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ON HARADA RINGS. I

To Takasi Nagahara on his 60th birthday
Kivoict OSHIRO

In (4] —[6] (cf. [7]), M. Harada has studied the following two condi-
tions :

(*) Every non-small right R-module contains a non-zero injective
submodule.

(*)* Every non-cosmall right R-module contains a non-zero projective
summand.
In particular, he has studied two rings which are characterized by ideal
theoretic conditions ; the one is a perfect ring with (*) and the other is a
semi-perfect ring with (*)*. In [8] and [9]. the author has studied these
rings with some additional conditions and introduced Harada (abbreviated
H-) rings and co-Harada rings: A ring R is a right H-ring if it is a right
artinian ring with (* ), and dually R is a right co-H-ring if it satisfies (* )*
and the ascending chain condition for right annihilator ideals. In view of
results in there, we see that these two rings are ‘companions’ of QF-rings
and generalized uniserial rings. Although these classical artinian rings are
left-right symmetric, H- and co-H-rings are not left-right symmetric. This
fact seems to be an interesting phenomenon. However, in the present paper,
we shall show a more interesting fact that the left H-rings and the right
co-H-rings are the same rings. As a by-product of the study of H-rings,
we shall show that a right generalized right QF-3 ring is a generalized
uniserial ring,

1. Preliminaries. Throughout this paper, we assume that all rings
R considered are associative rings with identity, all R-modules are unitary
and all homomorphisms between R-modules are written on the opposite side
of scalars. The notation My (resp. M) is used to denote that M is a right
(resp. left) R-modules. Let M be an R-module. We use E(M), J(M), S(M)
and Z(M) to denote its injective hull, Jacobson radical, socle and singular
submodule, respectively. Further, by |J,(M)} and | S;(M)|., we denote its
descending Loewy chain and ascending Loewy chain, respectively, i.e.,
JoM) =M, J,(M) = J(M), J,(M) = J(J.(M))...., Se(M) =0, S;(M) =
S(M), So(M)/Si(M) = S(M/S\(M)),....

161



162 K. OSHIRO

For submodules A and B of an R-module M with A € B, the notation
A C. B stands for ‘A is an essential submodule of B’ ; while A C. B(in
M) means ‘A is a co-essential submodule of B’, i.e., B/A is a small sub-
module of M/A. For two R-modules M and N, we use M & N to stand for
there is a monomorphism f from M into N: in particular, M S. N means
that such f exists and f(M) C.N. The term ACC means the ascending
chain condition.

Definition. An R-module M is an extending (resp. lifting) module if,
for any submodule A of M, there exists a direct summand A* of M such
that A C. A* (resp. A* C. A).

Definition ([4] —[7], [10]). An R-module M is a small module if it is
small in its injective hull, and M is a non-small module if it is not a small
module. Dually, M is a cosmall module if, for any projective module P and
any epimorphism f: P — M, ker f is an essential submodule of P, and M
is a non-cosmall module if it is not a cosmall module.

Definition ([1], [2], [7], [11]). A ring R is said to be right QF-3 if
it has a minimal faithful right ideal. Right and left QF-3 rings are said
to be QF-3 rings.

The following lemma due to Fuller plays an important role in our study.
Lemma 1.1. Let R be a left artinian ring and f a primitive idempo-

tent of R. Then rRf is injective if and only if there exists a primitive
idempotent e in R such that (eRy; rRf) is an injective pair, i.e.,

xRe/J(rRe) = RS(RRf) and S(eRg)r :fRR/J(fRR)

Moreover, when this is so, eRy is also injective.

