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CHACRON’S CONDITION AND
COMMUTATIVITY THEOREMS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday
Hiroaki KOMATSU and Hisao TOMINAGA

In his paper [1], M. Chacron observed the commutativity of rings R
satisfying the following condition :
(C) For each x, y in R, there exist iX), g(X) in X*Z[X] such that

[x—f(x), y—gly)] = 0.

He defined the cohypercenter C' = C'(R) of a ring R as the set of all elements
a in R such that for each x € R there holds [a, x—f(x)] = 0 with some
f(X) in X*Z[X], which is a commutative subring of R ([1, Remark 12]).
We summarize the results of [1] as follows (as for notations used without
mention, see the below):

Theorem C. Suppose that R satisfies (C).

(1) C'is a commutative subring of R containing N.
(2) N is a commutative ideal of R containing D.

(3) N[C,R]=[C,RIN=0and [C, R] < N*

In the present paper, we shall study rings satisfying (C) by making use of
the recent result of W. Streb [11].

In §1, we shall state the results of [11]. Without doubt, Streb gave
his mind to applying his result to commutativity theorems. In the present
paper, too, Proposition 1 and Corollary 1 will play essential roles. In § 2,
we shall characterize the class of rings satisfying (C) and the polynomial
identity [X™, Y"] = 0 (Theorem 1), and improve the main theorem of [8]
(Corollary 2). §3 contains two commutativity theorems for rings satisfying
(C) (Theorem 2 and Theorem 3), which include the main theorem of [9] and
Theorem 3 of [6], respectively. The theorem of [13] are the jumping-off
place for the work in §4 ; §4 deals with commutativity of rings satisfying
some related conditions ( Theorems 4 and 5).

Throughout, R will represent a ring with center C = C(R). Let N =
N(R) denote the set of nilpotent elements in R, and N* = N*(R) the subset
of N consisting of all elements in R which square to zero. Incase N=10, R
is called reduced. Let D = D(R) be the commutator ideal of R. Givena
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positive integer n, we put E, ={x € R|x"=x}|. Incase E=E, S C, R
is called normal. If q (> 1) is a power of a prime and r > 1 and s are
integers with (r, s) = 1, we put

(5 %

Obviously, @ = % induces a (non-trivial) automorphism of GF(q") whose
fixed field is GF(g). For x, y € R, define [x, y] = xy—yx and define
extended commutators [x, y]. as follows : let [x, y], = x, and proceed in-
ductively [x, ¥ 1, = [[x. ¥]x-1, ¥]. Finally, for a subset S of R, we use the
following notations : (S) (resp. (S)) is the subring (resp. ideal) of R
generated by S. Cx(S) ={r € R|[r. S] =0|. &(S)=|r € R|rS =0}.
Amn(S) ={r € R|rS = Sr = 0}.

R(q, r, s) = a, B € GF(q")j.

1. Streb’s theorem. The main theorem of [11] is the next

Theorem S. Let R be a non-commutative ring (R #+ C). Then there

exists a factorsubring of R which is of type a), b), ¢), d), e) or f) :
GF(p) GF(p) 0 GF(p) .

) ( o o ) (0 GF(z))’ p @ prime.

b) Rlq, r, s).

¢) A non-commutative division ring.

d) A simple radical ring with no non-zero divisors of zero.

e) A finite nilpotent ring S such that D(S) is the heart of S and
SD(S) = D(S)S = 0.

f} A ring S generated by two elements of finite additive order such that
D(S) is the heart of S, SD(S) = D(S)S = 0 and N(S) is a commutative
nilpotent ideal of S.

The proof of Theorem S can be completed by the reduction to the follow-
ing proposition. For the sake of completeness, we shall give its proof.

Proposition 1. Let R be a non-commutative ring.

(1) If R is semi-primitive, then there exists a factorsubring of R which
is of type a) or c).

(2) If D C C, then there exists a factorsubring of R which is of type
e) or f).

(3) Ifxy=+ 0= yx for some x, y € R, then there exists a factorsubring
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of R which is of type a), e) or f).
(4) If R contains a non-central element y such that (y)® = 0, then there
exists a factorsubring of R which is of type a), b), e) or f).

Proof. (1) This can be easily seen, by the structure theorem of prim-
itive rings.

Claim1. Let x, y be elements of R with [x, y] #+ 0. Choose an ideal
M of {x, y) which is maximal with respect to [x, y] € M, and put S =
(x, y)/M. Then D(S) = ([%, 7]) is the heart of S and S/D(S) is a
commutative Noetherian ring.

Proof. Obviously, D(S) is the heart of S and S/D(S) is homomorphic
to the subring (X, Y) of Z[X, Y]. Noting that every ideal of (X, Y) is an
ideal of Z[X, Y], we see that (X. Y) is Noetherian, and therefore so is
S/D(S).

Claim 2. Every factorfield of Z[X,, -, X,] is a finite field. Therefore,
if a field is finitely generated as ring then it is finite.

Proof. Let L= K[a,,---,a,] be a factorfield of Z[X,,---,X,], where
K is the prime field of L. By Noether normalizing theorem, every a; is
algebraic over K, namely there exists a non-zero fy(X) € Z[X] such that
fila;) = 0. Let m; be the leading coefficient of f;(X). If K = Q then L is
integral over Z[mi',--:,my'], and therefore Z[mi',--,mz'] must be the field
Q. But this is impossible. Hence K is a finite field, and therefore so is L.

