ON HARADA RINGS. I

To Takasi Nagahara on his 60th birthday

KIYOICHI OSHIRO

In [4]-[6] (cf. [7]), M. Harada has studied the following two conditions:

- (*) Every non-small right R-module contains a non-zero injective submodule.
- (*)* Every non-cosmall right R-module contains a non-zero projective summand.

In particular, he has studied two rings which are characterized by ideal theoretic conditions; the one is a perfect ring with (*) and the other is a semi-perfect ring with (*)*. In [8] and [9], the author has studied these rings with some additional conditions and introduced Harada (abbreviated H-) rings and co-Harada rings; A ring R is a right H-ring if it is a right artinian ring with (*), and dually R is a right co-H-ring if it satisfies (*)* and the ascending chain condition for right annihilator ideals. In view of results in there, we see that these two rings are 'companions' of QF-rings and generalized uniserial rings. Although these classical artinian rings are left-right symmetric, H- and co-H-rings are not left-right symmetric. This fact seems to be an interesting phenomenon. However, in the present paper, we shall show a more interesting fact that the left H-rings and the right co-H-rings are the same rings. As a by-product of the study of H-rings, we shall show that a right generalized right QF-3 ring is a generalized uniserial ring.

1. Preliminaries. Throughout this paper, we assume that all rings R considered are associative rings with identity, all R-modules are unitary and all homomorphisms between R-modules are written on the opposite side of scalars. The notation M_R (resp. $_RM$) is used to denote that M is a right (resp. left) R-modules. Let M be an R-module. We use E(M), J(M), S(M) and Z(M) to denote its injective hull, Jacobson radical, socle and singular submodule, respectively. Further, by $|J_\iota(M)|$ and $|S_\iota(M)|$, we denote its descending Loewy chain and ascending Loewy chain, respectively, i.e., $J_0(M) = M$, $J_1(M) = J(M)$, $J_2(M) = J(J_1(M))$,..., $S_0(M) = 0$, $S_1(M) = S(M)$, $S_2(M)/S_1(M) = S(M/S_1(M))$,....

For submodules A and B of an R-module M with $A \subseteq B$, the notation $A \subseteq_e B$ stands for 'A is an essential submodule of B'; while $A \subseteq_c B$ (in M) means 'A is a co-essential submodule of B', i.e., B/A is a small submodule of M/A. For two R-modules M and N, we use $M \subseteq N$ to stand for there is a monomorphism f from M into N; in particular, $M \subseteq_e N$ means that such f exists and $f(M) \subseteq_e N$. The term ACC means the ascending chain condition.

Definition. An R-module M is an extending (resp. lifting) module if, for any submodule A of M, there exists a direct summand A^* of M such that $A \subseteq_e A^*$ (resp. $A^* \subseteq_c A$).

Definition ([4]-[7], [10]). An R-module M is a small module if it is small in its injective hull, and M is a non-small module if it is not a small module. Dually, M is a cosmall module if, for any projective module P and any epimorphism $f \colon P \to M$, ker f is an essential submodule of P, and M is a non-cosmall module if it is not a cosmall module.

Definition ([1], [2], [7], [11]). A ring R is said to be right QF-3 if it has a minimal faithful right ideal. Right and left QF-3 rings are said to be QF-3 rings.

The following lemma due to Fuller plays an important role in our study.

Lemma 1.1. Let R be a left artinian ring and f a primitive idempotent of R. Then $_RRf$ is injective if and only if there exists a primitive idempotent e in R such that $(eR_R;_RRf)$ is an injective pair, i.e.,

$$_RRe/J(_RRe) \simeq _RS(_RRf)$$
 and $S(eR_R)_R \simeq fR_R/J(fR_R)$

Moreover, when this is so, eR_R is also injective.

Notation. Let R be a left artinian ring with a complete set of orthogonal primitive idempotents. When E is arranged as $E = \{e_1, e_2, ..., e_n\}$, we can identify R with the matrix ring:

$$\begin{bmatrix} e_1 R e_1 & \cdots & e_1 R e_n \\ & \cdots & \\ e_n R e_1 & \cdots & e_n R e_n \end{bmatrix}$$

For the sake of convenience, we use the terms e_i -row and e_i -column instead

of the terms *i*-row and *i*-column, respectively. So we identify e_iR and Re_i with e_i -row and e_i -column, respectively.

We note that if R is basic and $(e_t R_R; R_R R_I)$ is an injective pair, then

$$S(e_{i}R_{R}) = \begin{bmatrix} 0 & & & & & & & & & & & \\ 0 & & & \vdots & & & & & & \\ 0 & \cdots & & & & & & & & \\ 0 & \cdots & & & & & & & & \\ 0 & & & \vdots & & & & & \\ 0 & & & \vdots & & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & & \\ S(_{R}Re_{j}) = \begin{bmatrix} & & & & & & & & \\ 0 & & \vdots & & & & & \\ 0 & & & \vdots & & & & \\ 0 & \cdots & & & & & & \\ 0 & & & & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & \vdots & & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & \vdots & & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & \vdots & & \\ 0 & & & & & \vdots & & \\ 0 & & & & & \vdots & & \\ 0 & & & &$$

Lemma 1.2 (Rayer [10], cf. [6]). Let R be a right artinian ring, and let M be a right R-module. Then M is a small module if and only if $MS(_RR) = 0$.