Notation. Let R be a left artinian ring with a complete set of orthog-

onal primitive idempotents. When E is arranged as E = }e,, e;,..., en}, we
can identify R with the matrix ring:

eyRey, - elRen}

enRey, ++  enRe,

For the sake of convenience, we use the terms e;-row and e;-column instead
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of the terms i-row and i-column, respectively. So we identify ¢;R and Re;
with e,-row and e;-column, respectively.
We note that if R is basic and (e;Rx ; rRe,) is an injective pair, then

0 ]
0 : 0
0
S(etRR) =10 o0 0 S(eiReJejRe,) 0 0
0
0 : 0
0 ]
[ 0 1
0 : 0
0
S(RRej) =10 A 0 S(e,neieiRe;) 0 0
0
0 : 0
| 0

Lemma 1.2 (Rayer [10], cf. [6]). Let R be a right artinian ring,
and let M be a right R-module. Then M is a small module if and only if
MS(RR) = 0.

2. Background. As mentioned in the introduction, Harada has studied
the conditions: (*) Every non-small right R-module contains a non-zero
injective submodule. (*)* Every non-cosmall right R-module contains a
non-zero projective summand. And he has shown the following two theorems
which give ideal theoretic characterizations of right artinian rings with (*)
and semi-perfect rings with (*)*,

Theorem 2.1 ([6, Theorem 2,3]). A right artinian ring R satisfies
(*) if and only if, for any primitive idempotent e in R such that eRp is
non-small, there exists an integer t = 0 for which

a) eRw/Sk(eRg) is injective for 0 = k = , and

b) eRx/S:.(eRy) is a small module.

Remark. A left and right perfect ring with (*) is right artinian ([4,
Theorem 5]).
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Theorem 2.2 ([5], [6]). A semi-perfect R ring satisfies(* )* if and only
if, for a complete setle;! U |f;| of orthogonal primitive idempotents of R
such that each e;Ry is non-small and each f,;Ry is small,

a) each e;Ry is injective,

b) for each e;R, there exists t; = 0 such that
Ji(eRe)r is projective for 0 < t < t; and Ji,-\(e; Rz )z is a singular module,
and

c) for each f;R, there exists e; such that f;Rx < e;Ri.

Remark. In case R is left or right artinian, the condition ‘J:.(e;Rx)
is singular’ in b) above can be dropped as we see in section 4.

Definition. We call a ring R a right Harada (abbreviated H-) ring if
R is a right artinian ring with (*), and call R a right co-Harada ring if
R satisfies (*)* and the ACC for right annihilator ideals. Left and right
H- (resp. co-H-) rings are called H- (resp. co-H-) rings.

Of course, right H-ring and right co-H-rings are mutually dual notions,
as the following theorems shows :

Theorem 2.3 ([8]). The following conditions are equivalent for a given
ring R:

1) R is a right H-ring.

2) Every injective right R-module is a lifting module.

3) R is a right perfect ring with the property that the family of all
injective right R-modules is closed under taking small covers.

4) Every right R-module is expressed as a direct sum of an injective
module and a small module.

When this is so, R is a QF-3 ring and satisfies the ACC on left an-
nihilator ideals (cf. [1]).

Theorem 2.4 ([8]). The following conditions are equivalent for a given
ring R:

1) R is a right co-H-ring.

2) Every projective right R-module is an extending module.

3) The family of all projective right R-modules is closed under taking
essential exlensions.

4) Every right R-module is expressed as a direct sum of a projective
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module and a singular module.
When this is so, R is semi-primary QF-3 and satisfies the ACC on
left annihilator ideals.

Remark. 1) Right H-rings and right co-H-rings are Morita invariant.
2) QF-rings and generalized uniserial rings are H- and co-H-rings ([8],
[9]). 3) Not all right H-rings are left H-rings, and not all right co-H-
rings are left co-H-rings ([8]). 4) For a local QF-ring Q, the following
two rings mentioned in [8] are typical examples of right co-H-rings and at
the same time of left H-rings:
[Q Q] [Q Q/s]
J Q J QS
where J = J(Q) and S = S(Q). 5) For an algebra R over a field of
finite dimension, R is a left H-ring if and only if it is a right co-H-ring.
These remarks 4) and 5) led us to conjecture that left H-rings and
right co-H-rings are the same rings. This conjectui‘e is in fact true. In
the next section we prove that right co-H-rings are left H-rings and, in
section 5, the converse.