(2) Inview of Claim 1, without loss of generality, we may assume that
R is generated by two elements and D(R) is the heart of R. First, we shall
show that A = [x(D(R)) is not commutative. Suppose, to the contrary, that
A is commutative. Then, noting that A = R and D(R) is a minimal left ideal
of R, we see that A is a primitive ideal of R. If A = 0 then, by the structure
theorem of primitive rings, R has a non-commutative simple factorsubring R’.
But then D(R') = R'Z C(R’), which is a contradiction. Hence 4 #+ 0 and
D(R) € A. Now, R/A is a field, which is isomorphic to some GF(q) by
Claim 2. Since D(R) € C(R) and x?"—x € A, qx € A for all x € R, we
get [x, y] = qx"'[x, y'—y] —qy* [z, y]+ [z, ] = [&% y'—y] —[x. »]
+[x, y] = [x"—x, y?—y] = 0 for all x, y € R. This contradiction shows
that A is not commutative, so that, by Claim 1, there exists a factorsubring S
of A generated by two elements such that D(S) is the heart of S and S/D(S)
is Noetherian. Obviously, SD(S) = D(S)S =0, and so D(S) = Z/pZ
with some prime p, as additive group. Since S is subdirectly irreducible and

pD(S) = 0, the torsion ideal T of S is p-primary and p*T = 0 for some
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positive integer k. If p*S # 0 then D(S) C p*S, andso D(S) S p*SN T
= p*T = 0, which is a contradiction. Hence p*S = 0. Further, noting
that N(S/D(S)) = N(S)/D(S) is a nilpotent ideal of the commutative
Noetherian ring S/D(S), we see that N(S) is a nilpotent ideal of S. If
N(S) is commutative then S is of type f). Suppose now that N(S) is not
commutative. Then, again by Claim 1, there exists a factorsubring S’ of
N(S) generated by two elements such that D(S’) is the heart of S'. Obvi-
ously, S'/D(S’) is a finite nilpotent ring and D(S’) is finite. Therefore S’
is of type e).

(3) If x’y = xy* = 0 then D({x, ¥)) € C({x, ¥)), and so there exists
a factorsubring of (x, y) which is of type e) or f), by (2). Next, if x’y = 0
then x(xy) #+ 0 = (xy)x = (xy)?, and so we may, and shall, assume that
xy+ 0 = yx = y°. Consider S = {x, ¥)/M as in Claim 1. In case ¥’y =
0, by the above, there exists a factorsubring of S which is of type e) or f).
We assume therefore *5 + 0. Since D(S) is the heart of S, the ideal D(S)
is generated by ¥’y = [x, ¥y]. Since D(S) = Zx*y+ (x)x*y = D({Z, x¥)),
we have ¥y = (%, 7] € D({&, z7)). Consider again S' = (&, xy)/M’ as
in Claim 1, and put a = x+M'and b = Zy+M'. Then D(S’) = (b). Fur-
ther, noting that b6S' = 0, we see that (4) is an irreducible left (a)-module.
Since ly((b)) is an ideal of S, l@y((b)) = 0 forces a contradiction (b) C
l@((b)) € (a). Therefore lq((b)) = 0, and hence {a) is a field, which
is isomorphic to some GF(g), by Claim 2. Hence S'= (a) ® (a)b =

(GF(Q) GF(q)
0 0

see that there exists a factorsubring of R which is of type e) or f), or iso-

0 GF(p))
0 GF(p)/:

(4) In view of Claim 1, we may assume that R = (x, ¥) and D(R) is
the heart of R. In view of (2), we may assume further that [x, [x, y]] #+ 0.
Consider S = (x, [x, y])/M as in Claim 1, and put ¢ = x+M and b =
[x, y]+M. Then D(R) = ([x, [x, ¥]]) = D({x, [x, ¥])) implies that D(S)

= (b). In view of (3), we may assume that S is completely reflexive, namely

). Finally, if xy® # 0, we can apply the above argument to

morphic to (

st = 0 implies ts = O for any s, t € S. We can easily see that /5 ((d)) is
an ideal of S, and therefore /((b)) must be zero. Now, let a; and ax be the
additive group endomorphisms of (5) induced by the left multiplication and the
right multiplication effected by a, respectively. The left {(a., az)-module ()
is irreducible, and therefore {a,, ax) is a field, which is finite by Claim 2.
Since the subfields {a,) and {az) have the same order, {a,) coincides with
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(ag). Hence S = (a) @ {(a)b is of type (b).

Proof of Theorem S. Let R be a non-commutative ring. In view of Claim
1 in the proof of Proposition 1, we may assume that R = {x, y) and D is
the heart of R. In case D* = 0, we can apply Proposition 1 (2) and (4).
Henceforth, we assume therefore that D* # 0. Then D is a simple ring.
Now, in view of Proposition 1 (1) and (3), we may assume that R is a com-
pletely reflexive non-semiprimitive ring. Then D is contained in the Jacobson
radical of R, and so D is a radical ring. Furthermore, for every non-zero
x in D, the ideal /,(x) must be zero ; D is of type (d).

Corollary S.1. Suppose that R satisfies the following condition consid-
ered in [10] :
(SC) For each x, y € R, there exists a polynomial f(X, Y) in Z(X. Y)
[X, Y]Z(X, Y) each of whose monomials is of length = 3 such that
[x, y]= flx, ¥).
Then there exists no factorsubring of R which is of type e) or f). Therefore,
if R is non-commutative, then there exists a factorsubring of R which is of
type a), b), ¢) or d).

By a theorem of Herstein [2] (signified as Theorem H). a ring R is
commutative if (and only if) R satisfies the condition
(H) For each x € R, there exists f(X) in X*Z[X] such that x—f(x) € C.

Obviously, Corollary S.1 enables us to reduce the proof of Theorem H
to the case that R is a division ring. By making use of Theorem H, we can
prove Theorem C (see [3]).

Now, the next which is crucial in our subsequent study is immediate by

Corollary S.1 and Theorem C.

Corollary 1. Suppose that R satisfies (C). Then there exists no factor-
subring of R which is of type c), d), e) or f). Therefore, if R is non-com-
mutative, then there exists a factorsubring of R which is of type a) or b).

2. Condition (C) and the identity [X", ¥Y*] = 0. First, as prelimi-
nary, we shall establish fundamental results for rings R with (C).

