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Mitsunori IMAOKA

Let KO be the real K-spectrum, and kO and kSpin be the —1 and 3
connected covering spectra of KO respectively. Then the stable Adams
operation ¢°: KO, — KO,, is defined, and ¢*—1 : KO, — KO, lifts to
the operation ¢: kO, - kSpin,, where E, denotes the spectrum E local-
ized at 2. We define a spectrum A to be the fiber spectrum of ¢. Then
A is a connected spectrum, and its coefficient groups are isomorphic to the
groups consisting of J-classes and g classes in the stable homotopy groups
of the spheres. Thus the spectrum A represents the ImJ theory exploited
by several authors (cf. [11], [10], [4]). In this note we calculate the A-
cohomology groups of the stunted quaternionic (quasi-) projective spaces.
These groups are closely related to the KO-theory quaternionic James
numbers, and the original idea for utility of the A-theory is due to the
work of K. Knapp [9].

Let HP" be the quaternionic projective space, and ¢ denote the canon-
ical quaternionic line bundle over HP". { denotes the 3 dimensional real
vector bundle over HP" ! associated with the adjoint representation of S°.
Then the quaternionic quasi-projective space @, is defined to be the Thom
space (HP™')%. Our object is the calculation of the cohomology groups
A*(HP"/HP™ ') and A*(Q./Qn-1). To treat these two cases, we denote by
KP™ one of the spaces HP™ and XQ,. where the latter space is a reduced
suspension which we use for the sake of adjusting the dimension, that is,
dimKP" = 4n in both cases. We put KP} = KP"/KP™ ! for the stunted
projective space. Throughout the paper, the integers n and m used in the
index of KP; are always assumed to satisfy 1 < m < n.

This paper is organized as follows : In §1, we prepare the notations
for the KO-theory of the projective spaces. In § 2 we discuss the free
part of A(KP7Z), and §3 is devoted to the calculation of the stable Adams
operations. In §4, we describe the cohomology groups A KPDP).

1. Preliminaries. The cohomology groups appeared in this paper are
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the K-cohomologies KO*(X), kO*(X) and kSpin*(X), A-cohomology A*(X)
and the ordinary cohomologies H¥(X ; F) for F = Z(integers) or Q (ratio-
nals). Throughout the paper, these cohomology groups are always assumed
to be the reduced cohomology groups. Z, and Z/2 denote the groups of the
localized integers at 2 and the mod 2 integers respectively, and we denote
by G, the group G ® Z,, for an abelian group G.

For ie Z, let g, € KO%(S*) = Z and « € KO°(S') = Z/2 be the
respective generators. Then KO*(S") = Z[a, g, &:. 87 '1/(2a, &°, ag:, &}
—4g,), and thus we have g,; = g}, g2:41 = £:18¢ and agzyy = 0 for i € Z.
Let a(i) = 1 for an even integer i and a(i) = 2 for an odd integer i, and

let (;) be the binomial coefficient.

For the canonical line bundle & over HP™, let X = [é—1] € KO*(HP™)
and x € H'(HP"; Z) denote the respective Euler classes. Then we have
a KO*(8")-algebra isomorphism KO*(HP!) = KO*(S°)[X]/(X™') and
a ring isomorphism H*(HP!: Z) = Z[x]/(x™"), where X, = X U{*|
denotes the disjoint union of the space X and the base point. We denote by
Ue KOYX(HP™ ")) = KO(X2Q,) and U, € H(XQ,) the Thom classes
of ¢ in the respective cohomology theories, where U is the one defined
by the method of [3]. Then we have the associated Thom isomorphism
E¥(HP!') » E**Y(XQ,) for E= KO and HZ, and thus KO*(XQ,) =
KO*(S) UXY |0 <i<n—1| and H¥(ZQ,; Z) = ZI Uyx'|0 < i< n—1}.
For i =1 we denote by X(i) € KO*(KP") the element X’ for the case
KP™ = HP™ and UX'"! for the case KP" = XQ, respectively. Since the
collapsing map p : KP" - KP? induces a monomorphism p* : KO*(KPy) —
KO*(KP™), we have the following identification through p*.

