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ON HEREDITARY ARTINIAN RINGS
AND AZUMAYA’S EXACTNESS CONDITION

Kent R. FULLER and WemMin XUE

Azumaya [3] and Morita [9] established the theory of Morita duality
and proved that there is a duality between the categories of finitely
generated left R-modules over a ring R and finitely generated right S-
modules over some ring S if and only if R is left artinian and the indecom-
posable injective left R-modules are all finitely generated. An interesting
problem is to determine the type of artinian rings which posses self-duality,
i.e., a duality between their categories of finitely generated left and right
modules. An artinian ring has self-duality when its basic ring is isomorphic
to the endomorphism ring of its minimal cogenerator.

In this paper, we characterize left artinian hereditary rings via module
diagrams, and employ this and a result of Habeb [8] to show that a basic
exact hereditary ring and the endomorphism ring of its minimal cogenerator
have the same algebra diagrams, thus lending support to Azumaya's conjec-
ture that his exact rings have self-duality.

Azumaya [4] called a left artinian ring R exact in case it has a com-
position series of two-sided ideals

WRe=L>1>-->1,=0

such that for all i every left endomorphism of I,_,/I; is given by right
multiplication by an element of R. He proved that this notion is left-right
symmetric and that Nakayama's serial (or generalized uniserial) rings are
exact. FExtending this notion to any bimodules, Camillo, Fuller and Haack
[6] said that a bimodule that has a composition series whose composition
factors are balanced is an exact module, so that a ring R is an exact ring in
case the regular bimodule ;R; is exact.

A module diagram # is a finite directed graph with distinguished node
0 such that : (i) there is at most one arrow between any two nodes ; (ii)
there are no oriented cycles in .# and no arrows emanating from 0 ; (iii) if
x 5= 0 then x - 0 in .# if and only if there is no arrow x —» y = 0 in ..
(Cf.[1].[7].) We also let .# denote the set of nodes in the diagram ..#.
A subdiagram % < .# satisfies x € % and x - y implies y € %. and for
any subset X C .#, %(X) denotes the smallest subdiagram of ..# containing
X. The radical of A, Rad(.#), is the intersection of all maximal subdia-
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grams of .#. A diagram .# is called tree in case for each x € .# no
two distinct paths in %(x) end at the same node z = 0.
A module diagram .# is called an n-diagram if there is a function

A #\O] > 11,..., 0}

labeling the nodes of .#. If .# and .4 are both n-diagrams, a homomor-
phism ¢: .# — .4 is a function on nodes satisfying (1) if ¢{x) = v in A
then there is a y € .# with x - y and ¢(y) = v; (ii) if x » ¥ in .4 and
#(y) += 0 then ¢(x) = @¢(y) in ; and (iii) A(@(x)) = A(x) whenever
¢(x) #+ 0.

Throughout this paper R is a left artinian ring with radical J, basic set
of primitive idempotents e,,..., e,, and simple left modules S; = Re;/Je;,
i=1,...,n.

As in [1], [7], a pair (#, &) is a diagram for a finitely generated left
R-module M in case : Card(.#\|0}) = ¢(M), the composition length of M;
# is an n-diagram with label A; and ¢: Z(.#) - #£(M) is an injective
lattice homomorphism between the lattices of subdiagrams of .# and sub-
modules of M that satisfies §(Rad %) = Rad& (%) (% < .#), and &( %)/
8(7?) = Sy, whenever x ¢ ¥ and ¥ U {x| = % are subdiagrams of .#.

A potential algebra diagram is an n-diagram & such that: (i) & =
P U P, where N P =1{0|if i +] and &, = %(e;) with Ale,)
=1, i=1,...,n; and (ii) if ¢, > a+ 0 in 2 then there is no other
arrow x — a in & and there is an epimorphism (i.e., a surjective homomor-
phism of n-diagrams) ¢: &, - %(a). In such a diagram we denote ¥ =
Rad(#), 4° = Rad(g), etc.. If {g,]a € g\ g*l is a set of epimorphisms

ot Pua > Ula), we let = (1¢.|a € g\ g% be the subsemigroup
of End(#) generated by | ¢,/ a € 4\ #*! and the projections & : # — P,
and define a function

O: H >R
via
O: 7 yle) if y=yog.

