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Kazvo KISHIMOTO and Takasi NAGAHARA

0. Introduction. Throughout this note, A4 will mean a ring with an
identity 1 which is not necessarily commutative. By C. and B(C.), we
denote the center of A and the set of all idempotents of C, respectively.
Then A is said to be connected (resp. disconnected) if the cardinality
|B(Ca)|=2 (resp. |B(Ca4)| > 2). Moreover, A will be called to be semi-
connected if |B(C4)| < co. Let B/A be a ring extension with an identity 1
which is the common identity of B and 4. B/A will be called to be ¢ G-
extension if there exists a finite group G of automorphisms of B such that
A is the fixring of G in B. A G-extension B/A will be called to be a G-
Galois extension if there exists a subset |u;, v:; i=1,....,r} in B such
that "7_ u;0(v:) = 81,0 (Kronecker’s delta) for any o € G. This subset will
be called to be a G-Galois coordinate system for B/A.

In [8], O. E. Villamayor and D. Zelinsky presented a Galois theory for
separable G-extensions of commutative semi-connected rings.

In this note, we shall study about a G-extension B of a semi-connected
ring A and B(Cs). In §1 and § 2, we shall prove that any G-extension of
a semi-connected ring is also semi-connected (Theorem 5 and Theorem 8),
and any G-extension of a connected ring A is A-isomorphic to a direct sum
of some finite copies of a connected H-extension of A (Theorems 11 and 11°).
In § 3, we shall present a Galois theory for G-extensions of semi-connected
rings which is a partial generalization of [8, Theorem] to non-commutative
rings (Theorem 13).

In what follows, for a G-extension B/A and any subset S (resp. H) of
B (resp. G), we shall use the following conventions :

| S| = the cardinality of S.

S(H) (= S" as an abbreviation) ={a € S; ¢(a) = a for all s € HI.

H(S) (= Hs as an abbreviation) = |c € H; 6(a) = a for all a € S}.

HS =lo(a); € H, a € S|.

H| S = the restriction of H to S.

It is obvious that for any a € B, Glal = l0¢(a); o € G! and |Glal| =
(G: Go) (the index of Go in G).
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Moreover, for e and f in B(Cs), if e #+ f and ef = f then we write
e > f; and further, if e 0 and {f € B(Cs); e > f| = 10! then e will
be called to be a primitive idempotent in Cp (or in B(Cs)).

1. On G-extensions of commutative rings. In this section, let A be
a commutative ring, and B a commutative ring which is a G-extension of A.
If e; (i =1, 2) are primitive idempotents in B(B) and e1es + 0 then ere; €
B(B) and e; = ere; > 0 (i = 1, 2), which implies e, = e1e: = e;. If e is
a primitive idempotent in B(B) and ¢ is an arbitrary element of G then
o(e) is also a primitive idempotent in B(B) and whence, there holds either
o(e) = e or egle) = 0.

By O(8B(B); G), we denote the set of non-zero elements e of B(B)
such that there holds either ¢g(e) = e or eg(e) = 0 for each ¢ € G. By
the preceeding remarks, any primitive idempotent in B (B) belongs to
O(B(B); G). Since O(BV(B); G) > 1, this is non-empty. Moreover, we
denote Maxee g ol Glel| by mogm 16 .

Now, let ¢ be an element of O(B(B): G), and
Glel =laile), oz(e), .... on(e)! where m = | Glel].

Then G = 6:.Ge U""U omGe (disjoint) where Ge= o€ G; ole) = el.
Moreover, since oi(e)g;(e) = 8ijoi(e) for each i Fj, ¢ = 11 ale) is
an idempotent of B, that is ¢ € B(B). Noting ¢(e') = ¢ for all s € G,
we see that ¢ € B(B°) and e’ + 0. Hence, if B® is connected then ¢ = 1,
the identity of B® = A.

First, we shall prove the following lemma which plays an important
réle in our considerations.

Lemma 1. Let A be a connected ring and B/A a G-extension. Then,
for e € B(B), the following conditions are equivalent.

(a) e € 0(58(3), G) and |Glei| = Moy ; 6 .

(b) e is a primitive idempotent in B(B).

Proof. (a) =(b): We assume (a) and that e is not primitive in
B(B). Then, there is an element f in V(B) such that e > f =+ 0, that is,
ef =f+ e, 0. Since |G|fl| < o, there is a maximal subset |a,, ..., as}
in G| f| such that @1a;---as + 0. We set here g = a1a.---as. Since o(g)
+ 0 for all ¢ € G, we may set a, = f. Now, let g #+ o(g) for some ¢ € G.
Then
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’aly---, as} D'U(al)s ey U(as)|7
Since Gl f} D {ola), .... o(as)!, by the maximality of | a1, ..., as! we have
a1a2---asa(a;) =0 if U(Gi) & 'ah A2, -0vy as‘-