Lemma 1.1. KO*(KPy) = KO*(S") X(i)|m =< i < nl.

For a (¢—1)-connected covering spectrum F of a spectrum E, we have
a canonical isomorphism F9X) = Im(EY(X/X°*?) - EYX/X*"")) for
any CW-spectrum X, where X*° denotes the i dimensional skeleton of X.
Since kO and kSpin are the —1 and 3 connected covering spectra of KO
respectively, we have the following canonical isomorphisms :

Lemma 1.2, Lei 0 < ¢ = 3.

(i) kO*¢(KPr) = KO*¢(KP!) if m=< k < n, and kO**¢(KP})
= KO**"¢(KP}) if k < m.

(ii) kSpin**¢(KP}) = KO** ¢(KP%,) if m—1 < k < n—1, and



THE A-COHOMOLOGY OF THE STUNTED QUATERNIONIC (QUASI.)PROJECTIVE SPACES 199

kSpin*-<(KPp) = KO*-<(KP2) if k < m—1.
Let ph: KO W,) - H¥*(W, : Q) be the Pontrjagin character, and

. _el—e” y
sinhly) = =—— = B 5T
€ H*(HP!; Q) is well known, and the formula for ph(U) € H*(Q,: Q)

can be deduced from the formula in [1] (see [7]).

2{+1

€ Q[y]. Then the formula for ph(X)

Lemma 1.3.

(i) ph(X) = (2Sinh ‘/2?)2 in H*(HP+n; Q) = Q[I]/ (x™1).

dx 2

By the definition of A, we have an exact sequence

(i) ph(U) = U,,i(zsinhﬁ)z in H¥(Qn: Q) = QLx)/(=")| Uy,

d
(1.4) KO*'(KP2) 2 kSpin* (KP2) - AXKPD) > koxKPD)
kSpin*(KPX).

where k0 and kSpin are assumed to be localized at 2. By Lemmas 1.1
and 1.2, the operation ¢ in (1.4) is identified with the operation ¢*—1
on the appropriate subgroup of KO(KP™).

2. Free parts. Let ¢,(Q) =¢® Q: kOY(KP}) ® Q - kSpin¥(KP})
® Q. where ¢ is the homomorphism in (1.4). Then we have

Lemma 2.1. A{KP}) @ Q=Ker(¢,(Q) = Q if i=4jand m< j
< n, and AYKP?) ® Q = 0 otherwise.

Proof. By (1.4) and Lemmas 1.1 and 1.2, we have AY(KP}) ® Q
= Ker(¢,(Q)), AY"Y(KP7) ® Q = Coker(¢,(Q)) and AY*KP7) ® Q =
A" (KP?) ® Q = 0. We show that Ker(¢,(Q)) = HY(KP?: Q). Then
we have the desired result, because the value of rank(kO“(KP7}))—
rank (kSpinY (KPy)) is equal to 1 if m < j < n. and equal to 0 otherwise.
Since Ker(¢,(Q)) = 0 if j 2 n+1, we assume that j < n. We have iso-

morphisms kOY(KP?) ® Q = KOY(KP") @ Q = Q H(KP": Q). Here

the first isomorphism is induced by that of Lemma 1.2 and the second one
is induced by the Pontrjagin character, and t = jif m< j<nand t = m
if j < m. Similarly we have isomorphisms kSpin“(KP?) ® Q = KOY(KP!)
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® Q= Gj}_H”(KP;’; Q), where s =j+1 if m—1 < j<n—1and s=m
if j < m—1. Through these isomorphisms, ¢;(Q) is identified with a homo-
morphism ¢y : Gé H*KP": Q) > inB H'Y(KP?; Q) which maps a homoge-

neous element x € H*(KP"; Q) to the element (3**"—1)xe H*(KPy; Q)
if i = s and to O otherwise. Thus we have Ker(¢,(Q)) = HY(KPz; Q).
and we complete the proof. Q.E.D.