3. Right co-H => left H. In this section, we show that right co-H-
rings are left H-rings. As both rings are Morita invariant, we may show
that basic right co-H-rings are left H-rings. Therefore in this section we
assume that R is a basic right co-H-ring with a complete set

E = *ellv---‘ €1myseres Cmraeees emnﬁm.}

of orthogonal primitive idempotents such that

a) each e, Ry is injective,

b) enRi 2 exRr 22 ey Rz : more precisely,
there exists an isomorphism 6{; , from e;;Rp to J(e; ;- Rp)s for j=1,...,
n(i)and i =1,..., m,

c) all S(e;;Rx)s are simple.

Notation. 1) we put
eji.k = 6lir+1,k 9;42.“1 v 0F 0522050

for 0=k < j=n(i). Then 6}, is an isomorphism from e;;R; to
Jj—k(ei,kRR)R-
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2) We define a mapping @ };., from Ends(e;;Rz) to Ehdn(e,,,+lRR) by
the rule

¢J€J+l(0’) = (0_,?4-1,_,-)_‘ al ji.,.],J

for a € Endg(e;;Rz). Then it is routine to check that &},,, is a ring
epimorphism. For j < k, we put

Ofy = Dl x 1, 2DLin
Then @}, is an epimorphism from Endg(e;;Rz) to Endz(exRz).
Proposition 3.1. ®};,, is an isomorphism if and only if e;;Rx is not
a projective cover of S(e; Rg)s.
Proof. This is clear, since ker &},,, = |a € Endz(e;;Rz)|Im ¢ C

S(euRn)l-

Remark. Henceforth we observe R by representing it as

[ (elh en) (emn(m)’ eu)
. (en, 6’12) (emmm}, e:z)
R =
_(eu y emm’m)) (emnim)y emn(m))
en Rey, A ellRemn:m)
— elzRen o0 812R€m nm)
Lemmm}Ren o emmm;Remm'm)

where (e,;, e“v) = Homg(e;;R, ex:R).

Proposition 3.2. R is lefit artinian.

Proof. We may show that czeeRf is artinian for all e, f in E. We
check this fact in four steps.

Step 1. As R is semiprimary QF-3 and each e; R; is injective, we
see from [1] that e;, Re, is artinian as a left e;, Re,-module for all i, j.

Step 2. Assume that e,qR; is a projective cover of S(e;Rgq)z. If
p =+ I, Proposition 3.1 shows

i i i
o, Dty D,

enRe,y ——— e;;Rey, einiyReiny (as ring)

If p = i, Proposition 3.1 also shows
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2 0y Divq

en Re“ —~— e“‘Rei2 — e T T eiqReiq,

i i
¢ql+l,0+2 ¢n{£)—!,mil

——~—
T~ e

et,q+1R€i.q+l eimi)Rein(in

DPlqir: eqReq = erqr1Reiqs1 is a ring epimorphism.

Since e; Re;; is artinian as a left e, Rej;-module, e;, Re;; is artinian as a
left e;;Re;;-module for all e;;.

Step 3. We observe e;;Rex, for i = k. Put f;, = e, fi=en; & =
€xt» &1 = ex. Then note that f;Rg, becomes a left f, Rfi-module by the
epimorphism @¢;: fiRf, = f,Rf,. We define a mapping ¢ from f,Rg, =
(g:. f;) to fiRe, = (g, fi) by the rule: a = 8}, a for @ € (g, f;). Then
it is easy to check that ¢ is a left f,Rf,-homomorphism. Moreover, noting i  k,
we see that it is an isomorphism. On the other hand, the mapping 5: fiRg, =
(g, fi) = fiRg. = (g, f1) given by the rule: o« — a8 for ¢ € (g. f\) is
a left f, Rf,-epimorphism. Hence {~' 7 gives an epimorphism :

renfiBgy = sirs f;Ree.

