SEPARATED SETS OF TORSION THEORIES

Dedicated to Prof. Hiroyuki Tachikawa on the occasion of his 60th birthday

JONATHAN S. GOLAN

Throughout the following R will denote an associative ring with identity element 1 and R-mod will denote the category of unitary left R-modules. The frame of all (hereditary) torsion theories on R-mod will be denoted by R-tors. Notation and terminology concerning R-tors will follow [2]. In particular, if M is a left R-module then E(M) will denote the injective hull of M, $\xi(M)$ will denote the smallest torsion theory on R-mod relative to which M is torsion and $\chi(M)$ will denote the largest torsion theory on R-mod relative to which M is torsionfree. If $\tau \in R$ -tors then a nonzero left R-module N is τ -torsion. A τ -cocritical left R-module N is uniform and has the property, which we will use repeatedly, that $\chi(N') = \chi(N)$ for every nonzero submodule N' of N. If $\sigma \leq \tau$ in R-tors we say that τ is a generalization of σ . The generalization is proper if $\sigma < \tau$.

The notion of a separated set of torsion theories on R-mod was considered briefly in Chapter 29 of [2]. We expand the definition given there as follows: if σ is a torsion theory on R-mod then a set U of generalizations of σ in R-tors is σ -separated if and only if $\tau \wedge [\vee(U \vee \tau)] = \sigma$ for each τ in U. The empty set is trivially σ -separated for every torsion theory σ . This relation was studied in the context of modular lattices (under the name of "independence") in [3] and [4]. It is straightforward to show that the following result is true:

- 1. Proposition. If $\sigma \in R$ -tors then the following conditions on a nonempty set U of generalizations of σ are equivalent:
 - (1) U is σ -separated;
 - (2) For any partition $U = U' \cup U''$ of $U, \sigma = (\vee U') \wedge (\vee U'')$;
 - (3) Every nonempty subset of U is σ -separated;
 - (4) Every finite nonempty subset of U is σ -separated.

The torsion theory σ has *finite dimension* if and only if every σ -sepa-

154 J. S. GOLAN

rated set of generalizations of σ is finite.

2. Proposition. If $\sigma \in R$ -tors and if $|U_i| i \in \Omega$ is a chain of σ -separated sets of generalizations of σ then $U = \bigcup |U_i| i \in \Omega$ is σ -separated.

Proof. If Y is a finite subset of U then there exists some $h \in \Omega$ such that $Y \subseteq U_h$ and so Y is σ -separated. Hence, by Proposition 1, U is σ -separated. \square

By Zorn's Lemma, we see that if $\sigma \in R$ -tors then any σ -separated set of generalizations of σ is contained in a maximal σ -separated set.

For the purposes of this note we will say that a torsion theory σ on R-mod is good if and only if for each torsion theory τ on R-mod satisfying $\sigma < \tau$ there exists a σ -cocritical τ -torsion left R-module. By Proposition 2.10 of [2] we know that ξ , the unique minimal element of R-tors, is always good.

Recall that if $\sigma \in R$ -tors then the ring R is σ -noetherian if and only if the set of all σ -pure left ideals of R satisfies the ascending chain condition. If σ is a torsion theory on R-mod such that R is σ -noetherian then we claim that σ is good. Indeed, assume that $\sigma < \tau$ in R-tors and let R be a nonzero τ -torsion σ -torsionfree left R-module. If $0 \neq x \in R$ then the set of all σ -pure left ideals of R containing (0:x) is nonempty and so has a maximal element H. Then R/H is τ -torsion and σ -cocritical, proving that σ is good.

Thus we see, in particular, that if the ring R is left noetherian then every torsion theory on R-mod is good.

If $\sigma < \tau$ in R-tors then we say that the torsion theory τ is σ -uniform if and only if the set of torsion theories τ' satisfying $\sigma < \tau' \le \tau$ is closed under taking finite meets. We will denote the set of all σ -uniform torsion theories on R-mod by σ -unif.

- 3. Proposition. Let σ be a good torsion theory on R-mod and let τ be a proper generalization of σ in R-tors. Then the following conditions are equivalent:
 - (1) τ is σ -uniform;
 - (2) $\chi(M) = \chi(M')$ for all τ -torsion σ -cocritical left R-modules M and M'.