This implies that go(g) = 0. Hence, it follows that g € O(B(B); G).
We set

fo=-e—/f, Glel =lale), a:le), ..., omle)l and h = Tiiadg),

where ¢, = 1 and m = | Glel| = Moz, . Noting fre = fo and egi(e) =0
 for all i = 2, we see that

foai(e) = (foe)Ui(e) =0 (i = 2)»
foﬂi(f) = ﬁ:ai(ef) :foﬂi(e)O'i(f) =0 (i = 2)

and so

fom-(g) =f00i(faz"'as) =f00'i(f)0'i(az"'as) =0 (i 2 1)-

This implies b = 0 and so k #+ 1. Now, for any i + j, we have ¢, 'g, =
oxt for some 1 € Ge (=10 € G; ole) = el) and k > 1. Hence

;' (0.(g) —oi(g)) =g+ atlg) = g + onrlefar--as)
= g +aile) 0,7(far--as)

From this, we obtain eo;'(5,(g)—o0,(g)) = eg = g + 0. Therefore, it
follows that o,(g) —o,(g) + 0 for each i + j. Since g € O(B(B); G),
we have |Gig!| = m, and so h € B(A)\0} = {11}, which is a contradic-
tion. Hence e is a primitive idempotent in B(B). Thus, we obtain(a) =>
(b).

(b) =>(a): We set m = mogsc: - Let f be an element in O(BV(B); G)
such that | Gl f1| = m, and Glfl =1A. ..., fal. Then, since A is connected,
we have 1 = = 7,f.. Now, let e be an arbitrary primitive idempotent in
B(B). Then e € O(BV(B); G) (which has been noted already). Since e =
T ™ ,efi, we have ef, + 0 for some u in |1,...,ml, and e 2 ef, > 0.
Hence e = ef,. Let fu = o(fu) for some o € G. Then o(efu)fu =
ole)o(fu)fu = 0. Since (efu)fu + 0, we have ef, + o(efy). Hence, it
follows that

m= mogm o= |Glel| = |Glefull = m.

Thus we obtain | Gle!| = m, completing the proof.
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Lemma 2. Let A be a connected ring and B/A a G-extension. Then,
there exists a primitive idempoient e in B, and Gle! coincides with the set
of all the primitive idempotents in B. Moreover, |B(B)| = 2" for m =
|Gletl.

Proof. By Lemma 1, B contains a primitive idempotent e. Set m =
|Glel] and Glel = | ai(e), ..., on{e)l. Then the elements gi(e)’s are or-
thogonal to each other and X 7,0:(e) = 1. Now, let f be an arbitrary
element of B(B). If foule) + 0 (1 £ u < m) then 0 < fou(e) < oule)
and so fou(e) = ou(e). Hence f= 37i foi:(e), which is the sum of the
ou(e)’s with fo,(e) = 0. In particular, any primitive idempotent of B is
contained in | gi(e). ..., on(e){. From this, the rest of our assertions fol-
lows immediately.

Lemma 3. Let B/A be a G-extension. Let e be a primitive idempotent
of B and set Glel ={ai(e), ..., onle)| where m= | Glel|. Then L1 oi(e)

is a primitive idempolent of A.

Proof. We set f= Y 7,0:/e). Then, one will easily see that f € A.
Moreover, each g;(e) (1 £ i < m) is a primitive idempotent of B. Since
oile) # g,(e) for each pair i # j (1 = i, j £ m), the g,(e) are orthogonal
to each other. Hence we have f € B(A). We assume that f is not primitive
in B(A). Then, there are non-zero elements f; and f; in B(A) such that
f=hHh+f and fifp = 0. It is obvious that fi = fif = L ficile) =
10 fie). Hence fie #+ 0. Since e is primitive in B(B) and ¢ = fie >
0, we obtain e = fie. Therefore, it follows that fi = Y 7-, 0:(e) = f, which
is a contradiction. Thus, f is primitive in B(A).

Lemma 4. Let B/A be a G-extension. Let f be a primitive idempotent

of A. Then, there exists a primitive idempotent e of B such that f=
Yiiaile) for Glel = laile). ..., on(e)l where m = |Glell.

Proof. Obviously, Af is a connected ring with an identity f. Since
Bf¢ = Af, Bf/Af is a (G| Bf)-extension. Hence by Lemma 2, there exists
a primitive idempotent e in Bf. Then, one will easily see that e is also
a primitive idempotent in B. We set m = |Glel|, Gle! = |ai(e), ..., anle)]
and f'= X1 0:e). Since s(e) € Bf for every ¢ € G, we have f’ € Bf.
Hence by Lemma 3, f' is a non-zero idempotent of A N Bf = Af. Since
Af is connected, it follows that f' = f, completing the proof.
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Combining Lemma 3 with Lemma 4, we obtain the following

Theorem 5. Let B/A be a G-extension. Let B(B) (resp. B(A)') be
the set of non-zero primitive idempotents in B(B) (resp. B(A)). Then

(i) I1BAY] < IB(B)I = [B(A)]|IG].