Since s,rs,fiRg is artinian, it follows that ,,,f;Rg is artinian,

Step 4. Put e, = eu,..., ensy = eins), and observe e;Re, for k =+ j.
If £ < j, then e,Re; becomes a left exRex-module by the epimorphism @/ :
exRex = e;Re;. Consider a mapping A: e;Rex = (e, e;) = exRex = (ex,
ex) given by the rule: a = 8/, for a € (ex. e;). As is easily seen, A is
a left exRe,-homomorphism and moreover it is a monomorphism. Since
exrexex Rey is artinian, it follows that ¢;xe;e;Re; is artinian. Next, if £ > j,
then exRe, becomes a left e;Re,-module by @}y, and ¢;re,e;Rex = ¢;re;ex Rex
by the mapping: o — (0,‘;])_01. Hence, in this case, we also see that
e;re;€;Rex is artinian, since o.pecexRe, is artinian.

By Steps 1 —4, eRf is artinian as a left eRe-module for all e, f in E,
so R is left artinian.

Lemma 3.3. Let e, f be in E such that eRy is injective and fRy is
a projective cover of S(eRgp)z. Put X = Homiz(fR, S(eRx)). Then

1) cweX and X, i, are simple.

2)  creX = ereS(ereeRf) and Xsxs = S(eRfrs) srs-

3) S(ekeeRf) = S(eRffllf)~

Proof. 1) It is enough to show that eRea = afRf = X for any non-
zero a in X. Let 0 = 8 € X. Since fR; is projective, there exists 7 in
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fRf satisfying ay = 8: whence X = afRf. On the other hand, « and £
, - g

induce isomorphisms: fR/J(fR)= S(eR:) and fR/J(fR) = S(eRx). Since

any automorphism of S(eRy), is induced from one of eR;, we can obtain o

in eRe such that #a~' = o on S(eRx). Then B = o@ and it follows that

B = oa. As a result, we see X = eRea. 2) and 3) are clear from 1).

Lemma 3.4. Let f and g in E, and assume that fRy is a projective
cover of S(enRi)s or, equivalently, fR/IJ(fR) = S(esR).

1) For a in(f, g) with Ima 2 S(gR), there exists Bx in(g, ewx) such
that ImBra = S(exR) for k =1,..., n(i).

2) If gis in E—leu,..., emunl. then, for any 0 % a € (f, g), there
exists Bx € (g, eix) such that Im Bra = S(exRy) for k =1,..., n(i).

3) If g = ey, then, for any 0 % o € (f, g), there exists Bx € (g, ew)
such that Im Bra = S(ewRy) for k =1...., t.

Proof. Note that 2) is contained in 1). For convenience’s sake, put
€1 = €nsenns €y = ey Let 0 F a € (f, g). a induces an isomorphism & :
fR/ker a = Im a. Then, note ker @ C J(fR). Since fR/J(fR) = S(exR ),
there exists an R-homomorphism ¥, from Im « onto S(exR). Put § = 6}, ;
exR = J._.(esR). Since e Ry is injective, there exists & € (g, e;) which
is an extension of A7y, i.e., & = 87, on Im a.

Now, if 7x is not a monomorphism, that is, Im a 2 S(gR), then Im
0x € Jn(erR) C 8(exR); so 87" 8% € (g, ex) withIm 67" §ra = S(exR).
Next, assume g = ¢; and Im a = S(e;R). Then &% is a monomorphism with
Im 6, = Ji_i(esR) = 84(e;R). So, 87" & has a sense as a homomor-
phism from e,R; to e Ry for ¥ = ¢, and Im ' 8xa = S(exR). The proof
is completed.