Lemma 1. Letx € R, a € C and n a positive integer.
(1) If x"[a, x] = [a, x]x" = 0 then [a, x] = 0.
(2) Suppose that R satisfies (C). If [a, x], = O then [a, x] = 0.
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Proof. (1) There exists fi(X) in X?Z[X] such that [a, x—fi(x)] =
0. Again there exists fo(X) in X2Z[X] such that [a, fi(x) —fi( filx))] = 0.
Repeating the same procedure, we can choose a positive integer r such that

g(X) = f(-fol f(X))--+) € X*™Z[X]. Then, by hypothesis, we can easily
see that [a, g(x)] = 0. Hence [a, x] = 0.

(2) Suppose, to the contrary, that [a, x] # 0. Then, without loss of
generality, we may assume that [a, x],.. + 0. Suppose n > 1, and consider
the non-commutative subring T = {[a, x]s_.. x). Then D(T) = ([a, x]a).
Noting that [C', R] € N* € C’and C' is commutative by Theorem C, we see
that [a, ] n-1 € C(T). Hence [I(T),T] = [[a, x]o T, T] = [a, x]nes [T, T]
C [C, RIN= 0, namely D(T) € C(T), again by Theorem C. Then,
by Proposition 1 (2), there exists a factorsubring of T which is of type e)
or f). But this is impossible by Corollary 1.

Lemma 2. If R satisfies (C), then Amn([C', R]) = Ann([N*, R]) is
the largest commutative ideal of R and is contained in the commutative subring

Ci(C') = Cx(N*) of R, and R/Ann([N*, R]) is a commutative reduced ring.

Proof. Since D € C' C C(Cx(C’)) by Theorem C, in view of Proposi-
tion 1 (2) and Corollary 1, C4x(C') is commutative. Put I = Ann([C’, R]).
By making use of Lemma 1 (1), we can easily see that I & Cx(C'). Now, let
K be an arbitrary commutative ideal of R. For each x € K and ¢ € C/, there
exists f(X) in X*Z[X] such that [a, x—f(x)] = 0. Since K* C C, we get
[a, x] = 0. Then, we can easily see that K € I. Hence, I is the largest
commutative ideal of R. In particular. D € I by Theorem C. We define an
ideal M of R by M/I = N(R/I). Then, using Lemma 1 (1), we get M C
Cx{(C’), and hence M = I, which means that R/I is reduced.

Now, obviously I € Ann([N*, R]). Letx € Ann([N*, R])and a € C.
Since [a, x] € N* by Theorem C, we have x[[a, x], x] = [[a, x], x]x = 0.
Hence {[a, x], x] = 0 by Lemma 1 (1), and therefore [a, x] = 0 by Lemma

(2). This shows that Ann([N*, R]) € Cx(C'). As proved above, I is the
largest commutative ideal. Hence I = Ann([N*, R]). Similarly, we can
show that Cx{C') = Cx(N*).

Lemma 3. Let n be a power of a prime p. Suppose that R satisfies (C)
and the identity [ X", Y*] = 0. Ifp[N*, R] = 0, then R is commutative.

Proof. Suppose, to the contrary, that R is not commutative. In view of
Corollary 1, R has a factorsubring R’ isomorphic to some R(gq, 7, s). Since
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pR is commutative by Lemma 2, pR’ is also commutative. This means that
plg. On the other hand, R'satisfies [X" Y"] = 0. But this is impossible,
since n is a power of the characteristic of R’

Now, we consider the following conditions, where A is a non-empty
subset of R and n is a positive integer :
(ii-A), [a, "] =0 forallx € Rand a € A.
(ii-A)7 For each x € R and a € 4, there exists a positive integer & such
that [a, x™], = 0.
(jj-A)% For eachx € Rand a € A, there exists a positive integer k such
that [(x+a)” x™]x = 0.
Qn: A) fx €R, a € 4 and n[a, x] =0, then [a, x] = 0.
(Note that the condition Q(n ; A) is denoted as (A4)} in [9].)

Lemma 4. Let A be a subset of C' containing N*, and n a positive inte-
ger. Suppose that R satisfies (C). Then the following are equivalent :

1) R satisfies the identity [X". Y"] = 0.

2) R satisfies (jj-A)¥.

3) R satisfies (ii-A)F

4) R satisfies (ii-A)n.

Proof. Obviously. 1) implies 2), and 3) does 4) by Lemma 1 (2).

2)=3). Let x € R and a € A. Noting that [A, R] € N* and N is
a commutative ideal of R by Theorem C. there exists a positive integer k
such that

[as J?n] k-1 = [Z‘t::nl xl[a, x]xn_i_l~ In]k
= [(x+[a, x])", x™]s
= 0.

4) =>1). Since Cx(A) is commutative by Lemma 2, R satisfies the
identity [ X", Y"] = 0.

We are now in a position to state our first theorem.

Theorem 1. Let n be a positive integer. Then the following conditions
are equivalent :

1) R satisfies the identity [X—X™ Y—Y™] =0 for some integer
m > 1, and satisfies the identity [X™ Y"] = 0.

2) R satisfies (C) and the identity [X", Y"] = 0.
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3) R satisfies (C) and (ii-N*)¥.

4) R satisfies (C) and (jj-N*)X.

5) R is a subdirect sum of a commutative ring and R(q, r, s)’s such
that (¢"—1)/(g—1)|n.

Proof. Obviously, 1) implies 2) and 2) —4) are equivalent by Lemma 4.
5)=>1). Let @ be the (finite) set of all integers ¢ > 1 such that ¢
is a power of a prime and (¢"—1)/(¢—1)|n with some integer r > 1, and
let m = nq]e]Q(q—l)+1. Now, let ¢ > 1 be a power of a prime such that

(g"—1)/(g—1)|n with an integer r > 1. Then, for any « € GF(q"), we
have a”™ = @ and o" € GF(q). Hence we can easily see that R(q, 7, s)
satisfies the identities [X—X™, Y—Y"] = [X" Y™] = 0, proving 1).