For an orientable vector bundle E over a connected finite CW-complex
B with fiber dimension d, the A-theory codegree cd*(E; B) € Z is the
order of the Coker(i* : A E) » A% S%). where i: S¢ -» E is the inclu-
sion of the fiber over the base point of B (cf. [5]). Using the A-codegree,
we can describe a generator of the free part of A'™(KPy) as follows :

Proposition 2.2. We have a generator Y of the free part of A*™(KPy),
which satisfies the following, where d denotes the map A*™(KPy) —
kO*™(KPp)a C KOm(KPn)(z):

(i) For KP} = HP"/HP™ ',

d(Y) = cd*(mé€; HP""")E':%&X’"”.

where r,(m) € Q is the coefficient in the expansion

(2sinh“ ‘/Z?)M = g r(m)x’.
(ii) For KPy = 2Q,/Qn-.,

dY) = b @ (n—1); HPrm) B3 SAm) g prgmes,
i=o a(j)

where s;(m) € Q is the coefficient in the expansion

2m
(L)'i(Zsinh“————”) = 3 s,(m)x™
m/ dy 2 izo

Proof. This is simply the quaternionic version of the result in [5].
For a vector bundle E over a connected finite CW-complex B, which has
a Thom class UE, in the KO-cohomology and a Thom class Uf in the ordi-
nary cohomology, sh(E) € KO B,) ® Q denotes the characteristic class
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defined by ph(Ug,) = Ugsh(E). that is the KO-Todd class (cf. [1]). Then
ph(Uf,ph™'sh(—E)) = Ug, and we have (¢*—1)UEph~'(sh(—E)) = 0,
where ph: KO°(B,) ® Q - H**(B. ; Q) is an isomorphism. Consider the
case E=mé or E=¢@® (m—1)E and B= HP™™ Then the Thom
space of E is homeomorphic to KPy ([2]), and UE,ph~'(sh{ —E)) is a gen-
erator of Ker(¢*—1) ® Q. Then we can take a generator Y of the free
part of A*"(KP}), which satisfies d(Y) = cEUE,ph~'(sh( —E)). Here c* is
the minimal positive integer satisfying d(Y) € KO*™(KP?),. But it is
easy to see that ¢c® = c¢d*(E; HP™ ™) for E=mé or £ @ (m—1)& By

Lemma 1.3, we have sh{m¢) = (25inh f)m and sh({ @ (m—1)¢) =

1 4 v
— (2 nh2

mx dx

)m. Hence ph~'(sh(—mé&)) _Z—T’(—”;)g,X’ and

ph ' (sh(— (& ® (m—1)§))) = g‘.ﬂ%gﬂ(ﬁ Uf, is identified with X™ or

UX™ ! for E = mé€ or ¢ @ (m—1)¢& respectively, through the monomorphism
p* : KO*"(KP?.,) - KO*™(KP™). Thus we have the desired result.
Q.E.D.

Since A'{KP;) = A*(KP) for m < i < n, Proposition 2.2 gives
a description of the generators of the free parts for all cases.

3. Stable Adams operations. The formula for ¢*X is known as fol-
lows :

Lemma 3.1.(S. Feder-S. Gitler [6]). Let X={6—1] € KO*(HP™.
Then

9H(X) = éﬁ(k;i:l)gi_])ﬁ in KO‘(HP")[%].

Especially, we have ¢*(X) = X+(g,/3)X*4+(g./9)X? in KO HP™),,.

We need the following
Lemma 3.2. Let U be the KO-Thom class of ¢ over HP™'. Then
3 —_
o) = S (5 s vx m k0@ 1|

k
Especially, we have ¢*(U) = U+(2g,/3)UX+(g./3)UX? in KO*(Qn)z.
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Proof. Since ph: KO’(Q,,)[—’IC—] - H*(Q,:; Q) is a monomorphism,

. . 1 (h4io1 - .
we may show the equality ph(¢*(U)) = ;‘]7 91 ph(UX*"'). Using
Lemma 1. 3, we have ph(¢*U) = Uu—l—-i(Zsin LR

k* dx 2

can be written as a polynomial of x over Q. Then we can compare the both

) , and ph{(UX*")

sides of the desired equation, and assure the equality by easy arithmetic.
Q. E.D.

Corollary 3.3. Lete=1 or 2, and ¢*: KO** 5(KP") - KO‘*¢§(KP™).