Proposition 3.5. Let f be in E, and assume that fRy is a projective
cover of S{enR)r. Then

1) Si(xRf)=S(enRp)+---+S(ewRr) for k=1,..., n(i); whence
Sk(rRf) is a two sided ideal of R.

2) S(ein{i)RR)(Rf/Sk(RRf)) = (S(eimi)RR)+Sk(RRf))/S}\:(RRf) fOT
Ek=1.....n(i)—1.

3) S(RR)(Rf/Smi:(RRf)) =0
Therefore Rf/Sx(xRf) is a non-small left R-module for 1 = k < n(i) and
Rf/Sn:(xRf) is a small left R-module by Lemma 1.2.
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Proof. Put ex = e, for k =1,..., n(i). We observe Rf and exR by

identifying these with f-column and e,-row, respectively :

(f’ el)
Rf=10 : 0
(fv eﬂ(i:)
i 0
exR = (ellv ek) °c (f- ek) . (emnimn ek)
L 0
We put Xy = Homg(fR, S(exR)). Then, by Lemma 3.4,
0
S(ekR) = 0 . 0 Xk 0 ¢ 0
0
SO we see
0 -
0
X
S(e|RR)+'°+S(ekRR) = O : O
X
0
0 )

On the other hand, using Lemma 3.4. we see

0

X
X
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Hence S(e;R)p+---+S(exRi)} = Sx(zxRf). The proofs of 2) and 3) are
easy from 1).

Proposition 3.6. The following conditions are equivalent for f in E.
1) fRg is a projective cover of some S(esRy).

2) Rf is injective

3) &Rf is a non-small module

Proof. 1) =>2). By Proposition 3.5 and Lemma 3.3, we see that
(enRg; gRf) is an injective pair; whence RRf is injective (Lemma 1.1).
2) = 3) is clear. Assume that zRf is a non-small module. Then S(R;)Rf +
0 by Lemma 1.2. Hence (S(enR)+---+ S(e;nyyR))Rf 0 for some i. Let
g be in E such that gR; is a projective cover of S(e;R). By Proposition
3.5,

S(eilR)+"'+S(65n(i)) = 0 : 0

0

where X; = Hom (gR, S(e;xR)), k= 1,...,n(i). Hence if g+ f, we see
that (S(esR)+---+S(eimyR))Rf = 0, a contradiction. Thus f= g and
hence fR; is a projective cover of S(e,R).

Now we are in a position to show the following

Theorem 3.7. R is a lefi H-ring.

Proof. By Proposition 3.2, R is a left artinian ring. Let f be in E,
and assume that ;Rf is injective. Then, by Proposition 3.6, there exists
es in E for which fRy is a projective cover of S(e;;R):. By Proposition
3.5, Rf/Sx(Rf) is a non-small left R-module for £=1,..., n(i)—1, and
Rf/S,:(Rf) is a small left R-module. Therefore, the proof is completed
if we show that Rf/S.(Rf) is injective for k=1,..., n(i)—1. By Proposition
3.5, S.(Rf) is a two sided ideal of R. Here we denote the factor ring
R/S.(Rf) by R, and r+S,(Rf) by 7 for r in R. We observe Rf by iden-
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tifying it with

0

) 0

(fv en) X,

0 : 0 S
0 . 0

(fw eik) X

L (f ei.k+1) 0::

0

where X, = Homg(fR, S(e;;R)), j=1,...., k. As is easily seen, (&;x,:Rz.
#Rf) is an injective pair; whence zRf is injective (cf. Lemma 1.1). In
order to show that Rf is injective as a left R-module, consider a diagram :
0 = ] S 4R
Y]
#Rf
where I S, iR and ¢ is an R-homomorphism. Put ¢ = ¢ and [, = 1. It
is easy to see that ¢ (S,(Rf)) = 0 since