2) = 5). We assume that R is a non-commutative subdirectly irreduc-
ible ring satisfying (C) and the identity [X", Y*] = 0. By Lemma 4, R
satisfies (ii-N*),,.

If R contains x. ¥ such that xy = 0 # yx then, by Proposition 1 (3),
there exists a factorsubring of R which is of type a), e) or f). But this is
impossible by Corollary 1. Hence, R is completely reflexive. Now, let H
be the heart of R, and B the set of all zero-divisors of R (together with 0).
Then, as is well-known, B = Ann(H), which is an ideal of R.

Since R is subdirectly irreducible, the torsion ideal of R is a p-primary
additive group for some prime p. We let n = p'n’, where t = 0 andn’ > 0
are integers and (p, n') = 1. Put S={x"|x € R|and k = p™™—1, where
@ is Euler’s function.

Claim1l. p[N*, R] =0,n">1and k > 1.

Proof. Letx € Rand a € N* with [a, x] + 0. Foranyi=1,2,---,

n—1, we have

PR ij(? ) [a, x™" "] = [a, (x"+ix)"] —[a, x™] —[a, (ix)"] = 0.
Therefore, the usual Vandermonde determinant argument shows that
dla, x]x™" " = d[a, x™ "*']= 0 for some positive integer d. Hence
dla, x] = 0 by Lemma 1 (1). Suppose now that the additive order of [a, x]
is p® for some integer s > 1, and put y = p*'x. Then, there exists f(X) €
X*Z[X] such that [a, y—f(y)] = 0. which forces a contradiction [a, y] =
0. Hence p[N*, R] = 0. Combining this with Lemma 3, we get 2’ > 1 and
therefore &k > 1.

Claim 2. Ann([N*, S]) = Am([N*, R]).
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Proof. For any x € Ann([N*, S]) and a € N* N Ann([N*, S]), we
have [a, x”]x = 0, and so [a@, x”] = 0 by Lemma 1 (1). Therefore, by
Lemmas 4 and 3, Ann([N*, S]) is commutative. Hence, by Lemma 2, we
obtain Ann([N*, S]) = Amn([N*, R]).

Claim 3. [a, x]y®"* = [a, x]x"y* = [a, x]y*x* for any x, y € S and
a € N*.

Proof. Letx,y € S. and @ € N*. Since n'|k by Euler's Theorem,
we have [a, 2*] = 0. Furthermore, k+1 = p®™ and [N*, D] = [N*, R]D
= p[N*, R] = 0 by Theorem C and Claim 1. Now. noting that x+y* € S+
pR+D and (x+ y*)*' — ("' +y***) € pR+ D, we can easily see that

[a. x](x"“+y"2*k) — [a, x](x_'_yk)kﬂ
= [a, x4+ y*](x+y")"
— [a’ (x+y")"“](x+yk)
— [a~ xk+1+yk7+k](x+yk)
— [a’ .r"“](:r+y")
— [a, x](xk+'+xky").

Hence, we obtain [a, x]y*** = [a, x]x"y* = [a, x]y*x* by [N*, R]D = 0.
Claim 4. L = R/B is a finite field of characteristic p and B is
commutative.
Proof. Letx, y € S and a € N*. By Claim 3, we have

2k2+k __

[a, x]y = [a, x]y*z*y* =[a, x]y
= [a, x]y*c®* = [a, x]2*"y*%.

K2+k Kk
X

Repeating the same procedue, we get [a, x]y**"¥** = [q, x]a** " y*  Set-
ting x = y in Claim 3, we have [a, x]x**"* = [a, x]x**. Hence [a, x]y"****
=[a, x]xu:ykz [a, x]y“‘a”‘. By Claim 2, zp‘(k3+k’+k)_zp'(2k2+k) c Ann( [N*, R])
for any z € R. But R = R/Am([N*, R]) is reduced by Lemma 2, and
hence R satisfies the identity X7* ¥+ = X,

Since Ann([N*, R]) is commutative by Lemma 2, [N*, R]R is a non-
zero ideal of R. Hence H C [N*, R]R. Now, let 2, ax; be an arbitrary
element of H, where a,, "*,an € [N*, R] and x,,*-,xn, € R. Then, as R is
a regular ring, there exists ¢ € R such that £, = &;in R for i = 1,---,n.
Therefore 2, amxcie = 25 ax;,. Hence HR = H and B+ R. Since pR C
Ann([N*. R]) C B and L has no non-zero divisors of zero, L is a finite field
of characteristic p.

Let x € Band a € N* N B. For an arbitrary z € R\ B, we can choose
e € Rsuchthat e =%, zé = zand & =é in R. Then e € B. By Claim 3,
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we see [a, x7]e = [a, x”]e”**% = [a, ] x”*e”* = [a, 7] 2", and so
[a, x”](e—x"") = 0. Since e—x"*¢& B, we get [a, x”] = 0. Hence B
is commutative by Lemmas 4 and 3.

Claim5. H= Am(B) and [H: L] =

Proof. As is well-known, L Qgrp L is the direct sum of [L : GF(p)]
copies of L. Regarding Ann(B) as a left L @¢r(p L-module, we can easily
see that [Ann(B) : L] = 1, and therefore H = Ann(B).

Claim 6. No non-zero ideal of R is contained in C.

Proof. It suffices to show that H € C. Suppose, to the contrary, that
HC C. By Claim 4 and Lemma 2, we have B C Ann([N*, R]), and so
[N*, R] € Ann(B) = H C Cby Claim 5. But, by Lemma 1 (2), this forces
a contradiction [N*, R] = 0.