2. Background. As mentioned in the introduction, Harada has studied the conditions: (*) Every non-small right R-module contains a non-zero injective submodule. (*)* Every non-cosmall right R-module contains a non-zero projective summand. And he has shown the following two theorems which give ideal theoretic characterizations of right artinian rings with (*) and semi-perfect rings with (*)*.

Theorem 2.1 ([6, Theorem 2,3]). A right artinian ring R satisfies (*) if and only if, for any primitive idempotent e in R such that eR_R is non-small, there exists an integer $t \ge 0$ for which

- a) $eR_R/S_K(eR_R)$ is injective for $0 \le k \le t$, and
- b) $eR_R/S_{t+1}(eR_R)$ is a small module.

Remark. A left and right perfect ring with (*) is right artinian ([4, Theorem 5]).

Theorem 2.2 ([5], [6]). A semi-perfect R ring satisfies (*)* if and only if, for a complete set $|e_i| \cup |f_j|$ of orthogonal primitive idempotents of R such that each $e_i R_R$ is non-small and each $f_j R_R$ is small,

- a) each $e_i R_R$ is injective,
- b) for each $e_t R$, there exists $t_i \ge 0$ such that $J_t(e_t R_R)_R$ is projective for $0 \le t \le t_i$ and $J_{t_{i-1}}(e_t R_R)_R$ is a singular module, and
 - c) for each $f_j R$, there exists e_i such that $f_j R_R \subseteq e_i R_R$.

Remark. In case R is left or right artinian, the condition ' $J_{t_i+1}(e_iR_R)$ is singular' in b) above can be dropped as we see in section 4.

Definition. We call a ring R a right Harada (abbreviated H-) ring if R is a right artinian ring with (*), and call R a right co-Harada ring if R satisfies $(*)^*$ and the ACC for right annihilator ideals. Left and right H- (resp. co-H-) rings are called H- (resp. co-H-) rings.

Of course, right H-ring and right co-H-rings are mutually dual notions, as the following theorems shows:

Theorem 2.3 ([8]). The following conditions are equivalent for a given ring R:

- 1) R is a right H-ring.
- 2) Every injective right R-module is a lifting module.
- 3) R is a right perfect ring with the property that the family of all injective right R-modules is closed under taking small covers.
- 4) Every right R-module is expressed as a direct sum of an injective module and a small module.

When this is so, R is a QF-3 ring and satisfies the ACC on left annihilator ideals (cf. [1]).

Theorem 2.4 ([8]). The following conditions are equivalent for a given ring R:

- 1) R is a right co-H-ring.
- 2) Every projective right R-module is an extending module.
- 3) The family of all projective right R-modules is closed under taking essential extensions.
 - 4) Every right R-module is expressed as a direct sum of a projective

module and a singular module.

When this is so, R is semi-primary QF-3 and satisfies the ACC on left annihilator ideals.

Remark. 1) Right H-rings and right co-H-rings are Morita invariant.
2) QF-rings and generalized uniserial rings are H- and co-H-rings ([8], [9]). 3) Not all right H-rings are left H-rings, and not all right co-H-rings are left co-H-rings ([8]). 4) For a local QF-ring Q, the following two rings mentioned in [8] are typical examples of right co-H-rings and at the same time of left H-rings:

$$\begin{bmatrix} Q & Q \\ J & Q \end{bmatrix} \qquad \begin{bmatrix} Q & Q/S \\ J & Q/S \end{bmatrix}$$

where J = J(Q) and S = S(Q). 5) For an algebra R over a field of finite dimension, R is a left H-ring if and only if it is a right co-H-ring.

These remarks 4) and 5) led us to conjecture that left *H*-rings and right co-*H*-rings are the same rings. This conjecture is in fact true. In the next section we prove that right co-*H*-rings are left *H*-rings and, in section 5, the converse.

3. Right co- $H \Rightarrow \text{left H}$. In this section, we show that right co-H-rings are left H-rings. As both rings are Morita invariant, we may show that basic right co-H-rings are left H-rings. Therefore in this section we assume that R is a basic right co-H-ring with a complete set

$$E = \{e_{11}, \dots, e_{1n(1)}, \dots, e_{m1}, \dots, e_{mnm_i}\}$$

of orthogonal primitive idempotents such that

- a) each $e_{i1}R_R$ is injective,
- b) $e_{i1}R_R \supseteq e_{i2}R_R \supseteq \cdots \supseteq e_{in(i)}R_R$; more precisely, there exists an isomorphism $\theta_{j,j-1}^i$ from $e_{ij}R_R$ to $J(e_{i,j-1}R_R)_R$ for $j=1,\ldots,n(i)$ and $i=1,\ldots,m$,
 - c) all $S(e_{i,i}R_R)_R$ are simple.

Notation. 1) we put

$$\theta_{i,k}^{i} = \theta_{k+1,k}^{i} \theta_{k+2,k+1}^{i} \dots \theta_{i-1,i-2}^{i} \theta_{i,i-1}^{i}$$

for $0 \le k < j \le n(i)$. Then $\theta_{j,k}^i$ is an isomorphism from $e_{ij}R_R$ to $J_{j-k}(e_{i,k}R_R)_R$.