(i) |B(A)] < |B(B)| =< 2% if either |B(A)| < o or |B(B)]
< oo,

In virtue of Theorem 5, we obtain the following

Corollary 6. Let B/A be a G-extension. Then, B has a primitive
idempotent if and only if A has a primitive idempotent.

Corollary 7. Let B/A be a G-extension. Then, B is semi-connected
if and only if A is semi-connected.

2. On G-extension of rings. Throughout the rest of this note, B will
mean a ring which is not necessarily commutative.
Firstly, in virtue of Corollary 7, we shall prove the following

Theorem 8. Let B/A be a G-extension. If A is semi-connected then
so is B.

Proof. Since ¢(Cs) = Cp for all 0 € G, Cs/C§ is a (G| Cs)-exten-
sion. Moreover, we have C5 = Cs N A C C,, and so, B(CEC B(C.).
Hence, if C. is semi-connected then so is C§, and whence C; is semi-
connected by Corollary 7.

Lemma 9. Let B/A be a G-extension. Let e be an arbitrary element
of O(B(Cs); G). Then, for any t € G, Br(e)/Ar(e) is a (tGer™'| Brle))-
extension, Gre,= tGet ™', and Az(e) = A(ZT10i(e)) for G = 1Ge U---
U onGe (disjoint ).

Proof. Firstly, by making use of the same methods as in the proof of
[6, Lemma 2.14], we shall prove that Be/Ae is a (G| Be)-extension. For
G = 01Ge U---U onGe (disjoint), we have Glel = |ai(e), ..., on(e)} and
m=|Glel|. We may assume that oy = 1. Set here f = 7, g(e). Then
S € B(Cy) since o(f) = ffor all o€ G. Noting B= Bf ® B(1—f) (direct
sum), one will easily see that Bf* = A N Bf = Af. Now, clearly we have
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Ae C Be. For any a, € Be®, we set
a;=oila) (i=1,...,m), and a=ar+--+an.
Then o € Bf. Let r be an arbitrary element of G. Since
UL 0:Ge (disjoint) = G = G = U7 70:Ge (disjoint),
there exist elements 71, ..., 7» in Ge such that

[ 101, vy 7ol = lovtrs ooy OmTnl,

and then T(a) = Z:‘n=1TO'i(al) = Z?:la'ifi(al) = Z;LIO'::(G!) = a. Hence
we obtain that ¢ € Bf® = Af, and so a; = ae € Afe = Ae. Therefore, it
follows that Be® = Ae, that is, Be/Ae is a (Ge| Be)-extension (cf. [4,
Lemma 1.1] and [7, Lemma 10]). Now, it is obvious that Grie; D 7Ger .
For any ¢ € Gre;, we have or(e) = r(e), which implies z7'o7 € Ge, and so
6 € tGer". Hence we obtain Gre;= tGez™'. Noting z(e) € O(B(Cs); G),
we see that Br(e)/Az(e) is a (Gt~ '| Br{e))-extension. If ae = 0 for
a € A then

0=X"%oiae) = aXl1aile) = af.
This implies that Af = Ae, and so Af = Az(e).
Lemma 10. Let B/A be a G-extension. Let e be an arbitrary element
of O(B(Cs); G), and G = 61:Ge U---U onGe (disjoint). If X1 10de) =1

then B is a direct sum of (5:Geoi | Bo,(e))-extensions Boi(e)/Aci(e) with
Ac(e) = A(acie) > a), 1 =i < m.

Proof. One will easily see that Glel =lai(e), ..., onle)l, m =
|Glel]|, and so, oi(e) == os(e) for eachi # j. If 27 0:{e) = 1 then

B = Boi(e) ®---® Bonle)

and for each i (1 < i < m), Boile)/Aale) is a(0:Geoi | Bo e))-extension
with Ag.(e) = A by Lemma 9.

Now, in virtue of Lemma 2 and Lemma 10, we shall prove the following

Theorem 11. Let A be a connected ring, and B/A a G-extension.
Then, there is a primitive idempoteni e in Cs, and for

G= o1Ge U-U onGe (disjoint),
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there holds that

(i) IB(Cs)| = 2™ m=|Glell, Glel coincides with the set of aill
the primilive idempotents of Cs, and

(ii) B is a direct sum of connected (0:Geoi'| Boi(e))-extensions

Boi(e)/Acle) with Acile) = A (1 £ i < m).

Proof. As in the proof of Theorem 4, Cy/C5 is a (G| Cg)-extension.
Since C5 = Cs N A C Ca, C§ is a connected ring. Hence by Lemma 2,
there is a primitive idempotent e in Cp, for which (i) holds. Now, since
Y7i0ile) =1 and the o.(e) are orthogonal to each other, we have Cayyye,
= Cpo(€) (1 =i = m). Obviously, each Cs0,(€) is a connected ring with
an identity o,(e¢). Hence the rings Bo,(e) are connected. The other asser-
tions follow immediately from Lemma 10.