Proof. (1) \Rightarrow (2): If M and M' are τ -torsion σ -cocritical left R-modules we set $\rho = \sigma \vee \xi(M)$ and $\rho' = \sigma \vee \xi(M')$. Then $\sigma \neq \rho$, $\rho' \leq \tau$ and so, by (1), $\sigma \neq \rho \wedge \rho' = \sigma \vee [\xi(M) \wedge \xi(M')]$. Since σ is good,

there exists a σ -cocritical left R-module N which is $(\rho \wedge \rho')$ -torsion, and so $\sigma \vee \xi(N) \leq \rho \wedge \rho'$. In particular, N is not $[\xi(M) \wedge \xi(M')]$ -torsion-free and so, by restriction if necessary, we can assume that it is $[\xi(M) \wedge \xi(M')]$ -torsion. This means that there exist nonzero R-homomorphisms from M to E(N) and from M' to E(N) which must indeed be monic since N is σ -torsionfree and M, M' are σ -cocritical. Since N is cocritical and hence uniform as well, this implies that $\chi(M) = \chi(M')$.

(2) \Rightarrow (1): Assume that $\sigma < \tau'$, $\tau'' \leq \tau$. Since σ is good we know that there exist σ -cocritical left R-modules M' and M'' satisfying $\xi(M') \leq \tau'$ and $\xi(M'') \leq \tau''$. By (2), this means that $\chi(M') = \chi(M'')$ and so we can assume that E(M') = E(M''). If $N = M' \cap M''$ then N is σ -cocritical and $\sigma \neq \sigma \vee \xi(N) \leq \tau' \wedge \tau''$, proving (1). \square

If $\sigma \in R$ -tors, let us denote by $\mathbf{M}(\sigma)$ the set of all prime torsion theories of R-mod of the form $\mathcal{X}(M)$, where M is a σ -cocritical left R-module. By Proposition 33.21 of [2] we see that $\mathbf{M}(\sigma)$ is contained in the set $\mathbf{P}_{\sigma}(\sigma)$ of all minimal prime generalizations of σ . However, we need not have equality in general. If $\sigma \leq \tau$ in R-tors, let $\mathbf{M}(\sigma, \tau)$ be the set of all elements of $\mathbf{M}(\sigma)$ of the form $\mathcal{X}(M)$, where M is both σ -cocritical and τ -torsion. The cardinality of $\mathbf{M}(\sigma, \tau)$ will be called the σ -rank of τ . Clearly $\mathbf{M}(\sigma, \sigma) = \phi$ and, by definition, we see that the set $\mathbf{M}(\sigma, \tau)$ is nonempty (and hence the σ -rank of τ is nonzero) if $\sigma < \tau$ and σ is good. We also note that if $\sigma \leq \tau' \leq \tau$ then $\mathbf{M}(\sigma, \tau') \subseteq \mathbf{M}(\sigma, \tau)$. By Proposition 3, we see that if $\sigma < \tau$ and σ is good then τ is σ -uniform if and only if it has σ -rank equal to 1, i.e. if and only if $\mathbf{M}(\sigma, \tau)$ is a singleton $|\pi|$. In this case, we will say that the σ -uniform torsion theory τ is of type π .

4. Proposition. Let σ be a good torsion theory on R-mod. A set U of σ -uniform torsion theories is σ -separated if and only if no two elements of U are of the same type.

Proof. Assume that no two elements of U are of the same type. By Proposition 1 it suffices to assume that the set U is nonempty and finite. Let $U = \{\tau_1, \dots, \tau_n\}$ be a set of σ -uniform torsion theories and let $\mathbf{M}(\sigma, \tau_i) = \{\pi_i\}$ for each $1 \leq i \leq n$. For each such i, let M_i be a τ_i -torsion σ -cocritical left R-module satisfying $\chi(M_i) = \pi_i$. If there exists an index h such that $\tau_h \wedge [\vee_{i \neq h} \tau_i] \neq \sigma$ then there exists a σ -cocritical left R-module N which is $\tau_h \wedge [\vee_{i \neq h} \tau_i]$ -torsion. In particular, N is τ_h -torsion and so $\chi(N) \in \mathbf{M}(\sigma, \tau_h) = \{\pi_h\}$. Hence, without loss of generality, we can as-

J. S. GOLAN

sume that $N=M_h$. Since M_h is $[\vee_{l\neq h}\tau_l]$ -torsion, there exists an index $k\neq h$ such that M_h is not τ_k -torsionfree. Replacing M_h by its τ_k -torsion submodule, we can assume that it is τ_k -torsion and so $\pi_h=\chi(M_h)\in M(\sigma,\tau_k)=\{\pi_k\}$, contradicting the assumption that τ_h and τ_k are not of the same type.