2) We define a mapping $\Phi_{j,j+1}^i$ from $\operatorname{End}_R(e_{i,j}R_R)$ to $\operatorname{End}_R(e_{i,j+1}R_R)$ by the rule

$$\Phi_{j,j+1}^{i}(\alpha) = (\theta_{j+1,j}^{i})^{-1} \alpha \theta_{j+1,j}^{i}$$

for $\alpha \in \operatorname{End}_R(e_{ij}R_R)$. Then it is routine to check that $\Phi_{j,j+1}^t$ is a ring epimorphism. For j < k, we put

$$\Phi_{j,k}^{i} = \Phi_{k-1,k}^{i} \cdots \Phi_{j+1,j+2}^{i} \Phi_{j,j+1}^{i}$$

Then $\Phi_{j,k}^{i}$ is an epimorphism from $\operatorname{End}_{R}(e_{ij}R_{R})$ to $\operatorname{End}_{R}(e_{ik}R_{R})$.

Proposition 3.1. $\Phi_{j,j+1}^{i}$ is an isomorphism if and only if $e_{ij}R_R$ is not a projective cover of $S(e_{i1}R_R)_R$.

Proof. This is clear, since $\ker \Phi_{j,j+1}^i = \{ \alpha \in \operatorname{End}_R(e_{ij}R_R) | \operatorname{Im} \alpha \subseteq \operatorname{S}(e_{ij}R_R) \}.$

Remark. Henceforth we observe R by representing it as

$$R = \begin{bmatrix} (e_{11}, e_{11}) & \cdots & (e_{m n(m)}, e_{11}) \\ (e_{11}, e_{12}) & \cdots & (e_{m n(m)}, e_{12}) \\ & \cdots & \\ (e_{11}, e_{m n(m)}) & \cdots & (e_{m n(m)}, e_{m n(m)}) \end{bmatrix}$$

$$= \begin{bmatrix} e_{11}Re_{11} & \cdots & e_{11}Re_{m n(m)} \\ e_{12}Re_{11} & \cdots & e_{12}Re_{m n(m)} \\ & \cdots & \\ e_{m n(m)}Re_{11} & \cdots & e_{m n(m)}Re_{m n(m)} \end{bmatrix}$$

where $(e_{ij}, e_{kt}) = \operatorname{Hom}_{R}(e_{ij}R, e_{kt}R)$.

Proposition 3.2. R is left artinian.

Proof. We may show that $e_{Re}eRf$ is artinian for all e, f in E. We check this fact in four steps.

Step 1. As R is semiprimary QF-3 and each $e_{i1}R_R$ is injective, we see from [1] that $e_{i1}Re_{j1}$ is artinian as a left $e_{i1}Re_{i1}$ -module for all i, j.

Step 2. Assume that $e_{pq}R_R$ is a projective cover of $S(e_{i1}R_R)_R$. If $p \neq i$, Proposition 3.1 shows

If p = i, Proposition 3.1 also shows

Since $e_{i1}Re_{i1}$ is artinian as a left $e_{i1}Re_{i1}$ -module, $e_{i1}Re_{ij}$ is artinian as a left $e_{ij}Re_{ij}$ -module for all e_{ij} .

$$f_1Rf_1f_1Rg_1 \rightarrow f_1Rf_1f_jRg_t$$
.

Since $f_1Rf_1f_1Rg_1$ is artinian, it follows that $f_2Rf_2f_3f_3Rg_t$ is artinian.

Step 4. Put $e_1 = e_{i1}, \ldots, e_{n(i)} = e_{in(i)}$, and observe $e_j Re_k$ for $k \neq j$. If k < j, then $e_j Re_k$ becomes a left $e_k Re_k$ -module by the epimorphism $\Phi_{k,j}^i$: $e_k Re_k \to e_j Re_j$. Consider a mapping λ : $e_j Re_k = (e_k, e_j) \to e_k Re_k = (e_k, e_k)$ given by the rule: $\alpha \to \theta_{j,k}^i \alpha$ for $\alpha \in (e_k, e_j)$. As is easily seen, λ is a left $e_k Re_k$ -homomorphism and moreover it is a monomorphism. Since $e_k Re_k e_k$ is artinian, it follows that $e_j Re_j e_j Re_j$ is artinian. Next, if k > j, then $e_k Re_k$ becomes a left $e_j Re_j$ -module by $\Phi_{j,k}^i$, and $e_j Re_j e_j Re_k \cong e_j Re_j e_k Re_k$ by the mapping: $\alpha \to (\theta_{k,j}^i)^{-1}$. Hence, in this case, we also see that $e_j Re_j e_j Re_k$ is artinian, since $e_k Re_k e_k$ is artinian.

By Steps 1-4, eRf is artinian as a left eRe-module for all e, f in E, so R is left artinian.

Lemma 3.3. Let e, f be in E such that eR_R is injective and fR_R is a projective cover of $S(eR_R)_R$. Put $X = Hom_R(fR, S(eR_R))$. Then

- 1) $_{eRe}X$ and X_{fRf} are simple.
- 2) $_{eRe}X \simeq _{eRe}S(_{eRe}eRf)$ and $X_{fRf} \simeq S(_{eRf}f_{fRf})_{fRf}$.
- 3) $S(e_{Re}eRf) = S(eRf_{fRf}).$

Proof. 1) It is enough to show that $eRe\alpha = \alpha fRf = X$ for any non-zero α in X. Let $0 \neq \beta \in X$. Since fR_R is projective, there exists γ in

fRf satisfying $\alpha \gamma = \beta$: whence $X = \alpha fRf$. On the other hand, α and β

induce isomorphisms: $fR/J(fR) \stackrel{\overline{\alpha}}{\simeq} S(eR_R)$ and $fR/J(fR) \stackrel{\overline{\beta}}{\simeq} S(eR_R)$. Since any automorphism of $S(eR_R)_R$ is induced from one of eR_R , we can obtain σ in eRe such that $\overline{\beta}\overline{\alpha}^{-1} = \sigma$ on $S(eR_R)$. Then $\overline{\beta} = \sigma\overline{\alpha}$ and it follows that $\beta = \sigma\alpha$. As a result, we see $X = eRe\alpha$. 2) and 3) are clear from 1).