Corollary 12. Let A be a connected ring, and B/A a G-extension with
|G| = n.
(1) The following conditions are equivalent.
(a) B is ring isomorphic to A™, a direct sum of n-copies of A.

(b) There exists a primitive idempotent e in Cs with | Glel| =n.
(¢) Cs contains Cs. Cs is ring isomorphic to CY¥ and B =
Ce Qc, A.

Moreover, if this is the case, Glel is a G-normal bases for B/A, and G is
an ouler group. ,
(i1) If n is prime, then the following conditions are equivalent.
(a') B is ring isomorphic to A™.
(b') B is disconnected.

Proof. Let S be the set of primitive idempotents of Cs. Then S is
non-empty by Theorem 11. Let e be an arbitrary element of S. Then, we
have S = Gle! by Theorem 11.

(a) = (b): Since B= A™, we have |S| = n, and so | Gle}| 2 n. On
the other hand, it is obvious that |Gle!| < |G| = n. Hence |Glel| = n.

(b) = (a): Since |Gle!| = n, we have Ge=1{1}. Hence, by Theorem
11, we obtain B= Y ;s ® Ar(e) and Az(e) = A. Moreover, Gle! is
a G-normal bases for B/A.

(a) <= (¢): This will be easily seen, and by (¢), G is an outer group.
Clearly | Glel| is a divisor of | G|. Noting this fact, one will easily see
the assertion (ii).
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Next, we shall make some remarks on G-Galois extensions of rings.

Lemma 9. Let B/A be a G-Galois extension. Let e be an arbitrary
element of O(B(Cs): G). Then, for any r € G, Br(e)/Azr(e) is a (zGer™'|
Brle))-Galois extension with tGer™'| Br(e) = tGer ™.

Proof. Since B/A is G-Galois, there is a G-Galois coordinate system
{ui, viy L= ]., ey Tl in B SUC}] that Zi uia'(v;) = 81.0—(0' S G). Let T be
an element of G.. Then we have

Tieustlev) = eX i uir{vi) = edir.
If z|Be = 1 then
e = eZ.i Uivy = Zieuie‘vi = Zseuir(ew) = e&,r

and whence 7 = 1. This implies that Ge = Ge| Be. Moreover, |eu;, ev;
i=1....,7} is a (Ge| Be)-Galois coordinate system for Be/Be“. Since
Be® = Ae (Lemma 9), Be/Ae is a (G| Be)-Galois extension. Now, for
any 7 € G, since z(e) € O(B(Cs); G) and Grey = 7tGer™"', we obtainour
assertion by the above remark.

By Lemma 9, Lemma 10 and Theorem 11, we obtain the following

Lemma 10, Let B/A be a G-Galois extension. Let e be an arbitrary el-
ement of O(B(Cs): G), and G = 61Ge U-+-U onGe (disjoint). If 7.1 0ile)
= 1 then B is a direct sum of (6:Geoi'| Boi(e))-Galois extensions Boile)/
Aci(e) with Acle) = A and 0.Geoi | Boile) = 0:Geai ' (1 £ i < m).

Theorem 11, Let A be a connected ring, and B/A a G-Galois exten-
sion. Then, there is a primitive idempotent e in Cs, and for G = 01Ge U
-U onGe (disjoint), B is a direct sum of connected{5:Geoi'| Boi(e))-Galois
extensions Boi{e)/Aoi(e) with Aoi(e) = A and 0:Geoi'| Bole) = 0:Geoi’’
(1=<i<m).

3. A Galois theory of strong G-extensions of semi-connected rings.
In [8], O. E. Villamayor and D. Zelinsky presented a Galois theory for a G-
extension S/R such that R is a semi-connected commutative ring and S is
a projective and separable commutative R-algebra. In this section, we shall
present a partial generalization of this theory to non-commutative rings

(Theorem 13).
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Throughout this section, B will mean a semi-connected ring with P =
lei, ..., eal, the set of all central primitive idempotents of B, and B/A will
mean a G-extension (where G is a finite group of automorphisms of B).
Moreover, for any subset S (resp. H) of B (resp. G), we shall use the
notations S(H) and H(S) instead of S* and Hs respectively.

Now, we set

S,;= Bei and Hz: G(IeiD'Bei

where i =1, ..., n. Obviously, there holds that the e; are orthogonal,
Tiies=1and L, ® S; = B. As is seen in [8], by G*, we denote the
set of automorphisms ¢ of B such that for each i (1 £ i< n), o/ S: = g:/S:
for some g; in G. Then, one will easily see that G* is a group and G C G*
= (G#*)* (= G** as an abbreviation). If G = G* then G will be called to
be a fat group. Moreover, if for each i (1 < ;< n), Hi(S:N)) = N for
every subgroup N of H; then B/A will called to be a strong G-extension.
First, we consider a G-extension B/A such that

(I) G is transitive on the set P.