Now, conversely, assume that U is σ -separated. If there are two distinct elements τ and τ' of U of the same type $\chi(M)$, then $\xi(M) \leq \tau \wedge [\vee (U \vee \tau)]$, contradicting σ -separation. Therefore no two elements of U are of the same type. \square

5. Corollary. If σ is a good torsion theory on R-mod then any two maximal σ -separated sets of σ -uniform torsion theories have the same cardinality

Proof. The cardinality of a maximal σ -separated set of σ -uniform torsion theories is clearly equal to the cardinality of $\mathbf{M}(\sigma)$. \square

Recall that an *independence structure* \mathscr{E} on a nonempty set A consists of a family of subsets of A satisfying the following conditions:

- (1) $\phi \in \mathscr{E}$;
- (2) If $A' \subseteq A'' \in \mathscr{E}$ then $A' \in \mathscr{E}$;
- (3) If A' and A'' are finite sets in $\mathscr E$ satisfying |A'| < |A''| then there is a set B in $\mathscr E$ satisfying $A' \subseteq B \subseteq A' \cup A''$ and |B| = |A''|;
- (4) If every finite subset A' of a set A belongs to \mathscr{E} then $A \in \mathscr{E}$. For more information on such structures, refer to [1] or [5].
- **6.** Proposition. If σ is a good torsion theory on R-mod then the family of all σ -separated sets of σ -uniform torsion theories is an independence structure on σ -unif.

Proof. Condition (1) is true by definition and conditions (2) and (4) follow from Proposition 1. We are therefore left to prove condition (3). Let U' and U'' be finite σ -separated sets of σ -uniform torsion theories on R-mod with |U'| < |U''|. Say $U' = |\tau_1, \dots, \tau_k|$, where each τ_i is of type π_i , and let $U'' = |\sigma_1, \dots, \sigma_n|$, where each σ_i is of type π_j . By renumbering if necessary, we can assume that there exists an integer $1 \le t \le k+1$ such that π_i and π_i' are equal for all i < t and are not equal for all $i \ge t$. Then $Y = |\tau_1, \dots, \tau_k, \sigma_{k+1}, \dots, \sigma_n|$ is a set of σ -uniform torsion theories no two of which are of the same type and so the set is σ -separated. Moreover, $U' \subseteq Y \subseteq U' \cup U''$ and |Y| = |U''|. \square

If $\sigma < \sigma' \le \tau$ in R-tors then τ is σ -essential over σ' if and only if $\sigma \ne \sigma' \land \sigma''$ for all $\sigma < \sigma'' \le \tau$. Thus, trivially, if $\sigma < \tau$ then τ is σ -essential over itself. Moreover, a torsion theory $\tau > \sigma$ is σ -uniform if and only if it is σ -essential over every torsion theory σ' satisfying $\sigma < \sigma' \le \tau$.

7. Proposition. If $\sigma < \sigma' \leq \tau$ are torsion theories on R-mod with σ good then τ is σ -essential over σ' if and only if $\mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$.

Proof. Assume that τ is σ -essential over σ' . Since $\sigma' \leq \tau$ we have $\mathbf{M}(\sigma, \sigma') \subseteq \mathbf{M}(\sigma, \tau)$. On the other hand, assume that $\pi \in \mathbf{M}(\sigma, \tau)$ and let N be a σ -cocritical τ -torsion left R-module satisfying $\pi = \chi(N)$. Then $\sigma < \sigma \lor \xi(N) \leq \tau$ so $\sigma \neq \sigma' \land (\sigma \lor \xi(N))$. Since σ is good, there exists a σ -cocritical left R-module N' which is $[\sigma' \land (\sigma \lor \xi(N))]$ -torsion. In particular, there exists a nonzero R-homomorphism from N to E(N'), which must be monic since N and N' are σ -cocritical. Then the uniformness of N' implies that $\pi = \chi(N) = \chi(N') \in \mathbf{M}(\sigma, \sigma')$, proving that $\mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$.

Conversely, assume that $\mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$ and let $\sigma < \sigma' \leq \tau$. If N is a σ -cocritical σ'' -torsion left R-module then $\chi(N) \in \mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$ and so N is σ' -torsion as well. Thus $\sigma < \sigma \vee \xi(N) \leq \sigma' \wedge \sigma''$, proving that τ is σ -essential over σ' . \square

8. Corollary. If $\sigma \in R$ -tors is good then a σ -essential generalization of a σ -uniform torsion theory is σ -uniform.

Proof. This is a direct consequence of Proposition 3 and Proposition 7. \square

9. Corollary. If $\sigma \in R$ -tors is good and if $\tau > \sigma$ in R-tors then there exists a σ -separated set U of σ -uniform torsion theories on R-mod such that τ is a σ -essential extension of $\vee U$.