Fuller [7] proved that & is always surjective and called (. [ ¢,/ a € g\
Z*1) an algebra diagram if @ is injective.

A finite semigroup 92 containing 0, is called an algebra semigroup in
case & = le,,...,enl U 4 with e, ..., e, orthogonal idempotents and &
a nilpotent ideal such that
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R =UL Re; = UL ey R

In [7], with such a semigroup are associated two algebra diagrams 2, and
Ry, where x » y = 0 in & in case there is an a € Z\ ¥ such that ax
=yandx - 0 if Jx=0: @,(x) = za; and Afx) =i if e;x += 0. And
R, is defined similarly.

Theorem 1. Let R be a basic left artinian ring, then R is left heredi-
tary if and only if xR has a module diagram (R, §) such that (# = P, )---
U Pl el a € F\Z*D) is an algebra diagram with each P, a tree and each
¢o an isomorphism.

Proof. (=) Suppose that R is a basic hereditary ring. Let
Je; = @ Re;,ae; = @ Ra

agh, a€a
where a = e;,ae; # 0 is the image of e;, under an isomorphism
Re;, = Re,,ae;
and let
A=A UUA,
(Note : some A,’s will be empty when Je, = 0). Let
F=AUAU--UA" U {0}

be the subsemigroup of (R, - ) generated by A, and if x € £\|0] let j, and
i, be the unique elements of |1...., n} with

e xe; + 0,

Also A* =lay---a,| @, € AI\|O} and m+1 = Loewy length of R. The
following observations (1)—{11) entail these hypothesis :
(1) J*= & Rux.

Proof of (1) : If k = 1, we are done by hypothesis.
Suppose that k > 1 and

Since R is hereditary,
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via

Te, — 16 X

is an isomorphism, so recalling Je;, = @ Ra we have Je,x = @ Rax,
aga;

- QEA;,
thus
JE = J< Rx) = Je,x= D ( D Rax) = D Ry
TEAK-! XEAK-1 XEAK-1\ @€, YE Ak
since a € A and ax = 0 implies a € AL
Let
R=1le.....,enl UFand A’ = e, ..., eql.
(2) If x..... x, € #\|0} and x; & Rx; for all i # j. then
Rx,++--+ Rx; = Rx, ®---® Rux,.
Proof of (2) : Renumber x,...., x; so that x,,...., x, € A* and x,,,.....

x, € 4", By (1), we have

Rx,®&® Rx,® Rz, ®---® Rz, = J",

where A¥ = |x,,.... Xy, Ziyeees 25 I 1> t, then x, € "' so

Xy = Ap 18y,
where, since x; ¢ Rx; with j < t, we must have ay---a, = z; for some j.
Thus

¢ s
Zi=l+l Rx; C Z‘u'=1 Rz;.
Now we have

Rx;+--+Rx; = (Rx; @+ ® Rxi) @ (Ravsy+ -+ Ruxo),

where the latter sum is direct by induction on £,

(3) If x.y € ¥ and Rx = Ry then x = ».

Proof of (3): If y € A* and x € A’ then k = £, since by (1) Ry &
J¥*'. But then also by (1) x = y.

(4) If ag---a, = bg-+-b, = 0 with a;. b; € A then k = £ and b, = a;,
i=1,.,k

Proof of (4) : Suppose k = £ and induct on k. If k =1, it is clear. »
Suppose k > 1, then

0 F ag-ray = bg"'bl (S5 Ra] N Rbl
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so by definition of A, a, = b,, so letting e = e,, we have an isomorphism
Re - Rea,

via
re = req;.

