A NOTE ON ANDERSON-ANDERSON-JOHNSON QUESTIONS

Ryuki MATSUDA

In this paper a ring means a commutative integral domain. Also dimension means Krull dimension. A ring A is called a locally factorial ring if A_M is a factorial ring (that is, a unique factorization domain) for each maximal ideal M of A. Let $X^{(1)}(A)$ be the set of height one prime ideals of A.

Let A be a Krull ring. $[2, \S 2]$ asks the following questions:

- (Q-1) Let P be a non-zero prime ideal of A. If $P \cap Q = PQ$ for each prime ideal Q of A with $ht(Q) \leq 2$ that is incomparable with P, then is P a maximal ideal or an invertible ideal of A?
 - (Q-2) Are the following conditions equivalent?
 - (1) A is a locally factorial ring with $\dim(A) \leq 2$.
 - (2) $P \cap Q = PQ$ for each incomparable prime ideals P, Q of A.
 - (3) Each ideal of A is a product of primary ideals of A.

Let B be a Noetherian ring with quotient field L, K a finite algebraic extension field of L and A the integral closure of B in K. By Mori-Nagata's Integral Closure Theorem, A is a Krull ring. Such rings are important examples of Krull rings. We will call these rings Krull rings of Mori-Nagata type. The aim of this note is to answer (Q-1) and (Q-2) for Krull rings of Mori-Nagata type. We will prove that the answers for (Q-1) and (Q-2) are 'yes' for Krull rings of Mori-Nagata type.

Lemma 1 (Mori-Nagata's Integral Closure Theorem [5, (33, 10) Theorem]). Let B be a Noetherian ring, L the quotient field of B, K a finite algebraic extension of L and A the integral closure of B in K. Then

- (1) A is a Krull ring.
- (2) Let P be a prime ideal of A and $P' = P \cap B$. Then the quotient field of A/P is a finite algebraic extension of that of B/P'.
- (3) For each prime ideal P' of B, there exists only a finite number of prime ideals of A lying over P'.

Lemma 2 (Nagata's Theorem [5, (33. 12) Theorem]). Let A be a Krull ring of Mori-Nagata type. If $\dim(A) \leq 2$, then A is a Noetherian ring.

8 R. MATSUDA

Lemma 3 (Ratliff [6, Lemma 2. 1]). Let A be a Noetherian semilocal ring. P a prime ideal of A. Then there exists only a finite number of prime ideals Q of A such that $Q \supset P$, ht(Q/P) = 1 and $ht(Q) \ge ht(P) + 2$.

The proofs of the following Lemma 4 and Lemma 5 appear on [4]. But we will prove them here again for convenience.

Lemma 4 (Goto). Let A be a Krull ring of Mori-Nagata type, and P a prime ideal of A. Then we have $\bigcap_{i=1}^{\infty} P^{i}A_{P} = (0)$.

Proof. Let B, L and K be as in Lemma 1. Set $P \cap B = P'$ and B - P' = S. Then A_S is the integral closure of B_S in K. Thus we may assume that B is a Noetherian local ring and $P \cap B$ is the maximal ideal of B. We may use the induction on $\dim(B)$. Set $\dim(B) = d$. If d = 0, 1, then the statement is clear. Suppose that $d \geq 2$ and the statement holds for all positive integers lower than d. Set [K:L] = n. Then $K = \sum_{i=1}^n Lx_i$ for some elements x_1, x_2, \ldots, x_n of A. Hence we may assume that K = L. Also we may assume that $\operatorname{ht}(P) \geq 2$. Set $\{Q \in X^{\cap}(A): Q \subset P\} = \sum$. Let $Q \in \sum$ and set $Q \cap B = Q'$. Then $Q' \neq (0)$, $B/Q' \subset A/Q$ and the quotient field of A/Q is a finite algebraic extension of that of B/Q' by Lemma 1(2). Let R be the integral closure of B/Q' in the quotient field of A/Q. We have $\dim(B/Q') \leq d-1$. Choose a prime ideal N of R such that $N \cap (A/Q) = P/Q$. Since $\dim(R) \leq d-1$, we have

$$(0) = \bigcap_{i=1}^{\infty} N^{i}R_{N} \supset \bigcap_{i=1}^{\infty} P^{i}(A_{P}/QA_{P}).$$

Thus $\bigcap_{i=1}^{\infty} P^i A_P \subset \bigcap_{i=1}^{\infty} Q A_P$. Since $\dim(A_P) \geq 2$, it follows that $\bigcap_{Q \in \Sigma} Q A_P = (0)$. Thus $\bigcap_{i=1}^{\infty} P^i A_P = (0)$.