Lemma 3.4. Let f and g in E, and assume that fR_R is a projective cover of $S(e_{i1}R_R)_R$ or, equivalently, $fR/J(fR) \cong S(e_{i1}R)$.

- 1) For α in (f, g) with Im $\alpha \supseteq S(gR)$, there exists β_k in (g, e_{ik}) such that Im $\beta_k \alpha = S(e_{ik}R)$ for k = 1, ..., n(i).
- 2) If g is in $E-\{e_{i1},...,e_{init}\}$, then, for any $0 \neq \alpha \in (f,g)$, there exists $\beta_k \in (g,e_{ik})$ such that Im $\beta_k \alpha = S(e_{ik}R_R)$ for k=1,...,n(i).
- 3) If $g = e_{it}$, then, for any $0 \neq \alpha \in (f, g)$, there exists $\beta_k \in (g, e_{ik})$ such that Im $\beta_k \alpha = S(e_{ik}R_R)$ for k = 1, ..., t.

Proof. Note that 2) is contained in 1). For convenience's sake, put $e_1 = e_{i1}, \ldots, e_{n(i)} = e_{in(i)}$. Let $0 \neq \alpha \in (f, g)$. α induces an isomorphism $\tilde{\alpha}$: $fR/\ker \alpha \cong \operatorname{Im} \alpha$. Then, note $\ker \alpha \subseteq \operatorname{J}(fR)$. Since $fR/\operatorname{J}(fR) \cong \operatorname{S}(e_kR)$, there exists an R-homomorphism γ_k from $\operatorname{Im} \alpha$ onto $\operatorname{S}(e_kR)$. Put $\theta = \theta_{k,1}^i$; $e_kR \cong \operatorname{J}_{k-1}(e_1R)$. Since e_1R_R is injective, there exists $\delta_k \in (g, e_1)$ which is an extension of $\theta\gamma_k$, i.e., $\delta_k = \theta\gamma_k$ on $\operatorname{Im} \alpha$.

Now, if γ_k is not a monomorphism, that is, Im $\alpha \supseteq S(gR)$, then Im $\delta_k \subseteq J_{n(t)}(e_1R) \subseteq \theta(e_kR)$; so $\theta^{-1} \delta_k \in (g,e_k)$ with Im $\theta^{-1} \delta_k \alpha = S(e_kR)$. Next, assume $g=e_t$ and Im $\alpha=S(e_tR)$. Then δ_k is a monomorphism with Im $\delta_k=J_{t-1}(e_1R)=\theta_{t,1}^i(e_tR)$. So, $\theta^{-1} \delta_k$ has a sense as a homomorphism from e_tR_R to e_kR_R for $k \le t$, and Im $\theta^{-1} \delta_k \alpha = S(e_kR)$. The proof is completed.

Proposition 3.5. Let f be in E, and assume that fR_R is a projective cover of $S(e_{i1}R)_R$. Then

- 1) $S_k(_RRf) = S(e_{i1}R_R) + \dots + S(e_{ik}R_R)$ for $k = 1, \dots, n(i)$; whence $S_k(_RRf)$ is a two sided ideal of R.
- 2) $S(e_{in(t)}R_R)(Rf/S_k(_RRf)) = (S(e_{in(t)}R_R) + S_k(_RRf))/S_k(_RRf)$ for k = 1, ..., n(i)-1.
 - 3) $S(R_R)(Rf/S_{ni};(_RRf)) = 0$

Therefore $Rf/S_k(_RRf)$ is a non-small left R-module for $1 \le k < n(i)$ and $Rf/S_{n(i)}(_RRf)$ is a small left R-module by Lemma 1.2.

Proof. Put $e_k = e_{ik}$ for k = 1, ..., n(i). We observe Rf and $e_k R$ by identifying these with f-column and e_k -row, respectively;

$$Rf = \begin{bmatrix} \vdots & & & & \\ & (f, e_1) & & & \\ 0 & \vdots & & 0 & \\ & (f, e_{n(t)}) & & & \\ & \vdots & & \end{bmatrix}$$

$$e_k R = \begin{bmatrix} & & & & & \\ (e_{11}, e_k) & \cdots & (f, e_k) & \cdots & (e_{mn(m)}, e_k) \\ & & & & & \end{bmatrix}$$

We put $X_k = \operatorname{Hom}_R(fR, S(e_k R))$. Then, by Lemma 3.4,

$$S(e_k R) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \cdots & 0 & X_k & 0 & \cdots & 0 \\ 0 & 0 & & & \end{bmatrix}$$

so we see

$$S(e_1R_R)+\cdots+S(e_kR_R)=\begin{bmatrix}0\\\vdots\\0\\X_1\\0&\vdots\\0\end{bmatrix}$$

On the other hand, using Lemma 3.4, we see

$$\mathbf{S}_{k}(_{R}Rf) = \begin{bmatrix} & 0 & & & \\ & \vdots & & & \\ & 0 & & & \\ & & X_{1} & & \\ & 0 & & \vdots & & \\ & & 0 & & \\ & & \vdots & & \\ & & 0 & & \end{bmatrix}$$

Hence $S(e_1R)_R + \cdots + S(e_kR_R) = S_k(_RRf)$. The proofs of 2) and 3) are easy from 1).