But then ay---a, = by---b, since they have the same image, so we are done
by induction.{Note : if £ < k we would eventually get ay---a,., = e; which
is impossible.)

Now let # = #,, so H# is an algebra diagram with &, = #e; and
x> y if and only if ax = y for some a € A. and ¢,(x) = xa. A(x) = ¢,

(see [7]). Also we let
S(#)=Rwu, < R.

so & is a function &: L(R) » L(;R).

(5) o(w) = @ {|Rx|x € #\Rad(%)].

Proof of (5): The sum is direct by (2). and clearly the sum is con-
tained in §(%). If y € % then y € % \Rad(%) or there is a path from x
to y for some x € % \Rad(#). But then y = @, ---a,x € Ra.

(6) o6: #(R) > Z(RR) is an injective lattice homomorphism.

Proof of (6): If #\Rad(#) = {x,..... x}. 7\Rad(7) = |y..... ¥ol
and §(#) = &(7), then by (5)

8(#) = Rx, ®---®Rx, = Ry, ®---® Ry, = 5(7).

But then by (2) each x; is contained in some Ry . so since the sums are
direct and the terms are indecomposable. £ = k and we can renumber so

that Rx; = Ry, (i = 1..... k). But then by (3) x;, = . so
u=UL w(x) = U w(y) = 7.
and & is injective. Clearly we have
Slwyu 1) =06(w)+8(7)and s( N ) C 8() N &(7).
To show " D ’, we write (using (2))
= u(x,) U0 2(x) and ¥ = U(y) O 2(y0).

We proceed by induction on k42, If k42 = 2. then % = #(x,), ¥ =
P(y,) and # C v, ¥ C % or R N RY¥ =10} by (2). and in either
case R« N R7 C R(#% N 7). Suppose k+0> 2. If x; ¢ #(y) and
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v & U(x;) for all i and j, then by (2)
RuNRy={0lC RN 7).
Thus we may assume x,,...,x, € ¥ for some t = 1. Then letting
U = Uxy) U0 Ux) C ¥ad 2 = Ulx,,) U Ux)
using modularity we have

RuNRY=(RU+R¥%)NRYC RU+(RU NRY)
CRuUAR(2 NY)CRANY)

by induction.

(7) |2\ 0t = c(xR).

Proof of (7) : This follows from (1).

(8) &(Rad %) = Rad(s(@)).

Proof of (8): By [7, Lemma 2.3), if % < & then Rad(%) = g%.
Thus

0(Rad %) = Rg# = J% = JR% = Rad(5(%)).

(9) If =7 Ulxt <R, x& ¥ then §(%)/6(¥) = S
Proof of (9): R(7 U lx|)/RY =R¥+Rx/RY = Rx/Rx N RY
= Rx/R(u(x) N V)
= Rx/R(Rad(#(x)))
= Rx/Rad(Rx) = Sya.
(10) (%, &) is a module diagram for ,R.
Proof of (10) : By (6), (7), (8), and (9).
(11) Each # is a tree and each ¢, is an isomorphism.

Proof of (11): If x LA i v in &R then ax = by.. But by (4) the
latter implies x = y and a = b. If ¢o(x) = @.(y) then xa = ya. Again by
(4), x = y.

(«=) Assuming the condition, we need only show that if §(#) = P,
< xR then JP, is projective. Since % is a tree

Rad(#,) = #(a) U---U %(a,),
SO

JP, = 6(Rad #,) = o(%(a) ®---® & U(a)),
6(62/(ai))/8(Rad 92/(‘%)) = S/\(ai:,
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and P, maps onto §(%(a;)). But %(a;) is a diagram for §(#(a;)) by [7,
Proposition 1. 1], so

c(&((a)) = card(#(a;)) —1
= card(P,,,) —1 (since ¢, is injective)

= C(PA:a; i)y
and &(%(a;)) = Pia, and JP, is projective.

