, D. K. HARRISON and ALEX ROSENBERG: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [2] M. FERRERO and K. KISHIMOTO: On connectedness of p-Galois extensions of rings, Math. J. Okayama Univ. 25 (1983), 103-121.
- [3] G. J. JANUSZ: Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461-479.
- [4] I. KIKUMASA, T. NAGAHARA and K. KISHIMOTO: On primitive elements of Galois extensions of commutative semi-local rings, Math. J. Okayama Univ. 31 (1989), 31-55.
- [5] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 114-134.
- [6] S. MONTGOMERY: Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math. 818 (1980), Springer-Verlag.
- [7] T. NAGAHARA: On splitting rings of separable skew polynomials, Math. J. Okayama Univ. 26 (1984), 71-85.
- [8] O. E. VILLAMAYOR and D. ZELINSKY: Galois theory of rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721-731.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY
MATSUMOTO, JAPAN 390

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
TSUSHIMA-NAKA, OKAYAMA-SHI, JAPAN 700

(Received January 11, 1989)