Proposition 3.6. The following conditions are equivalent for f in E.

- 1) fR_R is a projective cover of some $S(e_{i1}R_R)$.
- 2) _RRf is injective
- 3) Rf is a non-small module

Proof. 1) ⇒ 2). By Proposition 3.5 and Lemma 3.3, we see that $(e_{i1}R_R; {}_RRf)$ is an injective pair; whence ${}_RRf$ is injective (Lemma 1.1). 2) ⇒ 3) is clear. Assume that ${}_RRf$ is a non-small module. Then $S(R_R)Rf \neq 0$ by Lemma 1.2. Hence $(S(e_{i1}R) + \dots + S(e_{init}R))Rf \neq 0$ for some i. Let g be in E such that gR_R is a projective cover of $S(e_{i1}R)$. By Proposition 3.5,

$$S(e_{i1}R) + \cdots + S(e_{in(i)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ X_1 \\ 0 \vdots & 0 \\ X_{n(i)} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

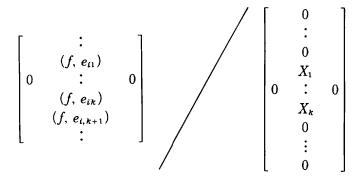
where $X_k = \text{Hom}(gR, S(e_{ik}R)), k = 1, ..., n(i)$. Hence if $g \neq f$, we see that $(S(e_{i1}R) + ... + S(e_{in(i)}R))Rf = 0$, a contradiction. Thus f = g and hence fR_R is a projective cover of $S(e_{i1}R)$.

Now we are in a position to show the following

Theorem 3.7. R is a left H-ring.

Proof. By Proposition 3.2, R is a left artinian ring. Let f be in E, and assume that $_RRf$ is injective. Then, by Proposition 3.6, there exists e_{i1} in E for which fR_R is a projective cover of $S(e_{i1}R)_R$. By Proposition 3.5, $Rf/S_k(Rf)$ is a non-small left R-module for $k=1,\ldots,n(i)-1$, and $Rf/S_{n(i)}(Rf)$ is a small left R-module. Therefore, the proof is completed if we show that $Rf/S_k(Rf)$ is injective for $k=1,\ldots,n(i)-1$. By Proposition 3.5, $S_k(Rf)$ is a two sided ideal of R. Here we denote the factor ring $R/S_k(Rf)$ by \overline{R} , and $r+S_k(Rf)$ by \overline{r} for r in R. We observe \overline{Rf} by iden-

tifying it with



where $X_j = \operatorname{Hom}_{R}(fR, S(e_{ij}R)), j = 1, ..., k$. As is easily seen, $(\bar{e}_{i,k+1}\overline{R}_{\overline{R}}, \bar{R}f)$ is an injective pair; whence $\bar{R}f$ is injective (cf. Lemma 1.1). In order to show that $\bar{R}f$ is injective as a left R-module, consider a diagram:

$$0 \to_R I \hookrightarrow_R R$$

$$\downarrow \phi$$

$$_R \overline{R} \overline{f}$$

where $_RI\subseteq_{e_R}R$ and ϕ is an R-homomorphism. Put $\phi_1=\phi$ and $I_1=I$. It is easy to see that $\phi_1(S_1(Rf))=0$ since

$$S_{1}(Rf) = \begin{bmatrix} & 0 & & \\ & \vdots & & \\ 0 & & X_{1} & & 0 \\ & & 0 & & \\ & & \vdots & & \\ & & 0 & & \end{bmatrix}$$

Since $S_1(Rf) \subseteq I_1$ and $\phi_1(S_1(Rf)) = 0$, ϕ_1 induces an $R/S_1(Rf)$ -homomorphism $\phi_1^*: I_1/S_1(Rf) \to \overline{Rf}$. We can take a left ideal I_2 containing $I_1+S_2(Rf)$ and $R/S_1(Rf)$ -homomorphism $\phi_2: I_2/S_1(Rf) \to \overline{Rf}$ such that the restriction $\phi_2 \mid I_1/S_1(Rf)$ is ϕ_1^* . Since $I_2 \supseteq S_2(Rf)$ and $\phi_2(S_2(Rf)) = 0$, ϕ_2 induces an $R/S_2(Rf)$ -homomorphism $\phi_2^*: I_2/S_2(Rf) \to \overline{Rf}$, and by the same argument, we can take a left ideal I_3 containing $I_2+S_3(Rf)$ and $R/S_2(Rf)$ -homomorphism $\phi_3: I_3/S_2(Rf) \to \overline{Rf}$ which is an extension of ϕ_2^* . Continuing this procedure k times, we obtain left ideals I_1, \ldots, I_k such that $S_1(Rf) \subseteq I_1, S_2(Rf) + I_1 \subseteq I_2, \ldots, S_k(Rf) + I_{k-1} \subseteq I_k$ and $R/S_{i-1}(Rf)$ -homomorphism $\phi_i: I_i/S_{i-1}(Rf) \to \overline{Rf}$ such that $\phi_i \mid I_{i-1}/S_{i-1}(Rf) = \phi_{i-1}^*$, where ϕ_{i-1}^* is the

induced homomorphism from $\phi_{i-1}: I_{i-1}/S_{i-2}(Rf) \to \overline{Rf}$. Here we consider the diagram:

$$0 \to I_k/S_{k-1}(Rf) \hookrightarrow \overline{R}$$

$$\downarrow \phi_k^*$$

$$\overline{Rf}$$

Since $\bar{R}R\bar{f}$ is injective, there exists an R-homomorphism $\zeta: \bar{R} \to \bar{R}\bar{f}$ which is an extension of ϕ_{κ} . Let $\eta: R \to \bar{R}$ be the canonical homomorphism. Then $\zeta\eta$ is an extension of ϕ . This completes the theorem.

