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THE DISTRIBUTION OF PYTHAGOREAN
TRIPLES AND A THREE-DIMENSIONAL
DIVISOR PROBLEM

WERNER GEorRG NOWAK and WinFriED RECKNAGEL

1. Introduction and statement of results. A triple of integers(r, s, n)
is called Pythagorean if it satisfies r*+s* = n’: for a large parameter
x, let A{x) denote the number of Pythagorean triples (r. s, n) with 1 < n
< x. Asymptotics for A(x) have been established by Sierpinski [11],
Fricker [4], [5] and Fischer [3]. The sharpest result to date is due to
Stronina [12] and reads

Alx) =—i—xlogx+Bx+O(x”2exp(—c(logx)3"5(loglogx)'”s)) (1)

with some ¢ > 0 and an explicitly given constant B. This estimate is based
on Vinogradov's zero-free region of the Riemann zeta-function and the cor-
responding upper bound for the Dirichlet sum of the Moebius function ; see
Walfisz [14]. Furthermore, Stronina proved that the remainder term in(1)
is not o(x"*).

The purpose of the present note is to give a conditional result some-
what sharper than (1). under the assumption of (a suitable extension of)
Riemann’s hypothesis.

Theorem 1. Suppose that both Riemann’s zeta-function {(s) and the
Dirichlet L-function L(s) corresponding to the non-principal character modulo

4 have no zero in the half-plane Re s > 1/2. Then, for any ¢ > 0,

Alx) = _.f;I]ng_'_Bx_l_O(xss."llhe)' (2)

Like most of the previous work, our argument is based on the factorization
of the Dirichlet series

() n = 4(r(s)*(g(2s)) " L{s)1+275)"" (Res>1). (3)

(Here r(m) is the standard notation for the number of integer pairs (p. ¢)
with p*4¢? = m.) This suggests to consider r(n?) as a kind of convolution
of the Moebius function g with a certain three-dimensional divisor function.

213



214 W. G. NOWAK and W. RECKNAGEL

To deal with the latter, we establish a result on Piltz" divisor problem in
residue classes (for dimension 3) which is “unconditional” and perhaps of
some interest of its own.

‘Theorem 2. For j=1,2,3, let ¢; and m; be fixed natural numbers
satisfyingl < g; < m;. For a positive integer n, let d¥(n) = d¥(n; q,, m, :
gy, my; G3. my denote the number of triples (n,, n,, ny) of positive integers
Sfor which nynyn, = n and n; = g;(modm;), j=1,2,3. Then, for a large
parameter vy,

D¥(y) := Dnsyd¥(n: qu.mi: gp.my: g5, my) (4)
— J'B(logy)+0(y43/96+e)

(for any € > 0) where P, is a quadratic polynomial and, in fact,

yP(logy) = Ress=|((mlmzma)‘s§(3~ fn: )C(&%){(&%)y%"), (4

3

where £(s, a) is Hurwitz' zeta-function.

Remark. This result is a straightforward generalization of Kolesnik's
work [6] dealing with the special case m, = m, = m; = 1. In section 2,
we give a draft of a proof, indicating which modifications are necessary. In
section 3 we then apply a method of Montgomery and Vaughan [8] (instead of
some elementary convolution argument) to derive theorem 1 from theorem 2.

In section 4, we investigate the distribution of Pythagorean triples in
a different direction, employing a method of Pintz [9] to obtain a certain
strengthening of the above-mentioned lower estimate for the error term due
to Stronina.

Theorem 3. For x = 1, define
4
E(x) := A(.r)—7xlogx—Bx.
Then there exists a positive constani c, such that, for X sufficiently large,

f"'|E(x>|dx > ¢, X,

2. Sketch of proof of theorem 2, For the first part. we follow the
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argument of Atkinson [2]. The generating function of d¥(n) is clearly
given by ’
Z(s):=II3- mi®¢(s, gmy') = 25, d¥(n)n™° (Res >1). (5)
Let y be half an odd integer and T < ¥**°¢ < 2T, then the truncated
Perron’s formula (e.g. Prachar [10]. p. 376) yields for ¢ > 0
1+&+1IT
D¥(y) = (27ti)—l./l-+£—"r Z(s)y®s~'ds+O(y'*¢T"). (6)

By Hurwitz’ formula (see Apostol [1]. p. 257) we have for Res > 1

t(l—s,a) = (27r)’sI‘(S)2Z‘;."=1n“"cos(Z;ma——gs). (7)