We are now in a position to complete the proof of Theorem 1. Since
B? € C by Claim 4, we get B* = 0 by Claim 6, and so B € Ann(B) = H by
Claim 5. Hence H is the only proper ideal of R (Claim 4). By Theorem C,
D is a proper ideal of R, and therefore pD =pH = 0, which means pR € C.
Hence pR = 0 by Claim 6, and R is a finite algebra with 1 over GF(p). Now,
by Wedderburn factor theorem (see, e.g., [7, p.116, Theorem 5.37]), R
contains a subfield L' isomorphic to L such that R = L'+Hand L' N H = 0.

Hence R is isomorphic to some R(q, 7, s). Putx = (g qu) in R(q, 7, s),

where a is a generating element of the multiplicative group of GF(g"). Since
= (g é) is in N*(R(q, r, s)), we have («"” —¢™)a = [a,x"] =0, which

means that ¢” € GF(q). Hence ¢"—1|n(q—1), and so (¢"—1)/(g—1) |n.

The next improves [8, Theorem].

Corollary 2. Let R be an s-unital ring, and n > 1 an mteger Then
the following conditions are equivalent :

1) R satisfies the identity [ X", Y"] = 0 and Q(n) = Q(n: R).

2) R satisfies (C), (ii-N®) ¥ and Q(n ; N*).

3) R satisfies (C), (jj-N*)¥ and Q(n ; N*).

4) R is a subdirect sum of a commutative ring and R(q, 7, s)’s such
that (¢"—1)/(¢q—1)|n and (g, n) = 1.

Proof. Obviously, 4) implies 1), and 2) and 3) are equivalent.
1) = 2). It suffices to show that R satisfies (C). Put f(X) =
H{14+nX)"—1|/n* €X*Z[X]. For each x, y € R, we choose a pseudo identity e



CHACRON'S CONDITION AND COMMUTATIVITY THEOREMS 111

of {x, y | (see [4]). Then 0 = [(e+nx)", (e+ny)"] = n‘[x—f(x). y—f(y)].
Hence [x—f(x), y—f(y)] = 0 by Q(n).

2)=>4). R is a subdirect sum of a commutative ring R, and R; =
R(qq, ri, s;) such that (¢7t—1)/(q;—1)|n (i € I). Now, we suppose that
(gr, n) # 1 for some k € I. Let a € GF(q*)\GF(qx). Then, we can
choose x = (xq, (xx;)1e;) and a = (aqo, (ai)ic;) in R C R"Xig R, such that

X = (g a%k) and ax = (g (1)) Let m be the product of all primes p such

that p|q; for some i € I and (p. qx) = 1 (if there exists no such prime, we
set m = 1). Setting y = mx, we can easily see that b = [a, y] is in N*
and nb = 0. But [b, y] # 0 and n[b, y] = 0. which is a contradiction.

3. Condition (C) and commutativity theorems. We shall examine com-
mutativity of a ring satisfying (C).
First, we consider the following conditions, where A is a non-empty
subset of R:
(III-A)* For each x € R and a € A, there exist positive integers m,,---,
mn and k such that (my,---,m,) =1 and [a, x™], =0 for i =
1, n.
(III-A)* For eachx € R and a € A, there exist positive integers m and k
such that [a, x®], =0 and x = x'+x" with some x' € E, and
x" € N.
(JJJ-A)* For each x € R and a € A. there exist positive integers m, .-+, m,
and k such that (m,,---.mp) =1 and [(x+a)™, x™], =0 for i =
1, n
(iii-A)* For each x € R and a €A, there exist positive integers m,, -,
Mp, My, -+, my, and k such that {(mym},---. m,my) =1 and
x™(x+a)™) ™, ((x+a)™x™)™]y=0fori =1,--.n.
The conditions (III-4)* and (JJJ-A)* are weaker than those considered
in [9], respectively.
By brief computation, we can easily see the next

01
00
field. Let f(X) be in XZ[X], and let k, m, n. m' and n' be positive integers
with mn = m'n’.

(1) [a, flx)]x = (f(B)—f(a))*a.

(2) [flx+a). flx))x = —[flx), flx+a)lx = (S(B)— fla))™

Lemma 5. Let x = (g %) and a = ( ) be in My(K), where K is a
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(B— a)'a, provided a + 8.

(3) [(fle)™flx+a)™" (flx+a)"f(x)™)"]x = (F(8)*""—f(a)*"") ™"
(SB)™™—f(a)™ ™ N a—B) " (f(a)™+f(B)™) " (f(a)™+f(8)™) " a, provided
f(@)™ * f(B)™™ and f(a)*™ * f(B)*™.

The next improves [9, Theorem 1].

Theorem 2. The following conditions are equivalent :

0) R is commutative.

1) R satisfies (C) and (III-N*)*,

2) R satisfies (C) and (III-N*)¥,

3) R satisfies (C) and (JJJ-N*)*.

4) R satisfies (C) and (iii-N*)*,

5) R satisfies (C) and there exists a positive integer n for which
R satisfies (ii-N*)¥ and Q(n! ; N*).

6) R satisfies (C) and there exists a positive integer n for which
R satisfies (jj-N*)7 and Q(n! ; N*).

Proof. Obviously, 0) implies 1) —6).
4) = 0). Suppose that there exists a homomorphism ¢ of a subring of
R onto some R(q, r, s). Let o be a generating element of the multiplicative

group of GF(q") and choose x, y € R such that g(x) = (3 (31”) and ¢(y) =

0 (aqs'—a)_z . . . T% .
0 0 . Since a = [y, x], is in N* by Theorem C, there exist
positive integers m,,---,my,my, -, my and k such that (m,m,, -, mpmy) =1

and [(x"(x+a) )™ ((x4a) ™x™)™ ], =0 for i =1,---,n. Noting that
¢la) = (8 (1))’ by Lemma 5 (3), we get a*™™ € GF(q) for i = 1,---,n,
and hence o* € GF(q). But this means that (¢"—1)/(¢—1)|2, which is
impossible. By a similar argument, R has no factorsubring of type a).
Hence, by Corollary 1, R is commutative.