- 4. A remark on (*)*. Let R be a basic semi-perfect ring with a complete set $E = \{e_{11}, \ldots, e_{1n(1)}, \ldots, e_{m1}, \ldots, e_{mn(m)}\}$ of orthogonal primitive idempotents satisfying
 - a) each $e_{i1}R_R$ is injective,
- b) $e_{ij}R_R \simeq J_{j-1}(e_{i1}R_R)_R$ for j=1,...,n(i) and i=1,...,m. For this ring R, we show the following:

Theorem 4.1. If R is left or right artinian, then R satisfies $(*)^*$, namely the following condition holds:

c) $J(e_{in(i)}R_R)_R$ is a singular module for i=1,...,m.

Proof. Since R is a perfect ring, a) and b) implies

d) All $S(e_{ij}R_R)_R$ are non-zero simple modules.

Since R is a one sided artinian ring with a), b) and d), in view of arguments in § 3, we see that all results (except Proposition 3.2) in there are valid for this ring R. Now, in order to show c), we may show that $J(e_{ln(i)}R_R) S(R_R) = 0$ for all i.

Let f_i be in E such that f_iR_R is a projective cover of $S(e_i,R_R)_R$ for $i=1,\ldots,m$. Put

$$X_k = \operatorname{Hom}_R(f_i R, S(e_{ik} R_R))$$

for i = 1, ..., m, k = 1, ..., n(i). Then, as in § 3, we see

$$S(e_{lk}R)_{R} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ X_{k} & 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Noting this fact, we can easily calculate that $J(e_{in(i)}R_R) S(R_R) = 0$.

5. Left $H \Rightarrow \text{right co-H}$. In this section, we show that left H-rings are right co-H-rings. Since left H-rings and right co-H-rings are Morita invariant, we may show that basic left H-rings are right co-H. So, henceforth, we assume that R is a basic left H-ring with E, a complete set of orthogonal primitive idempotents. Since R is a semi-primary QF-3 (cf. Theorem 2.3), we can have a partition

$$E = \{e_{11}, \dots, e_{1m(1)}\} \cup \dots \cup \{e_{m1}, \dots, e_{mn(m)}\} \cup \{g_1, \dots, g_t\}$$

such that

- a) each $e_{i1}R_R$ is injective,
- b) $S(e_{i1}R_R)_R \simeq \cdots \simeq S(e_{in(i)}R_R)_R$ for all i,
- c) $S(gR_R)$ is not simple for g in $G = \{g_1, ..., g_t\}$.

As in $\S 3$, we observe R by identifying it with the matrix ring:

$$\left[egin{array}{cccc} (e_{11},\,e_{11}) & \cdots & (g_t,\,e_{11}) \ & \cdots & & \ (e_{11},\,g_t) & \cdots & (g_t,\,g_t) \end{array}
ight]$$

where (p, q) means $\operatorname{Hom}_{R}(pR, qR)$ for p, q in E.

Lemma 5.1. Let f be in E and assume that fR_R is a projective cover of $S(e_{i1}R_R)$. Then $(e_{i1}R_R; _RRf)$ is an injective pair, so $_RRf$ is injective.

Proof. We put

Then we see that A_1 is a two sided ideal of R, and furthermore, $A_1 = S(e_{i1}R_R)$ and $A_1 \subseteq S(_RRf^*)$. Since $A_1Rf \neq 0$, $_RRf$ is non-small (cf. Lemma 1.2); whence $_RRf$ is injective and it follows that $A_1 = S(_RRf)$. Since $A_1 = S(e_{i1}R_R) = S(_RRf)$, clearly $(e_{i1}R_R;_RRf)$ is an injective pair.

Lemma 5.2. Let i be $in \{1,..., m\}$. If n(i) = 1, then $S(e_{i1}R_R)_R \subseteq gR_R$ for all g in G.

Proof. Let f be in E such that fR_R is a projective cover of $S(e_{i1}R_R)_R$. Assume that there exists g in G such that $S(e_{i1}R_R) \subseteq gR_R$. As in Lemma 5.1, we put

$$A_{1} = \begin{bmatrix} 0 & 0 & \vdots & & & & & & \\ 0 & \cdots & 0 & \operatorname{Hom}_{R}(fR, S(e_{i1}R_{R})) & 0 & \cdots & 0 \\ & 0 & \vdots & & & & \\ & & 0 & & \vdots & & \\ & & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\ & & 0 & & & \\$$

Then, as we saw in Lemma 5.1, $A_1 = S(e_{t1}R_R) = S(_RRf)$ and note that A_g is a right ideal of R with $A_g \subseteq S(gR_R)$. Since $A_g(Rf/S(Rf)) \neq 0$, Rf/S(Rf) is non-small; whence Rf/S(Rf) is injective as a left R-module. Consider the factor ring $\overline{R} = R/A_1(=R/S(Rf))$. Since $_R\overline{Rf}$ is injective, $_{\overline{R}}\overline{Rf}$ is also injective. Hence there must exist h in E such that $(h\overline{R}_{\overline{R}}; _{\overline{R}}\overline{Rf})$ becomes an injective pair. As is easily seen, $h \neq e_{t1}$. Further, we see from n(i) = 1 that $h \not\in E - (G \cup \{e_{t1}\})$; whence h must be in G. Since $h\overline{R}_{\overline{R}}$ is injective, $S(h\overline{R}_{\overline{R}})$ has the simple socle. However, this shows that $S(hR_R)_R$ has the simple socle, a contradiction. Thus $S(e_{t1}R)_R \not\subseteq gR$ for all g in G.