Finite global dimension is not enough to insure the existence of a dia-
gram for an artinian ring. To see this, let %, be the diagram

-%g: € (] €3 €y €5
L /N
a b ¢ d d, d,

Xy Xz X3

with Ala) = Mb) = Ale) = AM(x;) =1 and A(d;)) = i+1, i=1.2,3. If
K is any field, then 22, is the left diagram for the hereditary diagram
algebra K#2[7, Theorems 3.3, 4.3]. Now let S be the factor ring of R
defined by

S = R/I with I = K(x,+x,+ x3).

Then S has a decomposition sS = @, @---® Q; where Q, = (Re;,+1)/1,
i=1,..., 5; and gl.dim. S = 2. Let

L = Rad(Q;) and N = Rad(L).
Then L is a sum of three uniserial modules, each of length 2,
L =D+D,+D,
with socles X, = Soc(D;,) = @,, i = 1,2.3, such that
L/N=@L.(Di+N)/N=®Di., Q.,/Rad(Q;.,)
is a direct sum of three non-isomorphic simples. and
N=XoX,=XeX=X,® X,

One can show that, since S is an artinian ring, if ¢S has a diagram then
so does (the radical of) every indecomposable projective left S-module (we
don’t know whether diagrams are inherited by submodules, or even by direct
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summands, in general). So suppose that (&, &) is a diagram for L. Then
N = §(Rad &), and since the (D,+N)/N are the only simple submodules
of L/N, there are subdiagrams %,, %,, %, of & such that

6(#:) = Di+N, i=1,2,3.
But then, letting 27 = Rad(%,), we have
3(9’1 :Rad(D‘—'-N):Xl. i :1,2,3,

which is imposible because Card({2, U &, U &3)\|0]) > 2 = ¢(N). (The
module L appeared in [5], and Doug Pickering pointed out that it could not
have a diagram of the type considered here.)

Camillo, Fuller and Haack [6] noted that if C and D are division rings
then by [6, Lemma 2. 1] a bi-vector space .V, is exact if and only if it has
a (left or, equivalently, right) basis w,..... v, (which they called an exact
basis) such that

Z?:] Cvi = Z:‘=1‘ViD, k = 1 ..... n.

They proved that an artinian ring R with J? = 0 is exact if and only if for
each pair of primitive idempotents e and f in R, the bi-vector space grzeJfr7
is exact or zero. where eRe = eRe/eJe and fRf = fRf/fJf. Using these

facts, the following result is immediate,

Lemma 2. Let R be a basic exact artinian ring with J: = 0, then
there is a subset A C J such that J =@ Ra = P aR with all Ra and aR
QEA

[+1=F.N

simple modules.

According to Theorem 1 and its proof. a hereditary artinian ring R
has a left diagram (9%, &) induced from an algebra semigroup % and
a right diagram (%, §r) induced from an algebra semigroup 9#'. These
semigroups are subsemigroups of (R, *). The next theorem shows that if
R is also exact, then (R, +) contains an algebra semigroup which induces
both a left and a right diagram for R.

Theorem 3. Let R be a basic exact artinian ring. If R is hereditary,
there is an algebra semigroup R such that (R, §:) is a diagram for xR, and
(R:, 6r) is a diagram for Ry, where §{ %) = R, U < Ry, and 6.(¥)
= UR, U < R,.

Proof. If R is hereditary, then
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J = @ Ra if and only if J/J? = @ (Ra+J?)/J*.

a2EA acaA
So by Lemma 2, there is an A C J such that

J =@ Ra = @ aR, where each a = ¢, ae;, + 0.

acA acA

Let m41 = Loewy length of R and
J=AUAU---UA" U |0}

According to the proof of Theorem 1,

is a semigroup that does the job.

We call the algebra semigroup 92 of Theorem 3 an algebra semigroup
Jor R.