Let f be a non-zero idempotent of Cs N A. Then, there exists an ele-
ment ¢ in P such that fe + 0. Since e is a primitive idempotent of Cs, we
have fe = e. Hence fo(e) = g(e) for all s € G. This implies f= 1.
Moreover, if a € A and ae = 0 for some ¢ € P then go(e) = 0 for all
0 € G and so a = 0, which implies A = Ae (cf. Theorem 11). Thus we
obtain the following

(I,i) CsN A is connected, and A = Ae (a < ae) for every e € P.
We set
R(G) = HiX---XH, (direct product).

Since G is transitive on P, there is a subset | g1, ..., gnl in G such that
or=1and ai(e:) = e, (i = 1....,n). Then for E, = G({|er}]).

Glleit) = oiEio;' (1= i<n)and G = o1E\ U--U o,.E, (disjoint).

Let €(G) be the symmetric group of permutations on the set |1, ..., ni.
Now, we define compositions

R(G)XB->B and &(G)XB-—RB
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by
(TI, ceey Tn)(bl+"'+bn) = Tl(bl)+"'+‘l'n(bn)

and

((uy v)eo(ry ), G))( b1+ o+ bn)
= (u, v)(-(r, s)((i, ] )(br4--+bn))--+)
= (u, v)(--(r, s)(br+-Fbicrt gi07 (bs)F bsr+--+bsa
+Ujo'z-l(bi)'i'b1+1+"'+bn)'“)

respectively, where b, € S;, . € H, for i = 1, ..., n, and the (i, j)’s are
transpositions in &(G).
Under the above situations, we shall prove that

(I1,ii) R(G)NS(G) =11}, R(G)B(G) = &(G)R(G) and R(G) is
a normal subgroup of R(G)S(G).

Proof. It is obvious that R(G) N &(G) = 11|. Now, let (i, j) €
&(G), t=(n, ..., ) € R(G), and set

* — -1 -1
TF = (Tl, ceey Tiwls Oi0i TiO50t 5 Ti+ls oney

Ticty 0507 TiGi07 'y Titls cees Tn)e
Then, for by+--+bn€ B(b: € S:;. i =1, ...,n), we have
(f,j)l'(bi) = (i,j)Ti(bi) = gioi "l b)),

(i, j)e(bs) = (i, j)s(bs) = o107 ' 7s(bs), and
(i, j)z(bx) = rxlby) for k + i, j.

Hence

*(i, j)(b) = t*0s07 (b)) = gs0i Tiovoi  osar (be)
= gioi 'l b) = (i, j)l’(bi),
(i, j)bs) = t*0i07 ' (bs) = 0107 ' ts0107 ' 0u05 ' (bs)
= gio7 (b)) = (i, j)T(bJ), and
*(i, ])(bk) = *(by) = Tk(bk) = (i’j)f(bk) for & #* i, j.

Thus, we obtain 7*(i, j) = (i, j)z. Therefore, it follows that pR(G) =
R(G)p for all p € &(G). completing the proof.
(I.iii) G* = R(G)S(G) DG, B(G*) = A and RN(G*) = R(G).
Proof. It is easily seen that G* D R(G), €(G) and R(G)S(G).
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Let o be an arbitrary element of G*. Then, for each i (1 £ i < n),
we have o| S; = g;| S; for some g; € G. Moreover, since o(e) € P for all
e € P, there exists an element p in &(G) such that o(e;) = p(e;) for i =
1....,n. Then

plolSi=p gl Si=p'gilBe and plole) = e

where ; = 1, ..., n. One will easily see that for each j=1,...,n, p7'|S;
= hs|S; for some h; € G. Hence p~'g,|S; = 7: for some 7, € H; (i =
1,....,n). Therefore, it follows that p~'¢ € R(G) and s€ pR(G) C
S(G)R(G). Thus, we obtain G* = &(G)R(G). The other assertions will
be easily seen.

(I,iv) If K is a subgroup of G which is transitive on P then G* =
R(G)S(K).

Proof. As is easily seen, we have €(K)R(G) C G*. Now, let p €
&(G). Then, there is an element ¢ in &(K) such that g(e;) = p(e;). that
is, ¢"'ple:) = e; for i =1,...,n. This implies that ¢ 'p € R(G*) =
R(G) (by (I, iii)) and so p € ¢R(G) C S(K)R(G). Hence we obtain &(G)
C &(K)R(G). Therefore, it follows that .

G* = B(G)R(G) C S(K)R(GI)R(G) = S(K)R(G)
and whence G* = S(K)R(G) = R(G)S(K).
Moreover, we have
(I,v) Let B/A be a strong G-extension. If K is a subgroup of G* such
that B(K) = A then K* = G*.