Similarly, by making use of Lemma 5 (1) and (2) instead of Lemma 5
(3), we can easily see that each of 1) —3) implies 0).

5) or 6) = 0). Suppose that R is non-commutative. By Theorem 1,
R is a subdirect sum of a commutative ring and R(q;, r:, s;)’s such that
(gqi*—1)/(g;—1)|n (i € I). Let m be the product of all primes p such that
plq; for some i € I. Then mD = 0. Since m|n!, we get [N*, R] = 0 by
Q(n!; N*). Hence R is commutative by Lemma 2, which is a contradiction.
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Next, we consider the following conditions which are stronger than (C) :

(C); For each x, ¥ in R, there exist f(X), g(X), h(X) in X*Z[X] and a

positive integer k such that [x—f(x), y—g(y)] = [f(x+y—h(y)),
flx)]e=0.

(C), For each x, y in R, there exist f(X), g(X), H(X) in X*Z[X] and a
positive integer k& such that [x — f(x). ¥y —g(y)] = [f(x),
fle+y—h(y))]x = 0.

(C); For each x, ¥ in R, either [x. y] = 0 or there exist f(X) in XZ[X],
g(X), MX) in X®Z[X] and positive integers k, n such that
fX)" e X*Z[X], x—f(x)" € N and [xz—f(x)" y—gly)] =
() fx+y—h(y))" (flx+y—h(y))f(x))"]x = 0.

(C)¢ For each x, y in R, either [x, y ] = 0 or there exist g(X), h(X)
in X2Z[X] and positive integers k, m, n, m" and n’ such that ma =
mn' > 1, (m+m', mn—1)|2mn, x—x™" € N and [x—x™", y—g(y)]
= [(a™ax+y—h(y))™)™ ((x+y—h(y))™x™)™ ], = 0.

Theorem 3. The following conditions are equivalent :
0) R is commutative.

1) R satisfies (C),.

2) R satisfies (C),.

3) R satisfies (C);.

4) R satisfies (C),.

Proof. Obviously, 0) implies 1)—4).

GF(')(p) GF(‘)(p)) satisfies (C),. For x =

((1) g) and a = (g (1)) there exists f(X) in X*Z[X] and a positive integer &

such that [x—f(x). a] = [f(x+a), f(x)]x = 0. But f(1) =1 (€ GF(p))
by [x—f(x), a] = 0, and hence [f(x+a), f(x)]x+ O by Lemma 5 (2). This

g g;g;) does not satisfy (C),.

Next, suppose that R = R(q. r, s) satisfies (C),. Let a € GF(q")\

GF(q), and put x = (8 313) and ¢ = (g é) There exists f(X) in X*Z[X]
and a positive integer k such that [x—f(x). e] = [f(x+a), f(x)]r = 0.
Then, in virtue of Lemma 5 (2). f(a) € GF(q). Since a—f(a) € GF(q) by
[x—f(x),a] =0, we get « € GF(q), which is a contradiction. We conclude
therefore that R is commutative by Corollary 1.

1) = 0). First, suppose that (

is a contradiction. Similarly, (
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By similar argument, we can easily see that 2) implies 0).

GF(p) GF(P)) satisfies (C)4- For

4) > 0). First, suppose that ( 0 0

L= (0 O) and a = (8 O)’ there exist positive integers k, m, n, m' and n’
such that mn = mn’ and [(x"(x-+a)™)", ((x+a)"z™)"]x = 0. But this is

impossible. Similarly, (8 gggg;) does not satisfy (C),.

Next, suppose that R = R(q, r, s) satisfies (C),. Let a be a generating
element of the multiplicative group of GF(q"), and put x = (g a?qs) and

01 . b v
a= (0 0). There exist positive integers k, m, n, m’, n', g and v such that

mn = m'n', 2mn = (m+m')py—(mn—1)vy, x—x™" € N and [(x™(x+a)™)",
((x+a)™x™)™], = 0. Then a = a™, and o’™" € GF(q) by Lemma 5(3).
(If a™*™ € GF(q) then @*™" = o™*™*(g™"')~¥ € GF(q).) Hence a® = o™
€ GF(q), which means that (¢"—1)/(¢q—1)|2. But this is impossible. We
conclude therefore that R is commutative by Corollary 1.

By similar argument, we can easily see that 3) implies 0).

The next which includes Theorem 3 of [6] is immediate by Theorem 3 4).

Corollary 3. Let R be a ring satisfying the identity (X—X")(Y—Y") =
0 (n>1). If for each x, ¥ € R, either (xy)"—(yx)" € C, or x"y"—y"x" € C
or (xy)"—y"x"™ € C, then R is commutative.

Example 1. Let R = R(q, 2.1) and let A= N. Then x—x% € 4
and (x(x+@a))” = ((x+a)?)? for all x € R and a € A. This example
shows that, in Theorem 3 4), the hypothesis (m+m’, mn—1)|2mn cannot be
deleted.

Example 2. Let R = R(2,2,1) and let A = C+ N. Then
(14+2,1:2—-1)]2:1-2, x—x® € A and [(x(x+a))? (x+a)’x*] = 0 for all
x € R and a € A. This example shows that, in Theorem 3 4), the
hypothesis x—x™" € N cannot be deleted.

4. Condition (I'-4) and commutativity theorems. In this section, A
will denote a non-empty subset of R. In the previous papers ([9]. [12]). we
considered the following condition :
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(I-A) For each x € R, either x € C or there exists f(X) in X2Z[X] such
that x—f(x) € A

By definition, we can easily see

Lemma 6. If A is commutative and R satisfies (I'-A), then R satisfies
(C)and N*C AU CCC.

Now, the next is immediate by Lemmas 4 and 6.

