TAUBERIAN THEOREMS OF $J_{\rho} \rightarrow M_{\rho}$ -TYPE

HUBERT TIETZ

Let $|p_n|$ be a sequence of non-negative numbers with $p_0 > 0$, $P_n := p_0 + \cdots + p_n$ for $n = 0, 1, \ldots$,

(1)
$$p(x) := \sum_{n=0}^{\infty} p_n x^n \text{ for real } x$$

and, for a given sequence $|s_n|$ of complex numbers let

(2)
$$p_s(x) := \sum_{n=0}^{\infty} p_n s_n x^n \text{ for real } x$$

and

$$t_n := \frac{1}{P_n} \sum_{k=0}^n p_k s_k$$
 for $n = 0, 1, \dots$

We shall say that $|s_n|$ is M_ρ -limitable to σ , and write M_ρ -lim $s_n = \sigma$, if $\lim_{n \to \infty} t_n = \sigma$. We shall say that $|s_n|$ is J_ρ -limitable to σ , and write J_ρ -lim $s_n = \sigma$, if the series (1) has radius of convergence 1, the series (2) converges for 0 < x < 1 and $\lim_{x \to 1^-} p_s(x)/p(x) = \sigma$. It is known that both, the M_ρ -method and the J_ρ -method are regular if and only if $P_n \to \infty$. In this case M_ρ -lim $s_n = \sigma$ implies J_ρ -lim $s_n = \sigma$ (see Ishiguro [4]), but the converse is not always true. For many $|p_n|$ however J_ρ -lim $s_n = \sigma$ implies M_ρ -lim $s_n = \sigma$, if $|s_n|$ fulfills an additional condition, which we will call a Tauberian condition of $J_\rho \to M_\rho$ -type.

If $p_n := 1$ for $n = 0, 1, \ldots$, then J_ρ is the Abel-method A_1 whilst M_ρ is the Cesàro-method C_1 , and the following famous theorem of Hardy and Littlewood [3] (see [2, Theorem 94]) holds: $s_n = O_L(1)$ is a Tauberian condition of $A_1 \to C_1$ -type. (For the definition of O_L , O and o see [2, p. 149].) But $s_n = O_L(1)$ is a Tauberian condition of $J_\rho \to M_\rho$ -type for many other sequences $\{p_n\}$ (see, for example, [5, Theorem 4.1 and pp. 72/73] and [16]). Most of these results are special cases of

Theorem A ([16, Satz 4.3]). Let $P_n \to \infty$ and

$$(3) np_n = O(P_n).$$

Then $s_n = O_L(1)$ is a Tauberian condition of $J_\rho \to M_{\rho}$ -type.

If $p_n := (n+1)^{-1}$ for n = 0, 1, ..., then J_ρ and M_ρ are the logarithmic

222 H. TIETZ

methods L and l respectively, and the following theorem of Kokhanovskii [7, Theorem 1] holds: $s_n = O_L(\ln(n+1))$ is a Tauberian condition of $L \to l$ -type. Now for $p_n := (n+1)^{-1}$ the condition $s_n = O_L(\ln(n+1))$ is equivalent to $np_n s_n = O_L(P_n)$, and this is a Tauberian condition of $J_\rho \to M_\rho$ -type for many other sequences $|p_n|$ (see, for example, Kokhanovskii [8, Theorem 1] and Mikhalin [11, Theorem 5]). All these results are special cases of

Theorem B (Borwein [1, Theorem 2]). Let $P_n \to \infty$ and

$$np_n = o(P_n).$$

Then $np_n s_n = O_L(P_n)$ is a Tauberian condition of $J_\rho \to M_\rho$ -type.

If (3) holds, then $np_ns_n = O_L(P_n)$ is implied by $s_n = O_L(1)$. So it is natural to ask, whether (4) in Theorem B can be replaced by (3). The answer is yes, and is a consequence of the following theorem because (3) is strictly stronger than

$$(5) 1 \leq P_n/P_m \to 1 \text{ as } 1 < n/m \to 1 \ (m \to \infty).$$

Theorem 1. Let $P_n \to \infty$ and (5). Then $np_n s_n = O_L(P_n)$ is a Tauberian condition of $J_p \to M_p$ -type.

For the proof of Theorem 1, which contains Theorems A and B as special cases, we need some lemmas.