Proof. Take $U = | \sigma \vee \xi(M) | M$ a σ -cocritical τ -torsion left R-module. This set is σ -separated by Proposition 4. \square

10. Proposition. If σ is a good torsion theory on R-mod then any proper generalization of σ has a unique maximal σ -essential generalization.

Proof. Let $\sigma < \tau$ in R-tors and let $\tau' = \bigvee \sigma' > \sigma \mid \mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$. Clearly $\tau' \geq \tau$ and so $\mathbf{M}(\sigma, \tau) \subseteq \mathbf{M}(\sigma, \tau')$. Conversely, if

 $\pi \in \mathbf{M}(\sigma, \tau')$ and if M is a σ -cocritical τ' -torsion left R-module satisfying $\pi = \chi(M)$ then there exists a torsion theory $\sigma' > \sigma$ satisfying $\mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \sigma')$ and having the property that M is not σ' -torsionfree. Therefore $\pi = \chi(M')$, where M' is the σ' -torsion submodule of M. This implies that $\pi \in \mathbf{M}(\sigma, \sigma') = \mathbf{M}(\sigma, \tau)$, proving that $\mathbf{M}(\sigma, \tau')$ and $\mathbf{M}(\sigma, \tau)$ are equal. By Proposition 7, this means that τ' is a σ -essential generalization of τ which, by construction, is clearly maximal. \square

If $\sigma \leq \tau$ in R-tors we will denote the σ -rank of τ by $r_{\sigma}(\tau)$. The torsion theory τ is σ -flat if and only if $r_{\sigma}(\tau') > r_{\sigma}(\tau)$ for all $\tau' > \tau$ in R-tors. In other words, τ is σ -flat if and only if for each $\tau' > \tau$ there exists a τ' -torsion σ -cocritical left R-module which is τ -torsionfree. (Note that the term "flat" is used here in its combinatoric, rather than algebraic, sense; see [1] or [5].)

11. Proposition. If $\sigma \leq \tau$ in R-tors then the family of all σ -flat generalizations τ is closed under taking arbitrary meets.

Proof. Let U be a nonempty set of σ -flat generalizations of τ and assume that $\tau' > \wedge U$ in R-tors. Then there exists an element ρ of U such that $\tau' \not \leq \rho$ and so $\tau' \vee \rho > \rho$. Thus there exists a ρ -torsionfree σ -cocritical left R-module M which is $(\tau' \vee \rho)$ -torsion and hence not τ' -torsionfree. Replacing M by its τ' -torsion submodule, we can assume that it is τ' -torsion. On the other hand, M is $(\wedge U)$ -torsionfree since it is ρ -torsionfree. Therefore $r_{\sigma}(\tau') > r_{\sigma}(\wedge U)$. \square

12. Proposition. Let σ be a good torsion theory on R-mod and let $\sigma < \tau$. If $M(\sigma, \tau)$ is finite then the maximal σ -essential generalization of τ is the meet of all σ -flat generalizations of τ .

Proof. Let τ' be the maximal σ -essential generalization of τ . If $\tau'' > \tau'$ then τ'' is not σ -essential over τ and so, by Proposition 7, $\mathbf{M}(\sigma, \tau'') \supset \mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \tau')$. Therefore $r_{\sigma}(\tau'') > r_{\sigma}(\tau')$, proving that τ' is σ -flat over τ . Now assume that ρ is σ -flat over τ and satisfies $\rho < \tau'$. Then $r_{\sigma}(\tau') > r_{\sigma}(\rho)$ and so $\mathbf{M}(\sigma, \tau) = \mathbf{M}(\sigma, \tau') \supset \mathbf{M}(\sigma, \rho) \supseteq \mathbf{M}(\sigma, \tau)$, which is a contradiction. Thus, by Proposition 11, τ' is the meet of all σ -flat generalizations of τ . \square

References

London, 1980.

- [2] J. S. Golan: Torsion Theories, Longman Scientific and Technical, Harlow, 1986.
- [3] C. NASTASESCU and F. van OYSTAEYEN: Dimensions of Ring Theory, Reidel, Dodrecht, 1987.
- [4] H. SIMMONS: An escalator characterization of finite uniform dimensionality, preprint, 1988.
- [5] D. J. A. WELSH: Matroid Theory: Academic Press, London, 1976.

DEPARTMENT OF MATHEMATICS and COMPUTER SCIENCE
UNIVERSITY OF HAIFA
31999 HAIFA, ISRAEL

(Received May 20, 1988)