Corollary 4. A ring R is commutative if and only if there exists a com-
mutative subset A of R for which R satisfies (1'-A) and (ii-A)¥.

If A is a commutative subset of N, the next is a special case of (C), by
Lemma 6 :
(1-A) For each x € R and a € A, either x € C or there exists an integer
n > 1 such that x—x" € A and either (x(x+a))"—((x+a)x)" € C,
or x{(x+a)"—(x+a)™x" € Cor (x{x+a))"—(x+a)™x" € C.
Theorems 1, 2 and 3 of [13] are now included in the following

Corollary 5. A ring R is commutative if and only if there exists a com-
mutative subset A of N for which R satisfies (1-A).

Next, we consider the following conditions which are stronger than

(I-A):

(2-A) For each x € Rand a € A, either x € C or there exist positive in-
tegers k, m and n such that mn > 1, x—x™"" € A and [(x™(x+a)™)",
((x+a)"x™), = 0.

(3-A) For each x € R, either x € C or there exists an integer n > 1

such that
1) x—x"€ A,
2) [x"y"—(xy)™ x] = [y"x"—(yx)™ x] = 0 for all y € R,

3) foralla € A, (n—1)]a. x] = 0 implies [a. x] = 0.

(4-A) For each x € R, either x € C or there exists an integer n > 1 such
that J:_In €A and [(xy)nﬂ xn+1yn+1 I] — [(yx)nﬂ n+l n+l, 1’]
=0 forall y € R.

Theorem 4. A ring R is commuiative if and only if there exists a com-
mutative subset A of R for which R satisfies (2-A%), where A" is the additive
subsemigroup of R generated by A.
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In advance of proving Theorem 4, we state next

Lemma 7. Let L 2 K be a field extension. Suppose that for each x € L
there exists an integer n > 1 such that both x—x" and x*" belong to K. If K is
not of characteristic 2 (in particular, if L/K is separable), then L = GF(9).
Conversely, for each x € GF(9), there exists an integer n > 1 such that both
x—x" and x*" belong to GF(3).

Proof. Let x be an arbitrary element of L\K. Then there exists an
integer n > 1 such that both x—x" and x*" belong to K. (If K is of charac-
teristic 2, then we can easily see that x* € K, which implies that L/K is
inseparable.) Let a be an arbitrary non-zero element of K. Then ax"—(ax™)™
€ K for some m > 1. Since x" € K and x® € K, m has to be odd, and
ax"—(ax™™ = (1 —(ax™)™ ax" € K N Kx" = 0. Hence (ax™)™ ' =1. In
particular, x™ = 1 for some positive integer m’, and therefore a™ '™ = 1.
Hence K is periodic. Let @ be the prime field of K, and let ¢ = 2°7—1 be
the order of K N ®(x), where e > 0 and » is odd. Noting that (x—(x—2x"))*
= x°" and both x—x" and x*® belong to K, we see that &(x) is a quadratic
extension of K N &(x). Since the multiplicative group of ®(x) is the cyclic
group of order ¢*—1, it contains an element y of order r(¢—1). Choose an
integer { > 1 such that y—y*' and y*' are in K. Then y** € K implies that
r(q—1)|2l(g—1). But r is odd, and so we get v |/. This means that y* €
K, and hence ¥y € K. We obtain therefore »r =1 and ¢ = 2°—1. Now, we
shall show that ¢ = 3, which will complete the proof. Suppose, to the con-
trary, that e > 2. Then, the multiplicative group of &(x) contains an element
z of order 16. Obviously, 2z is not in K. Again by hypothesis, there exists
an integer & > 1 such that both z— 2" and 2** belong to K. Since (2°)®* =1
and (¢g—1)/2 is odd, z°* € K N &(x) implies that (2*¥)! = 1. If **=1
then we have z" = £1, which forces a contradiction 2 € K. Hence 2** has
to be —1. Putting b = z— 2", we have

22 = (2"4+b) = 2b2"4+b"—1,
2t = (27) = 4b(b*—1)2"+(h2—1)"—4b?,
2 = (z')?
= 8b(bT—1)((b2—1)2—4b?) 2" 4-((b*—1)*—4b?)*—16b%(b*—1)%
Since z* & K and 2® = —1, we get {(b*—1)* = 4b* and 16b%(b*—1)* = 1.

Then (856%)% = 16b%4b* = 16b%(b*—1)2 = 1, and hence 86 = *+1. Further-
more, (86°—8)* = 64(b°—1)* = 64-4b6° = 32-8b°. In this equation, 86> =
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+1 implies that either 17 = 0 or 113 = 0. But, in either case, we can
easily see that ¢ = 4s+1 with some positive integer s, which contradicts
g = 2°—1. We have thus seen that e = 2.

Conversely, let x be an arbitrary element of GF(9)\GF(3). If x*+1 =
0 then x—x* =0 and x'°= —1. If x*~x—1 = 0 then x—x’ = —1 and
x* = —1. Finally, if &*+x—1 = 0 thenx—x®* = 1 and x'* = —1.

Proof of Theorem 4. Only if part is clear. In order to prove if part,
by Corollary 1 and Lemma 5, it suffices to show that R = R(q. r. s) does
not satisfy (2-A), where A is an additively closed commutative subset of R.
Since N* € A by Lemma 6, the commutativity of A implies that A € C+N.
Suppose, to the contrary, that R satisfies (2-A). Let a be an arbitrary

element of GF(q"), and put x = (a 2,) Since a = (O 1) is in A, there
0 ¢ 00

exist positive integers k. m and n such that x—x™" € 4 and [(x™(x+a)™)",
((x+a)™™)"]x, = 0. Then, in view of Lemma 5 (3), o**" € GF(q). Since
a—a™ € GF(q) by x—x™ € A C C+N, Lemma 7 shows that ¢ = 3 and
r = 2.