Proof. By (1,1), Cs N A is connected. Since B(K) = A, it is easily
seen that K is transitive on P. Hence, by (I, iii) and (I, iv), we have

G* = (G¥)* = R(G*)B(K) = R(G)S(K).
Moreover, since B(G) = A = B(K), by Theorem 11, we have
S(N(G)|S:) = Aes = SUR(K)|S:) fori=1,....,n
Since R(G) = R(G*) D R(K) and B/A is a strong G-extension, we obtain
R(G)S:=R(K)S; fori=1, .. 2



36 K. KISHIMOTO and T. NAGAHARA

Hence R(G) = R(K). Therefore, it follows that G* = R(K)S(K) = K*.

Next, we consider a G-extension B/A such that

(II) G is not necessarily transitive on P.

As is easily seen, we have a decomposition of P into G-orbits such
that

P=P U---U P, (disjoint)

where GP; = P, and G is transitive on P, for each i (1 < { = 7). We set
fi = Zeeple, 1= ].. ey T Then

B=Bfi®® Bf, and
A= Af @& Afy.

Moreover, we set G, = G|Bf;, i =1, ..., r. Then

G C GiX---X Gy, Gx = GTX"‘XG‘? and
B(G*) = BA(G¥)+---+ Bfe(G¥)
= Afi+-+Af= A

Hence by (I, ii) and (I, iii), we obtain
(II, i) B(G*)= B(G)= A. If B/A is a strong G-extension then this

is also a strong G*-exiension, and for any subgroup K of G*, B/B(K) is
a strong K-extension.

Next, we shall prove the following
(II,ii) Let B/A be a strong G-extension. If K is a subgroup of G*
then G*(B(K)) = K*.
Proof. Casel: B(K)=A. WesetK;=K|Bfi, i=1,...,r. Then
K.C GF¥ and Bfi(K:)=Af (i=1,.., 7).

Since each Bfi;/Af: is a strong G-extension, it follows from (I, v) that K#
= G¥ for i =1, ..., r. Hence we obtain

K* = K¥X---XK¥=G*=G*(A) = G*(B(K)).
Case 2: B(K)2 A. Weset T= B(K). Then B(G*(T)) = T and
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B/T is a strong G*( T)-extension by (II, i). Since K C G*{T), it follows
from Case 1 that K* = G*(T)* Moreover, we have B(G*(T)*) =
B(G*(T)) = T by (II,i). Since G*(T)* C G** = G*, we see that
G*(T)* C G*(T) and so G*(T)* = G*(T) = GX(B(K)) = K*.

An intermediate ring T of B/A is said to be G* subfixed if for every
e € P, Be(G*(Te)) = Te, and Ze’ec*['l'lleie' eT. Clearly G*(Te) [ Be C
G**(T) | Be. By this and Lemma 3, our condition is equivalent to that

(a) for every e € P, Be(G*(T U lel)) = Te, and

(B) for every primitive idempotent g of Cs N T, G*(T) is transitive
on the set le € P: eg + 0}.

Now, we shall prove the following
(II, iii) Let B/A be a G-extension. If K is a subgroup of G* then
B(K) is G*-subfixed.

Proof. let e be an arbitrary element of P. Then, we have e €
O(B(Cs): G). Hence, it follows from Lemma 9 that

B(K)e = Be(K(iel))
= Be(K(B(K) U {etl)) D Be(G*(B(K) U lel)) D B(K)e.

This implies that B/B(K) satisfies the condition (o). Now, we have a de-
composition of P into K-orbits such that
P=P U---U Ps (disjoint)

where KP; = P, and K is transitive on P; for each i (1 £ { £ 5). We set
g = Xeer,e, i = 1,...,s. Then Z7.1g; = 1. Hence, it follows from
Lemma 3 that {g;; i = 1, ..., s| coincides with the set of primitive idempo-
tents of Cx N B(K), and |e € P; eg: + 0] = P; (1 £ i< s) on which
G*(B(K)) is transitive. Thus, we see that B(K) is G*-subfixed.

(II, iv) Let B/A be a G-extension. If T is an intermediate ring of
B/A which is G*-subfixed then B(G*(T)) = T.

Proof. Let g, ..., gs| be the set of primitive idempotents of Cs N T.
Then

B:Bg1@® Bgs and T = Tgu@---EB Tgs-
We set K= G*(T) and le € P; gie + 0t =len. ..., e, |. Then
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gr=-ent+e, and olew) €len .o e |

for all o€ K and j =1, ..., s;. Hence by the condition (@), we have

Bgl(K) Cﬂfél (Ben ®---D Belii—l) & Teli (S Bel(i+1} DD Bels,)
= Teu D Tels,'

Moreover, by the condition (8), there exist elements o, ..., os, in K such
that o:(enn) = ews, i = 2, ..., si. Let ¢ = hen+hent - +ises, (i € T)
be an arbitrary element of Bg,(K). Then

¢ = o:(c) = tienzt+tac(ern) +---+ts, 02 ers,)-
Hence t:e1; = tier;. By a similar way, we have
c = t1(€11+€12+"'+€1s,) = hg € Tg.