Lemma 5([4, (4. 2)]). Let A be a Krull ring of Mori-Nagata type, and $P \in X^{\alpha}(A)$. If $P \cap Q = PQ$ for each $Q \in X^{\alpha}(A)$ such that $Q \neq P$, then P is an invertible ideal of A.

Proof. Let M be a maximal ideal of A containing P. Set $A_M = A'$, $MA_M = M'$ and $PA_M = P'$. It suffices to show that P' is a principal ideal of A' (cf. [1, Corollary 2. 2]). If P' = P'M', then

$$P' = P'M' = P'M'^2 = P'M'^3 = \dots = (0)$$

by Lemma 4; a contradiction. Therefore $P' \supseteq P'M'$. Since A' is a Krull ring, A' is an atomic ring, that is, each element of A' is a product of irreducible elements of A'. Choose $a' \in P' - P'M'$. Then a' is an irreducible element of A'. Because, if a' is a reducible element with a' = A'

 $p_1, p_2, \cdots p_n$, where $n \geq 2$ and each p_i is irreducible element, then $p_i \in P$ for some i. Thus $a' \in P'M'$; a contradiction. Let $Q' \in X^{(1)}(A')$ which is distinct with P'. If $a' \in Q'$, then $a' \in P' \cap Q' = P'Q' \subset P'M'$; a contradiction. Thus P' is the only height one prime ideal containing a'. Let v be the valuation of the quotient field of A' with the valuation ring $A_{P'}$. Then we have v(a') = v(b') for each $b' \in P' - P'M'$. Because if, say, $v(a') \leq v(b')$, then there exists x' of M' such that x' = b'/a'. Then $b' = a'x' \in P'M'$; a contradiction. Thus $P' = a'A' \cup P'M'$. It follows that P' = a'A', namely a principal ideal of A'.

The idea of the proof of the following Theorem 6 is similar with that of [2, Theorem 2. 1].

Theorem 6. Let A be a Krull ring of Mori-Nagata type. Let P be a non-zero prime ideal of A. If $P \cap Q = PQ$ for each prime ideal Q of A with $ht(Q) \leq 2$ that is incomparable with P, then P is a maximal ideal or an invertible ideal of A.

Proof. Let B, L and K be as in Lemma 1. Choose a maximal ideal M of A which contains P. Set $B \cap M = M'$. By Lemma 1(3) only a finite number of maximal ideals $M_1, M_2, ..., M_n$ of A lie over M'. We set $M = M_1$. Choose $s_2 \in M_2 - M, ..., s_n \in M_n - M$. Set $B[s_2, ..., s_n] = B_0$. Then M is the only maximal ideal of A lying over $B_0 \cap M$. Therefore we may assume that M is the only maximal ideal of A lying over M'. Set B-M'=S. Then A_s is the integral closure of B_s in K. We have $P_s \cap Q = P_s Q$ for each prime ideal Q of A_s with $ht(Q) \leq 2$ and incomparable with P_s . Moreover M_s is the only maximal ideal of A_s lying over M_s . If P_s is an invertible ideal of A_s , then P is an invertible ideal of A by Lemma 5 and if P_s is a maximal ideal of A_s , then P is a maximal ideal of A. Therefore we may assume that A is a quasi-local ring with the maximal ideal M, B is a Noetherian local ring with the maximal ideal M' and $M \cap B = M$ '. We assume that P is neither maximal nor invertible. We will derive a contradiction. We have $P \supseteq$ PM by Lemma 4. Choose $x \in P-PM$. Then B[x] is a Noetherian local ring. We set $M \cap B[x] = M$ ", $P \cap B[x] = P$ " and P" $\cap B = P$ '. Choose a prime ideal Q" of B[x] which is minimal over xB[x] and contained in P". We have ht(Q'') = 1. Choose a prime ideal Q of A lying over Q". Then we have ht(Q) = 1. If P and Q are incomparable, then $x \in P \cap Q =$ $PQ \subset PM$; a contradiction. Therefore P and Q are comparable. Since $ht(P) \ge 2$, we have $P \supset Q$. By Lemma 3, there exists only a finite number