Using Stirling’s formula for I{s) (e.g. Landau [7]. p. 227), we get

tl—e+it,a) € |F(l+£—l't)|exp(g~l t|) < (1+| t|)vere

and thus, by (5) and the Phragmén-Lindelof principle ([7]. p. 229).
Z(g+it) <<(1+’l‘|)[3/2”*5‘°“ (8)

uniformly in the strip —e < 0 = 1+¢. Therefore, we may shift the path
of integration in (6) to the line segment from —¢—iT to —e+iT. noting
that the integrand has a pole of order 3 at s =1 with residue yP,(logy)
and a simple pole at s = 0 with residue Z(0). Defining

A¥(y) := D¥(y)—yP.(log y),

we obtain, estimating the remainder integrals by (8).

—-E+IT
A¥(y) = (2ni)_'/:£__r Z(s)yss 'ds+O(y'*¢T).
Now let #=1{—1,1}° and define for b = (b,, b,, b)) € &, (n,, n,, ny) €

IN?
ﬁb(nlv Ny, M) 1= 2”2}:1171"1‘717”;1’ Yo = Z}=1 b;,
Anp 1= Zn.nzm:ncosﬂb(nl- ny, n3)~ Mnp + = Zmnzn;:nSiIlﬂb(nl, Ny, Tlg).

Then it follows from (5) and (7). by a short computation, that, for
Res> 1,

Z(1—s) = 2pesrZs(l—s)
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where

Zy(1—5) := (mymymy)*(87°)°T(s) Do, ”_s("""’cos(g 7"5)+(10)
+,umsin(% 71:8))-

By Stirling’s formula (with s = ¢+ it as usual),

(1—s)"'T(s) = =2/ 3 32 (3s—2)1+0((] t| +1)7") (11)

uniformly in any strip g, < ¢ < ¢,. We make the change of variable s —»

1—5 in (9) and define z, = 8 7°ny(m, mym;)~" for short. Thus
1+E+iT
A5(5) = Do) [ 2,1 = 5)y o1 = 5) s 0Ly T-0) (12)

and (for fixed b € &) this integral equals, by (10) and (11),

14+E+IT . 3”
2;°3%7%°17(3 s—2)(/\mcos(—2—gS) +

2/ T ylmmm) T [
(13)

1+€—1iT

+ ta5Sin (—32—”gs)>(83,m+ O(| t|="))ds

where & is Kronecker's symbol and g = 7,| 7,/™'. Since, again by Stirling’s
formula, for s = 1 +e+it

3'33['(35—2)exp( i%{ is)l t]7 = O(] t]| =2+,

the contribution of the order term in (13) is

& ¥y 27 | Anol + | tnn] ) T4 € 4T

(by choice of T). To deal with the main term in (13) (which only occurs
for b = (1.1, 1)), we make the change of variable 3s—2 — s and obtain

1
* — 1/3( -1/3 ) -2/3 ) i2)
A¥(y) 71\/? y (m, mymy) Y n (AL +un )+ (14)
+O(y]+€T—])

where

1+3e4+1IT V.4

L'?’:=(27ri)“[ 253”3‘31"(8)005(2 S)ds

+3€-iT
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and I'¥ is defined by replacing cos by sin: An. un are the values of A,,.
1ny for b =(1,1,1). We now observe that the evaluation of I} and I} is
contained in the analysis of Atkinson [2], lemma 1 and 2. Thus we arrive
at

1
V3

1/3
_ yn, n,ng \“
A¥(y) = ¥'/*(m, mymy) UsZmnzngg,vCOS(ﬁlt(]—”) —

m, m, my

(15)
—2n3- 1—nf)(n1nzn3) Wy Oy *eT™Y)

where N is an integer such that N4+-1/2 = (m,mym; T)*(8 2°y)~'. For m,
= m, = my = 1, this coincides with Atkinson's formula (5.1) which was
used by Kolesnik to obtain his result in [6]. But it is easily verified that
Kolesnik's argument remains unaffected by the additional linear terms (g,/
m;)n; and yields the estimate O(y"/°°*€) for the trigonometric sum above.
This establishes theorem 2.

