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Throughout, R will represent a ring with center C. An element x of
R is called a right p.p. element if there exists an idempotent e in R such
that xe = x and{r € R|xr =0} =|r € R|er = 0} (see [5]). Let P be
the set of right p.p. elements in R, and N the set of nilpotent elements in
R. Following [3], R is called a Pi-ring if xR* = xR"x for all x € R ;
following [7], R is called a Jx,,-ring if for each x,,---, xx.1 € R there
exists an integer n > 1 such that x,---xxy; = (x;---xx4,)", where k is
a fixed positive integer.

The main theorems of the present paper are stated as follows :

Theorem 1. (1) The following are equivalent :
1) For each sequence |x,|,cy of elements in R there exist positive

integers k, k' such that x, - xx,, = x7* %2z and xy,,---x, = xF*22’ with some
z,z € R.

2) For each sequence |x:|;cn of elements in R there exist positive
integers k, k' such that x\---xpy; = (X 2k41)’2 and xpp--xy =

(xpsr+ x11)22" With some z, z' € R.

3) R = N® P (strictly speaking, both N and P are ideals of R and
R is the direct sum of N and P), P is strongly regular, and N is (right
and left) T-nilpotent.

(2) Let k be a positive integer. Then the following are equivalent :

1) R is a Py-ring.

2) For each x,,--+, xxy1 € R there exists z € R such that x,---xx,, =
(xl"'xk+l)zz-

3) R=N® P, P is strongly regular, and N**' = 0.

(3) Let k be a positive integer. Then the following are equivalent:

1) R is a Jy.,-ring.

2) For each x,,--, xx-, € R there exists z € {x;, -+, Xy} such that
Xy ZLpgr = (Xyee 2xe1) 2.

3) R=N®P, Pis aJ-ring, and N*' = 0.
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Theorem 2. Let k be a positive integer, and A an additive subsemi-
group of R with A = N. Suppose that for each x,,---, xr,y € R\A there
exists z € R such that x,-- x5, = (x;---Xx-1)’2. Then R=N@® P, P is
strongly regular, and N**' = 0.

Proof of Theorem 1. (1) We can easily see that 3) implies 1) and
2).

1) => 3). Let {x;licy be an arbitrary sequence of elements in R with
x, € N. Then there exists k; > 0 such that x;---a5,,, = x**2, with some
z1 € R. Next, there exists k, >0 such that x/*’zixk 2 Xrn =

xfir B+, with some z, € R, and so x;---xp, 4k, = xiTH 2

'2,. Continuing
the same procedure, we obtain eventually a positive integer k such that
XXk, = 03 similarly, we can find a positive integer k' such that
Xpsr--x; = 0. In particular, for any idempotent e of R we have Ne = eN
= (0. Hence e is central, and so all the idempotents of R generate a
reduced ideal. Furthermore, for each x € R there exists A > 0 such that
x"*' € "R, and so R is right mregular. Hence, by a result of
Zoschinger-Dischinger(see, e.g., [4, Proposition 2]), R is strongly z-regular.
Now, by [5, Corollary 1], R= N® P, P is strongly regular, and N is
T-nilpotent.

2) = 3). We claim first that every idempotent e of R belongs to C.
Actually, for any x € R there exist 2,z € R such that (x—ex)e =
((x—ex)e)’z = 0 and e(x—zxe) = (e(x—xe))?z’ = 0, and therefore xe =
exe = ex.

For each x € R there exists a positive integer k such that x**' €
x*** PR, Hence, again by a result of Zsschinger-Dischinger, R is strong-
ly mregular. Now, let e be an arbitrary (central) idempotent of R, and
a€ N: a"= 0. Then ea € (ea)’R = (ea)"R = a"eR = 0, and therefore
eR N N=0. Hence, by [5, Corollary 1], R= N® P and P is strongly
regular. If {x;},eny is an arbitrary sequence of elements in R such that x,
is in the nil ideal N, then we can easily see that there exist positive in-
tegers k, k' such that x, - -xxy1 = xp-x = 0.