Lemma 2. Let $P_n \to \infty$ and $P_{2n} = O(P_n)$. Then

- a) $p(x)/p(x^2) = O(1)$ as $x \to 1-$.
- b) $p(t^{1/n}) = O(P_n)$ as $n \to \infty$ for every $t \in (0, 1)$.

Lemma 2a) was proved by Kratz and Stadtmüller [9, Lemma 2, proof of (vii) \Rightarrow (viii)]. To prove b) let $t \in (0,1)$ be fixed. By a) there exists K > 0 such that $p(x) < Kp(x^2)$ for all $x \in (0,1)$. Now we choose $m \in \mathbb{N}$ such that $\varepsilon := Kt^{m/2} < 1$. Then

$$\begin{split} p(t^{1/n}) & \leq P_{mn} + \sum_{k=m}^{\infty} \sum_{n+1}^{\infty} p_k t^{k/2n} t^{k/2n} \\ & \leq P_{mn} + t^{m/2} p(t^{1/2n}) \leq P_{mn} + K t^{m/2} p(t^{1/n}), \end{split}$$

and therefore, $P_{2n} = O(P_n)$ implies

$$\frac{p(t^{1/n})}{P_n} \le \frac{P_{mn}}{P_n} \frac{1}{1-\varepsilon} = O(1) \text{ as } n \to \infty.$$

Lemma 3. Let $P_n \to \infty$, (5) and $np_n s_n = O_L(P_n)$. Then $p_s(x)/p(x) = O(1)$ as $x \to 1-$ implies $t_n = O(1)$.

Proof. We choose K>0 with $np_ns_n>-KP_n$ for $n=0,1,\ldots$ and define the non-negative sequence $|\gamma_n|$ by

$$\gamma_n := \begin{cases} |s_n| & \text{if } np_n = 0 \\ KP_n/np_n & \text{if } np_n \neq 0. \end{cases}$$

Then $s_n \ge -\gamma_n$ for n = 0, 1, ... and $np_n\gamma_n = O(P_n)$. Now, following Borwein [1, proof of Theorem 2], we choose $t \in (0, 1)$ fixed and obtain

$$\frac{1}{p(t^{1/n})} \sum_{k=0}^{n} p_k s_k = O(1) \quad \text{as } n \to \infty.$$

From this, and because $P_{2n}/P_n = O(1)$ is a consequence of (5) (see [13]), $t_n = O(1)$ follows by Lemma 2b).

Special cases of Lemma 3 have been given by Kokhanovskii [7, Theorem 1] and [8, Lemma 1].

Lemma 4. Let $P_n \to \infty$, (5), $np_n s_n = O_L(P_n)$ and $t_n = O(1)$. Then

(6)
$$\liminf (t_n - t_m) \ge 0 \text{ as } Q_n / Q_m \to 1 \text{ } (n > m \to \infty)$$

where $Q_n := P_0 + \cdots + P_n$ for $n = 0, 1, \dots$

Proof. We have

$$t_n-t_{n-1}=\frac{p_n}{P_n}(s_n-t_{n-1})$$
 for $n=1,2,\ldots,$

and therefore

$$t_n - t_m = \sum_{\nu=m+1}^n \frac{\nu p_{\nu} s_{\nu}}{P_{\nu}} \frac{1}{\nu} - \sum_{\nu=m+1}^n \frac{p_{\nu} t_{\nu-1}}{P_{\nu}}$$
 for $n > m > 0$.

Hence, if K > 0 is a constant such that $np_n s_n \ge -KP_n$ and $|t_n| \le K$, we get

(7)
$$t_n - t_m \ge -K \ln \frac{n}{m} - K \left(\frac{P_n}{P_m} - 1 \right) \quad \text{for } n > m > 0.$$

Now $Q_n/Q_m \to 1 \ (n>m\to\infty)$ implies $n/m\to 1$ and thus $P_n/P_m\to 1$ by

224 H. TIETZ

(5), so (6) follows from (7).

Special cases of Lemma 4 have been given by Kokhanovskii [7, Lemma 1] and [8, Lemma 3].

Lemma 5 ([15, Satz 3.9]). Let $P_n \to \infty$ and (5). Then

(8)
$$\liminf (s_n - s_m) \ge 0 \text{ as } P_n/P_m \to 1 \ (n > m \to \infty)$$

is a Tauberian condition of $J_p \to c$ -type.