Lemma 5.3. Let $i \in \{1,..., m \mid and assume that n(i) \geq 2 \text{ and } e_{i2}R_R \not\subseteq e_{ij}R_R \text{ for } j=3,...,n(i).$ Then

- 1) $e_{i2}R_R \not\subseteq gR_R$ for all g in G,
- $2) \quad e_{i2}R_R \simeq J(e_{i1}R_R)_R.$

Proof. We take f in E such that fR_R is the projective cover of $S(e_{i1}R_R)_R$. We put

$$A_{1} = \begin{bmatrix} 0 & 0 & \vdots & 0 & 0 \\ 0 & \cdots & 0 & \operatorname{Hom}_{R}(fR, S(e_{i1}R_{R})) & 0 & \cdots & 0 \\ 0 & \vdots & & 0 & 0 \\ 0 & \vdots & & 0 & 0 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \cdots & 0 & \operatorname{Hom}_{R}(fR, S(e_{i2}R_{R})) & 0 & \cdots & 0 \\ 0 & \vdots & & 0 & 0 \\ 0 & \vdots & & 0 & 0 \end{bmatrix}$$

Then $A_1 = S(e_{i1}R_R) = S(_RRf)$ by the proof of Lemma 5.1 and A_2 is a right ideal of R with $A_2 \subseteq S(e_{i2}R_R)$. Put $\overline{R} = R/A_1$. Then note that $J(e_{i1}R_R)$ and $e_{i2}R$ become canonically right \overline{R} -module, and there exists a canonical isomorphism: $\overline{e}_{i2}\overline{R}_{\overline{R}} \simeq e_{i2}R_{\overline{R}}$.

Since $A_2 \overline{Rf} \neq 0$, $_RRf$ is non-small; so \overline{Rf} is injective as a left R-module and hence so is as a left \overline{R} -module. Thus there exists h in E for which $(\overline{h}\overline{R}_{\overline{R}};_{\overline{R}}\overline{Rf})$ is an injective pair. Then, as is easily seen, $h \neq e_{t1}$ and $h \neq e_{kt}$ for any kt with $k \neq i$. Thus $h = e_{t2}$ or $h \in G$.

Here, assume that there exists g in G such that $e_{t2}R_R \subseteq gR_R$. Then we see that $h \neq e_{t2}$; whence $h \in G$. However, as in the proof of Lemma 5.2, this implies that hR_R has the simple socle, a contradiction. Thus $e_{t2}R_R \nsubseteq gR_R$ for all g in G.

Now, if h is in G, then hR_R has the simple socle as above, a contradiction. As a result, h must be e_{i2} , whence $\bar{e}_{i2}\bar{R}_{\bar{R}}$ is injective. Since $\bar{e}_{i2}\bar{R}_{\bar{R}} \cong e_{i2}R_{\bar{R}} \subseteq_e J(e_{i1}R_R)_{\bar{R}}$, it follows that $e_{i2}R_{\bar{R}} \cong J(e_{i1}R_R)_{\bar{R}}$; whence $e_{i2}R_R \cong J(e_{i1}R_R)_R$ as desired.

Lemma 5.4. 1) There is a permutation $|e_{\rho(i2)}, ..., e_{\rho(in(i))}|$ of $|e_{i2}, ..., e_{in(i)}|$ such that

$$J_{k-1}(e_{i1}R_R)_R \simeq e_{\rho(ik)}R_R$$

for k = 2, ..., n(i).

2) $e_{i,j}R_R \not\subseteq gR_R$ for all j and g in G.

3) $S(e_{i_1}R_R)_R \not\subseteq gR_R$ for all g in G; whence G must be empty.

Proof. 1) and 2) are shown by the same proof as in the proof of Lemma 5.3. In order to prove 3), we take f in E such that fR_R is a projective cover of $S(e_{t1}R_R)_R$. By 1) and 2) (cf. Proofs of Lemma 5.1 and 5.3), we see that

$$S_{n(i)}(RRf) = S(e_{i1}R_R) + \cdots + S(e_{in(i)}R_R)$$

Now, assume that there exists g in G such that $S(e_{i1}R_R) \subseteq S(gR_R)_R$. Then $S(gR_R)(Rf/S_{n(i)}(_RRf)) \neq 0$; whence $Rf/S_{n(i)}(_RRf)$ is non-small and it is injective as a left R-module. Put $\overline{R} = R/S_{n(i)}(_RRf)$. Then \overline{Rf} is injective as a left \overline{R} -module. So, there exists h in E such that $(\overline{h}\overline{R}_{\overline{R}};_{\overline{R}}\overline{Rf})$ is an injective pair. Then, as is easily seen, h is in G. Since $\overline{h}\overline{R}_{\overline{R}}$ has the simple socle, hR_R has also the simple socle, a contradiction. Thus 3) holds.

We are now ready to show the following

Theorem 5.5. R is a right co-H-ring.