3. Proof of theorem 1. We may rewrite (3) as
F(s):= 2aar(n)n™® = 4£,(s)(£(25))7" ¢ (s) L(s) (16)
where
Lols) :=(1=279)¢(s) = 205 u™",

u and v denoting odd integers throughout the sequel. Thus

%A(I) = Znsxr( ) Z:uvl’kmgr,ll(v)X(M)
= ZL‘§3'+ZL'>J" =: 5+,

where y denotes the non-principal character modulo 4 and y < v x is
a parameter remaining at our disposition. By theorem 2,

S, = Zusyll(v)z:mms:v—zx(m)
= szy#(U)Znsrv—‘-’(d?(nl 1.2:1,1: 1, 4)—
—d¥(n: 1.2:1,1; 3,4))
= Dosyuv)(R(xv™?) 4+ O((zv™%)*¥/%¢*€))

where R(w) is the residue of w®s™'¢,(s)¢(s)L(s) at s = 1. Consequently,
S, = Res (x®s7fi(s) Lol s) £ (s) L(s)) 4+ O(x 3776 5¥/4%) (18)

(17)

where
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S(s) 1= Dpcyule)v?®
To deal with S,, we define

fls) :=(&(25)7 = A(s)
and conclude by the argument of Titchmarsh [13], p. 315, that, under
Riemann's hypothesis,

fls) = 0(y*727%([ 1] +1)) (19)

uniformly in ¢ = 1/4 4 ¢, for any ¢ > 0 (see also Montgomery and Vaughan
[8]. p.250). By the truncated Perron’s formula (Prachar [10]. p.376),
for any U > 0,

5, = (27i) f $)to(s)E(s)Lis)x®s~ ds+0(x'U-).  (20)

According to [13]. p.283. our assumptions on ¢(s) and L(s) imply the
validity of the Lindelsf hypothesis for these functions, thus, together with
(19),

L) &o(s)E(s) Ls) = O(y"* 27| ¢]*+1)) (21)

uniformly in ¢ =2 1/2+¢, for any ¢ > 0. We now shift the path of integra-
tion in (20) to the line segment from 1/24¢— il to 1/2+ ¢+ iU, estimate
the remainder integrals by (21) and choose U = x* to obtain (with a new

e > 0)
S, = Ress_ (x°s7 " fi(s) &o(s) L (s) L(s)) +O(x/*+€y~1/2). (22)

Finally we combine the results (18) and (22), choose y = x**® and infer
that

A(x) = Resg_ (x®s7'F(s)) +0O(x®¥/18+¢), (23)
Since this residue is easily computed to (4/x)xlogx+ Bx (cf. (16)), the

proof of theorem 1 is thereby complete.

4. Proof of theorem 3. We follow the argument of Pintz [9]. By
the definitions of E(x) and F(s).

_/:m E(x)x *'dx = %—F(s)—%(s—l)‘z—B(s—l)“ =: H(s) =:
_. N(s)
T (2s—1)s(s—1)¢(2s)(1+27%)

(24)
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for Res > 1, where N(s) is an entire function. Let o = 1/2+ iy be some
fixed simple zero of the Riemann zeta-function (with minimal ||, say) such
that ¢(p/2)L(p/2) =+ 0. then we put

a(s) = s(s—1)(2s—1)£(25)1 +z-s>(s—%)_l(s+z)—c (25)

where ¢ is a sufficiently large positive constant. Thus, in —1 < Res £ 2,
H(s)g(s) is meromorphic with the only pole (of order 1) at s = p/2 (since
N(p/2) = 0). Furthermore. it follows (from well-known order results for
the zeta- and L-functions, e.g.[1]) that

L7 )l Hes)ds < oo (26)

for o = —1 or 2 and j = 0 or 1. Moreover, we define for a > 0
wa) 1= l_z:wg(S)as“ds (27)
and conclude, by shifting the line of integration either to ¢ = —1 or to

o — oo (noting that g(s) is regular in Res > —2), that w(a) = 0 for 0 <
a <1 and w(a) = O(1) for a = 1. We finally put

X
U(X) = Xf Ex) w{ Xx~") dx (28)
and infer, by (27) and the dominated convergence theorem, that

Ux) = X [T E@wXe e = [T s Hs) Xods. (29)

Shifting the line of integration to ¢ = —1, we obtain

~1+icc

U(X) = 2niResg_p(g(s)H(s) X®) + ~ g(s)H(s)X%ds (30)
— 1= {0 0
= CX*4+0(X™")

where C == 0 is a complex constant. On the other hand, by (28) and the
boundedness of w{a),

X
[M1B@de > X|UX0] > X| %7 = X (31)

which completes the proof of theorem 3.
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Added in proof. The first named author has meanwhile established

the result of Theorem 1 under the Riemann Hypothesis alone (without

any unproven assumption about the L-series involved): See Monatsh. f.
Math. 106 (1988), 57-63.