[ 0

Since Si(Rf) € I, and ¢ (S,(Rf)) = 0, ¢ induces an R/S,(Rf)-homomor-
phism ¢* : 1,/S\(Rf) = Rf. We can take a left ideal I, containing I, +
S:(Rf) and R/S,(Rf)-homomorphism ¢, : L/S,(Rf) — Rf such that the re-
striction ¢, |1,/Si(Rf) is #*. Since L, 2 S.(Rf) and (S,(Rf)) =0, ¢,
induces an R/S,(Rf)-homomorphism ¢} : L/S,(Rf) = Rf, and by the same
argument, we can take a left ideal I; containing L+ S;(Rf) and R/S.(Rf)-
homomorphism ¢ : L/S,(Rf) = Rf which is an extension of ¢}*. Continuing
this procedure k times, we obtain left ideals I,,..., I; such that S,(Rf) C
L, S:ARf)+IL C L,..., S((Rf)+I,_, C Iy and R/S,_,(Rf)-homomorphism
¢:: L/Si_.(Rf) = Rf such that ¢;1L_,/S..\(Rf) = ¢*., where ¢¥, is the
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induced homomorphism from ¢_, : L_,/S;_.(Rf) = Rf.
Here we consider the diagram:

0> I,/Sx-:(Rf) S R
Loy
Rf
Since zRf is injective, there exists an R-homomorphism ¢: R — Rf which
is an extension of ¢. Let 7: R — R be the canonical homomorphism.
Then &7 is an extension of ¢. This completes the theorem.

4. A remark on (*)*. Let R be a basic semi-perfect ring with a
complete set E = {ei1,..., €ipiys-evs Cmiseers Emmm | Of orthogonal primitive
idempotents satisfying

a) each e, R; is injective,

b) e Ry =J,.\(enRp)p for j=1,....,n(i)and i =1,..., m.

For this ring R, we show the following:

Theorem 4.1. If R is left or right artinian, then R satisfies (*)*,
namely the following condition holds :
c) J(emnRr)r is a singular module for i =1,..., m.

Proof. Since R is a perfect ring, a) and b) implies

d) All S(e;R)r are non-zero simple modules.
Since R is a one sided artinian ring with a), b) and d), in view of argu-
ments in § 3, we see that all results (except Proposition 3.2) in there
are valid for this ring R. Now, in order to show c), we may show-that
J(emsRr) S(Ry) = 0 for all 1.

Let f, be in E such that ;R is a projective cover of S(e;Rx)s for
i=1,..., m. Put

Xr = Homn(fiR, S(eu:RR))
for i=1,...,m, k=1,...,n(i). Then, as in § 3, we see

0

S(e“;R )R = O Xk 0
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Noting this fact, we can easily calculate that J(en;;Rz) S(Rz) = 0.

5. Left H = right co-H. In this section, we show that left H-rings
are right co-H-rings. Since left H-rings and right co-H-rings are Morita
invariant, we may show that basic left H-rings are right co-H. So, hence-
forth, we assume that R is a basic left H-ring with E, a complete set
of orthogonal primitive idempotents. Since R is a semi-primary QF-3 (cf.
Theorem 2.3), we can have a partition

E= %en,-', enun} u--u %emls"w emn(m)} U lgl.--, gt}

such that
a) each e, Ry is injective,
b) S(esRi)sx =---= S(etmi}RR)R for all i,

c¢) S(gRr) is not simple for g in G = 1g,..., g 1.
As in § 3, we observe R by identifying it with the matrix ring:

(enyen) M (gheu)

(en.gz) (gz, gr)

where (p, ¢) means Homg(pR, gR) for p, ¢ in E.

Lemma 5.1. Let f be in E and assume that fRy is a projective cover
of S(enRy). Then (en Ry wRf) is an injective pair, so zRf is injective.