Habeb [8] proved that the endomorphism of the minimal cogenerator
over a basic exact ring R is an exact ring. This result answers Azumaya's
conjecture partially. If R is also hereditary, we can say more about these
two rings,

Theorem 4. Let R be a basic exaci artinian ring with zxE the minimal
cogenerator and S = End(RE). If R is hereditary, then R and S have the
same left and righi algebra diagrams.

Proof. Let J=J(R). N=J(S), and f, € S be the idempotents for
E, = E(Re;/Je;) in the decomposition zE = E, @---@® E, of the minimal
cogenerator. One checks that ,E; defines a duality such that E; corresponds
to f;S and Re;/Je; corresponds to f;S/fiN. Using these correspondences
and [4, Corollary 3 and Corollary 5] we have

C((fl Sﬁ)f,sx,) = C((e,ke,(ej E)) = c((e; Rej)e,ke,)

for each i and j. It follows that (e;R/e;J%)z and (f; S/ fiN*)s have the same
diagrams since g, 2(rg(J?))s/n: also defines a duality.(Using the fact ry(J) =
2:(N), one easily shows that rp(J?) = £.(N?), so this duality follows from
[10, p.1345].) Thus since R and S are hereditary it follows that e;J =
@D;(e; R)* if and only if fN = @;,(fS)*». Now by induction on c(e;R)
we see that the right (similarly, the left) diagrams of R and S are the
same.
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Corollary 5. Let R be a basic exact hereditary artinian ring with zE
the minimal cogenerator, then R and S = End(zE) have isomorphic algebra
semigroups.

Proof. Let A; C e;Je,\J? with {a+J*|a € A;;| an exact basis for

(e;Je;+J%)/J?% and let A = |J;;A;;. If m4+1 = the Loewy length of R,
then

R=le,..,en UAUA U---UA™U |0}

is an algebra semigroup for R. Now since S is also a basic exact heredi-
tary artinian ring which has the same diagram as R, we have the corre-

sponding B,,, B = U,,B,,, and
F=\f... ”UBUB*U--UB"U |0}
is an algebra semigroup for S, where |A;| = | By;| for each i and ] Let
Pyt Ay > By

be any bijection. Then the ¢;’s induce a bijection ¢ from A to B. Define
a map

p: R->F
via 8(e;) = fi, B(0) = 0, and B(a, - ax) = ¢(a,)--@la), where a,---ax €
A¥. From (4) in the proof of Theorem 1, it follows that g is well-defined

and hence a semigroup homomorphism. Now g is onto and |R| = | S| is
finite, hence B is a semigroup isomorphism.

Our concluding proposition characterizes exactness for hereditary

artinian rings via exact bases.

Proposition 6. Let R be an indecomposable artinian ring with com-

plete set of primitive idempolenis e,...., e, such that each e;Re; is a division
ring (e.g., a hereditary artinian ring). Then R is exact if and only if R
has an exact basis over a division subring D such that De;, = e;Re;, = e; D,
i=1,...,n.

Proof. Let R, = e;Re; be a division ring, i = 1,...,n. If R is exact
then by [6, Proposition 2. 2] there are isomorphisms ¢;: R,» R, i = 2,
...n; and by [6, Lemma 1.4] each bi-vector space 4 (e;Re;); is exact
and so has an exact basis. Now letting
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D= {7'1 +¢z(7'1)+"'+¢n(7'1)| n e Rl}v

the union of these exact bases becomes one for ,R,.

Conversely, if D satisfies the condition and v,,..., v, is an exact basis
for R, then |e;v ¢;,.... e;vme,| contains an exact basis for a(eiRe;)p,. and
R is exact by [6. Proposition 2.7 and Theorem 2. 5].

Using the inexact real bi-vector space mVw of [6. Example 2.9] we
note that the hereditary ring

R V
o &)

satisfies De; = e;Re; = e; D, but is not exact.
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