Proof. By Theorem 2.4, R satisfies the ACC on right annihilator ideals. And, by Theorems 2.2 and 4.1 and Lemma 5.4, we see that R satisfies $(*)^*$. So, R is a right co-H-ring.

6. An application of H-rings. In this section, we show the following

Theorem 6.1. If R is a right QF-3 and right generalized uniserial ring then R is a generalized uniserial ring.

Remark. A ring R is said to be right (left) generalized uniserial if it is right (left) artinian and, for any primitive idempotent e, eR_R ($_RRe$) has a unique composition series. A left and right generalized uniserial ring is said to be simply generalized uniserial.

For a proof of Theorem 6.1, the following two lemmas are needed.

Lemma 6.2. If R is a right QF-3 and right generalized uniserial ring, then R is a right co-H- (hence left H-) ring.

Proof. This is easily shown by Theorem 2.2.

Lemma 6.3. If R is a right QF-3 and right generalized uniserial

ring, then so is the factor ring $R/S(R_R)$.

Proof. We can assume that R is a basic ring. By Lemma 6.1, R is a right co-H-ring; so, as in § 3, we observe R by identifying it with the matrix ring:

$$\begin{bmatrix} (e_{11}, e_{11}) & \cdots & (e_{mn:m_1}, e_{11}) \\ & \cdots & \\ (e_{11}, e_{mn:m_1}) & \cdots & (e_{mn:m_1}, e_{mn:m_1}) \end{bmatrix}$$

where $E = |e_{11}, ..., e_{1n(1)}, ..., e_{m1}, ..., e_{mn(m)}|$ is a complete set of orthogonal primitive idempotents such that

- a) each $e_{i1}R_R$ is injective,
- b) $e_{in(i)}R_R \subseteq e_{i,n(i)-1}R_R \subseteq \cdots \subseteq e_{i2}R_R \subseteq e_{i1}R_R$ for i = 1, ..., m.

We put $\overline{R}=R/S(R_R)$, and for r in R, $\overline{r}=r+S(R_R)$. Then \overline{R} is also a basic and $|\bar{e}_{ij}|\bar{e}_{ij}\neq 0$! is a complete set of orthogonal primitive idempotents. We see that

c)
$$\bar{e}_{in(i)}\overline{R}_{\overline{k}} \subseteq \bar{e}_{i,n(i)-1}\overline{R}_{\overline{k}} \subseteq \cdots \subseteq \bar{e}_{i2}\overline{R}_{\overline{k}}$$
 for $i=1,\ldots,m$.

When $\bar{e}_{t1}\bar{R}\neq 0$, we take f in E such that fR_R is the projective vover of $S_2(e_{t1}R_R)_R$. Then we can take $(\bar{e}_{i1}\bar{R}_{\bar{R}}\,;\,_{\bar{R}}\bar{R}\bar{f})$ is an injective pair. As a result

d) each $\bar{e}_{i1}\bar{R}_{\bar{R}}$ is injective if it is non-zero. By c) and d), we see that \bar{R} is a right co-H-ring; so \bar{R} is QF-3 (cf. Theorems 2.2 and 4.1). As R is clearly right generalized uniserial, this completes the proof.

Proof of Theorem 6.1: We can assume that R is a basic ring. Let $E = \{e_{ij}\}$ be as in Lemma 6.3. We take f_i in E such that f_iR_R is the projective cover of $S(e_{i1}R_R)_R$ for i = 1, ..., m. Then, by Proposition 3.5,

1)
$$S(e_{i1}R_R) + \cdots + S(e_{ik}R_R) = S_k(R_R Rf_i)$$

for k = 1, ..., n(i) and moreover we see

2) $S_k(RRf_i)/S_{k-1}(RRf_i)$ is simple as a left R-module for k = 1,..., n(i).

Now, by the induction of the sum of composition lengths of all $e_{ij}R_R$ together with Lemma 6.3, $R/S(R_R)$ is a generalized uniserial ring. Here, in view of 1) and 2) above, this implies that R is left uniserial.

REFERENCES

- [1] R. R. COLBY and E. A. RUTTER, Jr: Generalizations of QF algebra, Trans. Amer. Math. Soc. 183 (1971), 371-386.
- [2] K. R. FULLER: Structure of QF-3 rings, Trans. Amer. Math. Soc. 134 (1968), 343-
- [3] K. R. FULLER: On indecomposable injectives over artinian rings, Pacific. J. Math. 29 (1969), 115-135.
- [4] M. HARADA: On one sided QF-2 rings I, Osaka J. Math. 17 (1980), 421-431.
- [5] M. HARADA: On one sided QF-2 rings II, Osaka J. Math. 17 (1980), 433-438.
- [6] M. HARADA: Non-small modules and non-cosmall modules, Ring Theory, Proceedings of 1978 Antwerp Conference, Marcel Dekker Inc. (1979), 669-689.
- [7] M. HARADA: Factor Categories with Applications to Direct Decomposition of Modules, Lecture Notes in Pure Applied Mathematics, vol. 88 (1983), Marcel Dekker.
- [8] K. OSHIRO: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310-338.
- [9] K. OSHIRO: Lifting modules, extending modules and their applications to generalized uniserial rings, Hokkaido Math. J. 13 (1984), 339-346.
- [10] M. RAYAR: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ., 1971.
- [11] H. TACHIKAWA: Quasi-Frobenius rings and generarizations, Lecture Notes in Math. 351 (1973), Springer-Verlag.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY
YOSHIDA, YAMAGUCHI, JAPAN 753

(Received July 12, 1988)