Now we are able to give the

Proof of Theorem 1. Let $|s_n|$ be a sequence with $np_n s_n = O_L(P_n)$ and J_{ρ} - $\lim s_n = \sigma$. Then $t_n = O(1)$ by Lemma 3 and J_{ρ} - $\lim t_n = \sigma$. Therefore (6) holds by Lemma 4. Now (5) implies

$$1 \leq Q_n/Q_m \rightarrow 1$$
 as $1 < n/m \rightarrow 1 \ (m \rightarrow \infty)$

(see [15, Nr.5]), and so we get $\lim t_n = \sigma$, i.e. $M_\rho\text{-}\lim s_n = \sigma$, by Lemma 5.

Since $np_n s_n = O_L(P_n)$, the s_n in Theorem 1 have to be real. But clearly Theorem 1 holds for complex s_n , if we replace O_L by O. Thus we have the following corollary, which, for example, contains theorems of Kokhanovskii [6, Theorem 2], Teslenko [14, Theorem 2] and Mikhalin [10, Corollary 1] as special cases.

Corollary 6. Let $P_n \to \infty$ and (5). Then $np_n s_n = O(P_n)$ is a Tauberian condition of $J_\rho \to M_\rho$ -type.

REFERENCES

- D. Borwein: Tauberian conditions for the equivalence of weighted mean and power series methods of summability, Canad. Math. Bull. 24 (1981), 309-316.
- [2] G. H. HARDY: Divergent Series, Oxford, 1949.
- [3] G. H. HARDY and J. E. LITTLEWOOD: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. (2) 13 (1914), 174-191.
- [4] K. ISHIGURO: A Tauberian theorem for (J, p_n) summability, Proc. Japan Acad. 40 (1964), 807-812.
- [5] A. JAKIMOVSKI and H. TIETZ: Regularly varying functions and power series methods, J. Math. Anal. Appl. 73 (1980), 65-84. Errata 95 (1983), 597-598.
- [6] A. P. KOKHANOVSKII: Tauberian theorems for semicontinuous logarithmic methods of sum-

- mation of series, Ukrain. Mat. Zh. 26 (1974), 740-748. English translation: Ukrain. Math. J. 26 (1974), 607-613.
- [7] A. P. KOKHANOVSKII: A condition of equivalence of logarithmic methods of summation, Ukrain. Mat. Zh. 27 (1975), 229-234. English translation: Ukrain. Math. J. 27 (1975), 182-186.
- [8] A. P. KOKHANOVSKII: A Tauberian theorem for a class of (J; p_n)-methods, Ukrain. Mat. Zh. 30 (1978), 811-816. English translation: Ukrain. Math. J. 30 (1978), 612-615.
- [9] W. Kratz and U. Stadtmüller: Tauberian theorems for J_{ρ} -summability, J. Math. Anal. Appl. 139(1989), 362-371.
- [10] G. A. MIKHALIN: Theorems of Tauberian type for (J, p_n) summation methods, Ukrain. Mat. Zh. 29 (1977), 763-770. English translation: Ukrain. Math. J. 29 (1977), 564-569.
- [11] G. A. MIKHALIN: On conditions for equivalence of the (\$\overline{R}\$, \$p_n\$) and (\$J\$, \$p_n\$) summation methods, Izv. Vysš. Učebn. Zaved. Matematika 1979, no. 5, 41-51. English translation: Soviet Math. (Iz. VUZ) 23, no. 5 (1979), 39-48.
- [12] G. A. MIKHALIN: Generalized Tauberian theorems for a class of (J, p_n)-summability, Izv. Vysš. Učebn. Zaved. Matematika 1980, no. 4, 61-68. English translation: Soviet Math. (Iz. VUZ) 24, no. 4 (1980), 69-76.
- [13] U. STADTMÜLLER and R. TRAUTNER: Tauberian theorems for Laplace transforms, J. reine angew. Math. 311/312 (1979), 283-290.
- [14] L. S. TESLENKO: Theorems of Tauberian type for a generalized semicontinuous logarithmic method of summability of series, Approximation methods of mathematical analysis (Russian), Kiev. Gos. Ped. Inst., Kiev (1976), 108-119.
- [15] H. TIETZ: Schmidtsche Umkehrbedingungen für Potenzreihenverfahren, Acta Sci. Math. (Szeged), to appear.
- [16] H. TIETZ und R. TRAUTNER: Tauber-Sätze für Potenzreihenverfahren, Arch. Math. (Basel) 50 (1988), 164-174.

Universität Stuttgart
Mathematisches Institut A
7000 Stuttgart 80
Bundesrepublik Deutschland

(Received November 23, 1987)