10 R. MATSUDA

of prime ideals N" of B[x] such that $\operatorname{ht}(N''/Q'')=1$ and $\operatorname{ht}(N'') \geq 3$. Denote them by N_1'',\dots,N_t'' . We have $M'' \in P'' \cup N_1'' \cup \dots \cup N_t''$. Choose an element y of B[x] such that $y \in M''$ and $y \notin P'' \cup N_1'' \cup \dots \cup N_t''$. Choose a prime ideal Q_0''/Q'' of B[x]/Q'' which is minimal over the element y+Q''. Then $y \in Q_0''$. We have $\operatorname{ht}(Q_0''/Q'')=1$. Since $y \notin N_t''$, we see that $Q_0'' \neq N_t''$ ($1 \leq i \leq t$). Therefore $\operatorname{ht}(Q_0'')=2$. Choose a prime ideal Q_0 of A containing Q and lying over Q_0'' . We have $\operatorname{ht}(Q_0)=2$. Since $y \notin P''$, also we have $Q_0 \in P$. If P and Q_0 are comparable, then $\operatorname{ht}(P) \leq \operatorname{ht}(Q_0)-1$ and hence $\operatorname{ht}(P)=1$; a contradiction. Therefore P and Q_0 are incomparable. Hence we have $x \in P \cap Q_0 = PQ_0 \subset PM$; which is a contradiction.

Remark 7([4, (3, 5)]). Let A be a Krull ring. Suppose that (Q-1) is 'yes' for A. Let $P \in X^{\alpha}(A)$. If $P \cap Q = PQ$ for each $Q \in X^{\alpha}(A)$ such that $Q \neq P$, then P is an invertible ideal of A.

Theorem 8. Let A be a Krull ring of Mori-Nagata type. Then the following conditions are equivalent for A:

- (1) A is a locally factorial ring with $\dim(A) \leq 2$.
- (2) $P \cap Q = PQ$ for each incomparable prime ideals P, Q of A.
- (3) Each ideal of A is a product of primary ideals of A.

Proof. (3) implies (1) by [3, Corollary 6]. It is straightforward to see that (1) implies (2). Assume (2). We must prove (3). By Theorem 6 we have $\dim(A) \leq 2$. Then Lemma 2 implies that A is a Noetherian ring. By [2, Corollary (2, 8)], each ideal of A is a product of primary ideals of A.

REFERENCES

- [1] D. D. ANDERSON: Globalization of some local properties in Krull domains, Proc. Amer. Math. Soc. 85 (1982), 141-145.
- [2] D. D. ADNERSON, D. F. ANDERSON and E. JONHSON: Some ideal-theoretic conditions on a Noetherian ring, Houston J. Math. 7 (1981), 1-10.
- [3] D. D. Anderson and L. Mahaney: Commutative rings in which every ideal is a product of primary ideals, J. Alg. 106 (1987), 528-535.
- [4] R. MATSUDA: Notes on Anderson-Anderson-Johnson questions and Bouvier questions, Bull. Fac. Sci., Ibaraki Univ. 21 (1989), 13-19.
- [5] M. NAGATA: Local Rings, Interscience, 1962.
- [6] L. RATLIFF: Catenary rings and the altitude formula, Amer. J. Math. 94 (1972), 458-466.

DEPARTMENT OF MATHEMATICS

IBARAKI UNIVERSITY

MITO, IBARAKI, 310 JAPAN

(Received July 1, 1989)