Hence we obtain Bg,(K) = Tg:. Moreover, by a similar way, it follows
that

BgiK)=Tg: fori=1,...,s.
This shows that B(K) = Tgi+---+ Tgs = T, completing the proof.

Now, combining (II, ii) with (II, iii) and (II, iv), we obtain the fol-
lowing theorem which is one of our main results.

Theorem 13. Let B/A be a strong G-extension. Then, there exists
a 1—1 dual correspondence beiween the set of intermediate G*-subfixed
subrings T of B/A and the set of fat subgroups K of G* in the usual sense
of Galois theory: T <> K with G*(T) = K and B(K) = T.

Corollary 14. Let B. (i = 1, ..., 1) be semi-connected rings, and each
B, a G,-Galois extension of a subring A;. Lei

BzBl@® Bt,A=A1 @EB Az, and G:GIXXGt
which is an automorphism group of B by the composition:
(01, ceey Jt)(b1+"'+bt) = 01(b1)+"'+0t(bt)

where 0, € G; and b,€ B, (i =1, ..., t). Then B/A is a strong G-extension
to which Theorem 13 applies.

Proof. It is obvious that B(G) = A and G|B: = G: (i =1, ..., ).
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Hence it suffices to prove that our assertion holds for t = 1. We set B=
B, and G = G,. Let e be an arbitrary primitive idempotent of Cs. Then
we have ¢ € O(B(Cs): G). Hence by Lemma 9, Be is a Galois extension
of Ae with a Galois group H = G(le!)| Be. Therefore, it follows from [5,
Proposition 2.2] that H(Be(N)) = N for any subgroup N of H. Thus B/A

is a strong G-extension.

In [8], O. E. Villamayor and D. Zelinsky proved the following theorem,
which can be also proved by making use of Theorem 13.

Theorem 15 (O. E. Villamayor and D. Zelinsky). Let S be a commuta-
tive ring with identity element 1 which is a G-extension of a semi-connected
ring R such that S is projective and separable over R. Let H be the group
of all R-algebra automorphisms of S. Then, S is semi-connected, G* = H
and there exists a 1—1 dual correspondence between the set of separable
R-subalgebras of S and the set of fat subgroups of H in the usual sense of
Galois theory.

Proof. By Corollary 7, S is semi-connected. Hence, by Theorem 13,
it suffices to prove that

(1) S/R is a strong G-extension, G* = H, and

(2) for an intermediate ring T of S/R, T is separable over R if and
only if T is H-subfixed.

Let P=lei, ..., en] be the set of primitive idempotents of S, and
{fi, ..., fri the set of primitive idempotents of R. Then

S=S£®-® Sfr. SF(GISH)=Rf (i=1,....7)

and each Sf; is projective and separable over Rf;. Hence, it suffices to
prove that our assertion holds for r = 1, and so, let R be connected. Then
G is transitive on P. By (I, i), R = Re (a <> ae) for each ¢ € P and Se is
projective and separable over Re. By Lemma 9, Se/Re is a (G(lel)| Se)-
extension. Since Se is connected, we see that Se/Re is (G(le!)| Se)-
Galois by CHR Galois theory [1]. Hence S/R is a strong G-extension.
Moreover, we have G(le!l)| Se = H(ie!)| Se. Noting HP = P and X ecre’
= 1, one will easily see that H is a finite group and so S/R is a strong
H-extension. Since S(G) = R = S(H), it follows from (I, v) that G* =
H* = H. To see (2), let T be an intermediate ring of S/R with | g, ..., gs!,
the set of primitive idempotents of T, and set P, =|e € P: eg; #+ 0} for
i=1,...,s. Then
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S=8®®Sgs and T=Tg ®---@ Tgs.

Now, we assume that T is H-subfixed. Then S(H(T)) = T by Theorem 13.
Hence, it follows from Lemma 9 that for each e € P, (1 < i < ),

Se(H(T)({el)) =Te= Se(H(Te)) and Te = Tgie = Tg:

since H(T)lel = P; and X ecr,e’ = g. Since Se is connected and Se/Re
is Galois, we see that Te is separable over Re = R and so Tg; is separable
over Rg; =R (1 < ;=< s). Thus T is separable over R. To see the
converse, we assume that T is separable over R. Let e be an element in P.
Then, as is noted in the above, Se/Re is a H(]el)| Se-Galois extension.
Moreover Te/Re is separable. Hence Se(H(Te)| Se) = Te by CHR Galois
theory. Since

TCTe® T(l—e)C Se® S(1—e) =S8,

any automorphism in H(Te)| Se can be extended in a T-algebra automorphism
of S. This implies that Se(H(T U {el)) = Te. Next, let ¢, and e, be any
elements of P; (1 =i =< s). Then, it follows from [2, Proposition 1.5 and
Lemma 1.6] that

Te, = Tgie] = Tgi = Tg,-eg = Te,

which is defined by ae: — ag: = ae: (a € T). This isomorphism Te, = Te:
can be extended to an isomorphism @: Se, = Se. by an extension theorem
in CHR Galois theory for connected rings (cf. [1, Lemma 4.1] and [2,
Lemma 1.3 and Corollary 1.8]). Since

S=3Se.® Se: ® S(gi—ei—e:) ® S(1—g,)
DTer® Te:® T(gi—er—es) ® T(1—g;)
D) T(e1+ez+(gi—61—ez)+(1—gi)) =T,

@ can be extended to a T-automorphism ¢’ of S such that ¢'(e;) = e, and
@'(e;) = e;. This implies that H(T) is transitive on P; for i = 1, ...,-s.
Thus T is H-subfixed.