Now, let a be a generating element of the multiplicative group of GF(9).
Without loss of generality. we may assume that e°—a—1 =0: 8= o* &

GF(3) and = —1. Letx = (g 33). Then, as was shown above, there

exist positive integers m, n such that x—x"" € A, a— o™ € GF(3) and
o*™ € GF(3). Since '™ = (a—(e—a™))* =(f—(1+(a—a™)))* = —1
+{(14+(a—a™))*—2(1 +(a—a™))B, we obtain —1 = ¢—e™ and —1 =

x—x" € A, Let y = (g 33) and b= —14+a € A. If y—y™™ € A for

some positive integers m’, n’, then §—£™" € GF(3), and so m'n’ has to be
odd. But, for any positive integer £’ we have

(™ (y+6)™)", ((y+b)™y™) "]

— (asm'n'_ aam'n')kﬂ(asm'_ azm‘)(a9m’_aam')—1(az_ ae)—xa

*+ 0.
This is a contradiction.
Example 3. Let R=R(3.2,1) and let A= C U N. Then R satisfies

(2-A). Actually, by Lemma 7, for each « € GF(9) there exists an integer
n > 1 such that a—e” € GF(3) and «’" € GF(3). Noting that (e—a")* =
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a— a" implies a"— a*” = a— a®, we can easily see that for each x € R there
exists an integer n > 1 such that x—x" € A and [(x(x+a))", ((x+a)x)"] =
0 for all a € A. We have thus seen that, in Theorem 4, (2-A*) cannot be
replaced by (2-4).

Finally, we improve [13, Theorems 4, 5].

Lemma 8. Suppose that R satisfies (I'-N). Let ¢ be a homomorphism
of R onto R'. If R is normal, then every idempotent e' of R’ is in $(C).

Proof. Let ¢(x) = e'. If x is not central, then there exists a positive
integer k£ and g(X) in Z[X] such that x* = x**g(x). Obviously, x*g(x) is a
central idempotent and ¢(x*g(x)) = e'¢(g(x)) = ¢(x**g(x)) = ¢(z*) = e

Theorem 5. Let R be a normal ring. Then the following conditions are
equivaleni :

0) R is commutative.

1) There exists a commutative subset A of N for which R salisfies
(3-4).

2) There exists a commutative subset A of N for which R satisfies
(4-4).

Proof. Obviously, 0) implies 1) and 2).

1) = 0). By Lemma 8, every factorsubring of R is normal. Hence, by
Corollary 1, it suffices to show that R has no factorsubring isomorphic to
some R(q, 7, s). Suppose, to the contrary, that there exists a homomorphism
¢ of a subring S of R onto R’ = R(q, r. s), where we may assume that S =

R. Now. let x' = ((‘)’ f) (a & GF(q)) and a' = (8 é) Choose z € R,

a € Aand e € Csuch that ¢(x) = x', ¢(a) = a’and ¢(e) = ((1) (1)) (Lemma

8). There exists an integer n > 1 satisfying 1), 2), 3) of (3-A). Then.
noting that N> € C by Theorem C, we see that ‘

(n—1)[[e"'a, x"], x]
= [l(ale+a))"—xe+a)"|—{((e+a)x)"—(e+a)"x"|, x]
= 0.

Since [N, R] € N* by Theorem C and N* € A U C by Lemma 6, we get
[[e™'a. ™, x] = 0, and therefore [[a’, x™], x'] = 0. Combining this with
[a, x™] = [a’, x'], we get [[a’, 7], x] = 0. But this is impossible.
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2) = 0). Again by Lemma 8 and Corollary 1, it suffices to show that
R = R(q, r. s) cannot satisfy (4-A). A a commutative subset of N. Suppose,
to the contrary, that R satisfies (4-A). Then A coincides with N. Let a be
a generating element of the multiplicative group of GF(q"), and put x =

(g ;)qs). a= (8 (1)>, and ¥y = 14a. Then there exists an integer n > 1

such that x—x™ € A and [a,. x] = [a., x] = 0, where a, = (xy)™'—x™'y™*!
€ A(=N)and a, = (yx)™'—y™'x™' € A. Noting that x> —x™' = x(x—x")
€ A, we obtain 2[[a, x*], x] = n[[a, x™'], x] = [a1—a,. x] = 0. Further

(n+1)[[a, x], x] = (n+1)[[a, x"]. x]
= [ ()" ="y "t = (xy )" — "}, x]
= [x'ay ' =y ax", x]
= [x'afl —a)—(1—a)a,x", x]

=[x Y a;—a.), x]
= 0.

Combining this with n[[a, x*], x] = 0, we get [[a. x*]. x] = 0. But this
is impossible.

Lemma 9. Let R be an s-unital ring. Suppose that for each x € R,
either x € C or there exisis an integer n > 1 such that [x"y"—(xy)", x] =
[y"x"—(yx)™ x] = 0 for all y € R. Then R is normal.

Proof. Let e = e® and x be in R. and choose a pseudo identity e’ of
le, x{. If e’—e is central, then ex—exe = ex{e’—e) = e(e'—e)x = 0 ;
similarly, xe—exe = 0. If e'—e is not central, then there exists an integer
n > 1 such that

—xetexe = [(e'—e)He+(e'—e)xe)"—((e'—e)xe)™ e—e] = 0,
and similarly ex—exe = 0. We have thus seen that ex = xe in either case.

Combining Theorem 5 with Lemma 9. we readily obtain

Corollary 6. Let R be an s-unital ring. Then the following conditions
are equivalent :

0) R is commutative.

1) There exists a commutative subset A of N for which R satisfies

(3-4).



120

2)
(4-4).
[1] M
(2]
{31 vy
(4] Y
[5] Y
(6] Y
{71 N
[8] ¥
[9] H
[10] W.
(11] Ww.
[121 H
13} A

H. KOMATSU and H. TOMINAGA

There exisis a commutative subset A of N for which R satisfies
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