(2) The equivalence of 1) and 3) has been proved in [5, Corollary
2]. Careful scrutiny of the proof of (1) shows that 2) and 3) are equiva-
lent.

(3) Obviously, 3) =1) = 2),

2) =3). By(2), R=N®@& P, P is strongly regular, and N**' = 0.

For any x € R there exists z € {x) such that x**' = x***"2z. Hence R is
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periodic by Chacron’s criterion [2], and so P is a J-ring. (This implica-
tion is also an easy consequence of [6, Theorem 1].)

Theorem 1 (3) improves [1, Theorem 1] as well as [7, Theorem
2. 4], and enables us to generalize [1, Theorem 2] as follows :

Corollary 1. Let k be a positive integer. If for each x,,---, xx,, € R
there exists z € (x;,---, Xxs1) Such that x,---xx,y = (Xpyi--21)°2, then R

=N®P, Pisalring, and N*' = 0.

Proof. There exists 2z' €{x, -, xx+1p such that xx,-x =
(xy++* Xpe1)?2'. Hence xy-+-xxys = (x1--Xpe1 )2 (xpo1---x1) 2, and the assertion
is clear by Theorem 1 (3)

Proof of Theorem 2. As is easily seen,
(*) if x,,-+, xx.1 € R\A and x,---xx,, € N then x,---xx,, = 0 ; in par-
ticular, if & € N\A then b**' = 0.
Next, we claim that
{(#x) if b € N\A and x € R then bx € N and xb € N.
In order to see this, we may assume bx & A. Noting that "' = 0, we
see that 6" 'bxb € N, and so 6" 'bxb = 0 by (*). Hence b* '(bx) = 0.
Next, by making use of the fact that 6" %(bx)’h € N we can see that b**
(bx)* = 0. Continuing the same procedure, we obtain eventually (bx)**' =
0. Hence bx € N; similarly, xb € N.

Now, let x;,+--, xxss € R\A and a;,---, @xs; € A. If x; is in N then
Xy Xpe1 Xy Xy = 0 by (#+) and (%), and therefore x,---xx.; = 0, again
by (#x) and (*); namely (R\A)"'(N\A)R\A)**'"* = 0. Noting that
x,—a; € R\A (j + 1), we get xy--a;--Xxyy = Xy-o Xy —Xy---(x;— @)+
xx+y = 0, and repeating this procedure, we can easily see that R7(N\A4)
R*'" ' = 0. Furthermore, if af = 0 then (x;—a,)"™" = (—a,)**"" = 0,

and so x;—a, € N\A. Hence we can see that R"'AR**'"'=0(i=1,-,
k+1). Now the assertion is clear by Theorem 1 (2).

Corollary 2. Let k be a positive integer, and A an additive subsemi-
group of R properly contained in the Jacobson radical J of R. Suppose that
for each x,,---,xx,1 € R\A there exists z € R such that x, --xp., =
(X1 x5,1)’2. Then R = N@® P, P is strongly regular, and N**' = 0.

Proof. In view of Theorem 2, it suffices to show that J**' = 0. Let
Xy, Xt € JN\A and ay, -, ax.1 € A. Then there exists z € R such
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that x,---2x,1 = (20,--°%5,1)%2 € xy0- 2501 J. Hence x---x4,, = 0 ; namely
(JNA)*' = 0. Since x;—a; € J\A for all i, we can easily see that J**'
= 0 (see the proof of Theorem 2).

Finally, the following is immediate by Theorem 2, Corollary 2 and the
proof of Theorem 1 (3), and generalizes [1, Theorems 3 and 4].

Corollary 3. Let k be a positive integer, and A an additive subsemi-
group of R with A< N(or A< J). Suppose that for each x,,+--, xxs1 €
R\A there exisis z € {x;,+, Xxs1y such that x,---Xxer = (X1 2541) 2.

Then R=N® P, Pis a J-ring, and N*' = 0.
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