Proof. We put

[ 0 ]
0 : 0
0
A=1|0 0 Homg(fR, S(enRz)) 0 - 0
0
0 : 0
i 0

Then we see that A, is a two sided ideal of R, and furthermore, 4, =
S(enRs) and A, C S(xRf). Since A Rf # 0, zRf is non-small (cf. Lemma
1.2) ; whence :Rf is injective and it follows that A, = S(RRf). Since
A, = S(eqRy) = S(xRf), clearly (e, Ry ; xRf) is an injective pair.
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Lemma 5.2. Let i be inil,....m{. If n(i) = 1, then S(e, Ry)r q
gRr for all g in G.

Proof. Let fbe in E such that fR; is a projective cover of S{e; R )x.
Assume that there exists g in G such that S(e;; Ry) C gRy. As in Lemma
5.1, we put

0
0 :
0
A =10 0 Homg(fR, S(enRz)) 0 -+ 0
0
0 .
L 0
[ 0
0 . 0
0
Ag=10 0 Homi(fR, S(gR:)) 0 -+ 0
0
0 : 0
A 0 J

Then, as we saw in Lemma 5.1, A, = S(e;, Rz) = S(xRf) and note that
Ag is a right ideal of R with A, © S(gRs). Since Az (Rf/S(Rf)) + 0, Rf/
S(Rf) is non-small ; whence Rf/S(Rf) is injective as a left R-module.
Consider the factor ring R = R/A(= R/S(Rf)). Since zRf is injective,
zRf is also injective. Hence there must exist h in E such that (kRz; zRf)
becomes an injective pair. As is easily seen, A + e,. Further, we see
from n(i) =1 that A& E—(G U {eu!) ;: whence h must be in G. Since
hR; is injective, S(ARz) has the simple socle. However, this shows that
S(hRx)» has the simple socle, a contradiction. Thus S(e,R )z & gR for
all g in G.

Lemma 5.3. Leti € |1,..., m| and assume that n(i) = 2 and e, Ry L
e ; Ry for j=3,...,n(i). Then

1) enR: g_ gRy for all g in G,

2) e Ry = J(euRR)R-

Proof. We take f in E such that fR; is the projective cover of
S(e; s Rp)r. We put
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0 |
0 : 0
0
A=|0 - 0 Homz(fR, S(enRy)) 0 - 0
0
0 . 0
L 0 i}
- 0 }
0 . 0
0
A, =10 0 Homy(fR, S(e;;Rz) 0 -+ 0
0
0 . 0
L 0 i

Then A, = S(enRi) = S(zxRf) by the proof of Lemma 5.1 and 4, is a
right ideal of R with 4, C S(e,R;). Put R = R/A,. Then note that
J(eaRr) and e, R become canonically right R-module, and there exists a
canonical isomorphism: &Rz = e.Rx.

Since A,Rf =+ 0, zRf is non-ima]l; so Rf is injective as a left R-
module and hence so is as a left R-module. Thus there exists A in E for
which (ARz ; Rf) is an injective pair. Then, as is easily seen, & =+ e; and
h+ ex: for any kit with k &= i. Thus A = ¢;; or h € G.

Here, assume that there exists g in G such that e, Ry € gRi. Then
we see that h + e, ; whence h € G. However, as in the proof of Lemma
5.2, this implies that AR, has the simple socle, a contradiction. Thus
ex R € gRy for all g in G.

Now, if h is in G, then hR; has the simple socle as above, a contra-
diction. As a result, h must be e;, whence &,Rz is injective. Since
é2Ri = enRi Ce J(enRe)g, it follows that e, Rz = J(e;uRr)z: whence

en Ry = J(e; Ry )z as desired.
Lemma 5.4. 1) There is a permuiation {epizs-- s €ouniy] 0f | €greees
ein(i)’ such that
Je-1(enRr)r = epun R

Jor k=2,...,2(i).
2) ey, Ry £ gRy for all j and g in G.
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3) S(enRr)x & gRy for all g in G; whence G must be empty.