Then we have
. 2j .
¢'3(aegz,-X(k+21)) = il?.:’ (m—t ]>Gegzu+,~;X(k+2(l+J)),

where X(t) = X' if KP" = HP™ and X(t) = UX'*' if KP" = XQ,.

Corollary 3.4, Let ¢*: KO**(KP") ® Z/2 - KO‘*(KP") ® Z/2.
Then

( i ) (/’3(gszk+U) = g% (k_*;-zj)gz.jHﬁXk"'ﬂH“
k+2j—1

+k2( i—1

izl

k+20i+4)—-1
)gzu'-u':-l X s

j o (A+2i L
¢3(g2_l UX’C+D_I) — ‘zo( -+; J)gZ(i+J;UXk+2"+”_I
k+2j—1 .

+(k—-1)2( *;_]1 )gzuafj)—lUX'Hz‘HJ‘ 2-

21

(i) ¢3(g2,+,x(k+2j+1))=2("+2if+1)

iz0

Erssin X(k+2(i47)+1).

We prepare the following notations, in which [t] (resp. (t)) denotes
the maximal (resp. minimal) integer less than (resp. greater than) or equal
to a rational number i :

L{i, j) = [l—;L] if i=j, and L(i,j) = 0O otherwise.
L(i, j) = L(i, j+1).
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,(i, j) =<—l—;i> if i = j, and L,(i. j) = 0 otherwise.

L(i, j) = L. j+1).
my(i, j) = (i, j) if i 2 j+2, and my(i, j) = 1 otherwise.

Using these notations. the groups kOQ’(KPy) and kSpin’(KPJ) are repre-
sented as subgroups of KO'(KP™") as follows :

Lemma 3.5. Let L = L(n, k). L = L(n, k), I, = L(m. k), I, = l;(m. k)
and my = me(m, k). Then we have

(i) KONKED = & Zigy Xk+2)} © @ Zlgoo Xk+2j+1)],

J=1
L

EO** ¢(KP?) = @ Z/21a%g,; X(k+2j)| for e =1 and 2, and

i1,

kO *(KP) = 0.

(ii) kSpin'"(KPH) = @ Zlgn X(k+2))| © @ Zlgyoi Xk+2j+1)],

kSpin'*<(KP2) = & Z/2la®gy, X(k+2))] for ¢ =1 and 2,
and

kSpin**~(KPp) = 0.

Corollary 3.6. For e =1or2and m< k< n—2, let M = (m;;) be
the matrix of ¢°—1 : kO** ¢(KP7) - kSpin'* ¢(KPy) with respect to the
bases given in Lemma 3.5. Then M consists of the L(n, k) rows and the
k+2s—2

t—s+1) ift=s and ms=0 if

L(n. k)+1 columns, and m, =(
P < s.

Corollary 3.7. For m< k< n—2, let M = (m,;) be the matrix of
¢*—1:kO*KPy) ® Z/2 - kSpin**(KPy) ® Z/2 with respect to the bases
which are the mod 2 reduction of those given in Lemma 3.5. Then M con-
sists of the (L(n,k)+L(n, k)41) rows and the (L{n,k)+L{(n, k)+2)
columns, and (i, s)-element m,s is given by

(2) ms=0ift<s, s=L+1o0or s=L+L+2,
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(3) mis=0 if s=22, and my, =k (resp. k—1) for KP7 =
HP; (resp. XQn/Qn-1),
(4) m,‘s=(k+2(s_L)_

t—s+1
s< L+L+1,
where L = L{n, k) and L' = L(n, k).

3) ifL42 <t L+L+41 and L+2 <

By analyzing the matrices M in Corollaries 3.6 and 3.7, we can
determine the bases of the kernel and the cokernel for the homomorphism ¢ :
EOYKP?) ® Z/2 - kSpin(KP?) ® Z/2. Thus we can describe A(KPy)
for i =1 mod4 and A**(KPM) ® Z/2 by (1.4). We state the result in
the next section, where we restrict to A(KP?) for the case 4m—2 < i
< 4n+1, the calculation is essentially same for the case i < 4m—3, and
A{KPM) =0 for i = 4n+2.