Remark. Let S be a commutative separable algebra over a finite field
GF(p) consisting of p elements where p is a positive integer. Let H be
the group of all automorphisms of S. Then S is finitely generated over
GF(p) and H is of finite order. By x(S), we denote the cardinality of the
set of (ring-) isomorphism classes of maximal ideals of S. Then S is
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projective and separable over S(H),
S(H) = GF(p)™ (a direct sum of r-copies of GF(p))

where r = 4(S) and, there exists a 1 —1 dual correspondence between the
set of intermediate rings of S/S(H) and the set of fat subgroups of H in
the usual sense of Galois theory.

The proof is as follows: Since S is projective and separable over
GF(p), S is a direct sum of a finite number of finite fields which are of
characteristic p. Let P be the set of primitive idempotents of S, and ¢
a map of P into the set of integers defined by ¢(e) = Dim¢rmSe (e € P).
Then, one will easily see that |image | = u(S). We set here

image o= {n, -, n.} (m<ne <<, r = p8S))
P.=le € P; ple) =nil, fi=Yeer,e (1 =i=r) and
R = GF(p)fit - +GF(p)f.

Then, by [4, Remark 1.1], it will be easily seen that S(H)= R = GF(p)".
Now, let T be an intermediate ring S/R. Since there are no nilpotent
elements in S, T is a semi-simple ring which is a direct sum of finite
fields. Therefore, T is separable over GF(p), and in particular, R is
separable over GF(p). Hence S and T are projective and separable over
R (cf. [2, Proposition 1.5]). Applying Theorem 15 to the H-extension S/R,
we obtain our assertion.

Next, we consider a direct sum S* of a finite number of finite fields.
As is easily seen, S* is a direct sum of some separable GF(p;)-subalgebras
S;, i=1,...., m, where 0 < p, < p: <--< pn and the p; are prime inte-
gers. Let H* be the group of all automorphisms of S*. Then, for each
a € S;, we have g(a) € S;forall s€ H¥ (i = 1...., m). We set here

Hi= H¥(S\+-+Si-1+Sii++--+ Sn)

for i =1,....m. Then, since S* = S, ®---@® Snp. each restriction H;| S;
coincides with the group of all automorphisms of S; (i = 1, .... m). More-
over, we have

H* = HiX---XHyn (direct product), and

Further, for any intermediate ring T of S*/S*(H*), we have

S{H)CTNS.cS: (i=1,...m) and
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T=(TNS)+---+(T N Sn).

Hence, from the preceeding remarks, one will easily see that

S*(H*) = GF(p.)) " ®+--® GF(pn)"'™ where r, = u(S:) (i =1, ..., m)

and, there exists a 1—1 dual correspondence between the set of inter-
mediate rings of S*/S*(H*) and the set of fat subgroups of H* in the usual
sense of Galois theory.

(1]
(2]
(3]
(4]

[6]
(7]
[8]

S.

REFERENCES

U. CHasE, D. K. HarrisoN and ALEX ROSENBERG : Galois theory and Galois cohomology
of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15—33.

M. FERrero and K. KisHIMOTO : On connectedness of p-Galois extensions of rings, Math.

G.

J. Okayama Univ. 25 (1983), 103 —121.
J. JANUSZ : Separable algebras over commutative rings, Trans, Amer. Math. Soc. 122
(1966), 461 —479.

I. KikeMasa, T. NAGAHARA and K. KISHIMOTO : On primitive elements of Galois extensions

Y.

S.

of commutative semi-local rings, Math. J. Okayama Univ. 31 (1989), 31 —55.

MivasHITA :  Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido
Univ. 19 (1966), 114 —134.

MoNTGOMERY : Fixed Rings of Finite Automorphism Groups of Associative Rings,
Lecture Notes in Math. 818 (1980), Springer-Verlag.

. NAGAHARA : On splitting rings of separable skew polynomials, Math. J. Okayama Univ.

26 (1984), 71 —85.

. E. ViLLAMAYOR and D. ZELINSKY : Galois theory of rings with finitely many idempotents,

Nagoya Math. J. 27 (1966), 721 —731.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY
MarsumoTo, Jaran 390

DEPARTMENT OF MATHEMATICS
Oxavama UNIVERSITY
TsusHIMA -NAKA, OKkAYAMA-sHI, Japan 700

(Received January 11, 1989)