Proof. 1) and 2) are shown by the same proof as in the proof of Lem-
ma 5.3. In order to prove 3), we take f in E such that fR; is a projective
cover of S(e;  Rp)z. By 1) and 2) (cf. Proofs of Lemma 5.1 and 5.3), we
see that

Sn(l)(RRf) = S(ei]RR ) +.-+ S(em(i}RR)

Now, assume that there exists g in G such that S(e; Rx) € S(gRr)z. Then
S(gRr) (Rf/Sni(xRf)) # 0; whence Rf/S,.(zRf) is non-small and it is
injective as a left R-module. Put R = R/S,.(xRf). Then Rf is injective
as a left R-module. So, there exists h in E such that (ARz; zRf) is an
injective pair. Then, as is easily seen, 2 is in G. Since ARz has the
simple socle, hRy has also the simple socle, a contradiction. Thus 3) holds.

We are now ready to show the following

Theorem 5.5. R is a right co-H-ring.

Proof. By Theorem 2.4, R satisfies the ACC on right annihilator
ideals. And, by Theorems 2.2 and 4.1 and Lemma 5.4, we see that R sat-
isfies (*)*. So, R is a right co-H-ring.

6. An application of H-rings. In this section, we show the following

Theorem 6.1. If R is a right QF-3 and right generalized uniserial
ring then R is a generalized uniserial ring.

Remark. A ring R is said to be right (left) generalized uniserial if
it is right (left) artinian and, for any primitive idempotent e, eRy (zRe) has
a unique composition series. A left and right generalized uniserial ring is
said to be simply generalized uniserial.

For a proof of Theorem 6.1, the following two lemmas are needed.

Lemma 6.2. If R is a right QF-3 and right generalized uniserial
ring, then R is a right co-H- (hence left H-) ring.

Proof. This is easily shown by Theorem 2.2.

Lemma 6.3. If R is a right QF-3 and right generalized uniserial
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ring. then so is the factor ring R/S(Rg).

Proof. We can assume that R is a basic ring. By Lemma 6.1, R is
a right co-H-ring; so, as in § 3, we observe R by identifying it with the
matrix ring:

(en- en) (emm'm)-, eu)
(e, emn{mu) (emn«:m)o emmm))
where E = |en,.... @1n11s-vr €misee-s €mnm| 1S a complete set of orthogonal

primitive idempotents such that

a) each e, R; is injective,

b) ein(i)RR - ei.n{ih—lRR c...C eiZRR C en Re
fori=1,..., m.

We put R = R/S(Rg). and for r in R, # = r+S(Ry). Then R is also
a basic and | &;,|&; # 0! is a complete set of orthogonal primitive idempo-
tents. We see that

¢) &mnRr S éi.n{i)—lﬁi C---C &Ry
for i=1,..., m.

When &, R #+ 0. we take f in E such that fRy is the projective vover
of S,(eqRr)r. Then we can take (&,Rz; zRf) is an injective pair. As a
result

d) each &, Rz is injective if it is non-zero.
By ¢) and d), we see that R is a right co-H-ring: so R is QF-3 (cf.
Theorems 2.2 and 4.1). As R is clearly right generalized uniserial, this
completes the proof.

Proof of Theorem 6.1: We can assume that R is a basic ring. Let
E =1le;! be as in Lemma 6.3. We take f; in E such that f;R; is the
projective cover of S(e,Rg)r for i = 1,..., m. Then, by Proposition
3.5,

1) S(eilRR)+‘°'+S(eikRR) = Sk(RRji)
for k=1,..., n(7) and moreover we see

2) Sk(RRfi)/Sk—l(RRfi) is simple
as a left R-module for & = 1,..., a(i).
Now, by the induction of the sum of composition lengths of all e;;R; together
with Lemma 6.3, R/S(R;) is a generalized uniserial ring. Here, in view
of 1) and 2) above, this implies that R is left uniserial.
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