4. Results. For an integer i, v(i) denotes the exponent of 2 in the
prime power decomposition of i. In this section, we assume that the inte-

n—

. k
gers m, k and n satisfy m < k < n, and we put L = [ :l We prepare

the following notations :
(1) The series |a,] ; a, are the integers defined recursively by a, =

v(k) and o, = u(k—i—jg 2‘1:).

(2) The integer s; which is the minimal positive integer satisfying
20+ 3 2% > L.

(3) The integer K : which is the maximal integer satisfying 2%+

$—1

2% <2Lif s=2and 25'< L if s =1.

t=1

(4) The set I; I=]2Y|0<i<a—1} UDT[Z’—l—jZi]lZaf"

-

as_xéiéK—I] if s=2,and I=1(2}0 <

< am—l} U [2'+32'2af-‘
J=1

i< K-1}if s=1.
(5) The set J; J={Bl UlilB< i< L and 42" > L},

where B:ji',:Z"'" if s=2and B=0if s=1.

Remark. By the definitions (1)—(3) above, we have as., = K <
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[log, L] +1, where ao =1 if s =1.

(1) A™(KP;). By (1.4), we have A'"(KP}) = Z,| Y| & Coker(¢),
where Y is the element given in Proposition 2.2 and Coker(¢) denotes the
cokernel of ¢: kO**"'(KP}) - kSpin** '(KP?}).

Theorem 4.1. Assume that m < k < n,

(1) Ifkis odd or k 2 n—1, then A*"(KP}) = Z,,.

(ii) Ifk is even and k < n—2, then A*"(KP}) = Z, & (Z/2)*, and
we can take {ag, X(k+2i)|i € I} as a basis of (Z/2)¥ = Coker(¢), where
the integer K and the set I are those in (3) and (4) respectively defined
for k, n and m.

(I1) A% “(KP%) for e =1 or 2. By (1.4), we have a short exact
sequence

d
O - (:()ker(¢4k_e_1) - A(k—E(KP"?ll) h— Ker(‘pm—e) =l 0.'-
where ¢, denotes ¢: kO(KPy) — kSpin'(KPp).

Theorem 4.2. Let e =1 or 2, and let K, I and J be as in (3), (4)
and (5) respectively defined for k, n and m. Then we have
(i) Ifkis odd or L =0, we have an isomorphism

d: A% (KP?) - Ker(¢ur-e) = Z/2{ a® g X(k+2L)]\.

(ii) Ifkiseven, L21 and e =1, we have Coker(¢x_.) = (Z/2)¥
whose basis is given by | a*g, X(k+2i)|i € I, and Ker(¢.r_.) = (Z/2)¥+!
whose basis is given by | ag,, X(k+2i)|i e J|.

(iii) Ifk is even, L=1 and ¢ = 2, we have an isomorphism

d: A YKPp) - Ker(¢ar-2) = (Z/2)%*,
and we can take |a’g,; X(k+2i)|i € J| as a basis.

() A**"(KP.) ® Z/2. By (1.4), we have A***'(KP}) = Coker(¢:
kO**(KP})o — kSpin**(KPg),). For the case k = n or n—1, we have
A™YKP?) = 0, and A" *(KP}) = Z/(n—1) by an easy calculation. But,
for the case k < n—2, it is not easy to determine explicit generators and
their orders of the cyclic summands of A***'(KPJ}). We restrict the prob-
lem to calculate the group A" ' (KP!) ® Z/2 for m < k £ n—2, which
only enumerates the number of the direct summands. Then we have the
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result by considering the matrix in Corollary 3.7. For the statement of
the result, we need the notations K and I which are equal to K and I re-
spectively defined for k+1, » and m.

Theorem 4.3. Let m< k < n—2. Then we have
(i) If kis even, then A**(KP}) ® Z/2 = (Z/2)**' whose basis is

given by Igsz(k+2j)lj € ” U 18’1X(k+1)¥-
(ii) If k is odd, then A***(KPM)) ® Z/2 = (Z/2)**' whose basis is

given by Igz,-+1X(k+2j+1)|j e |0t U I_l
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